中考数学《弧长扇形面积的相关计算》
【名师面对面】2015中考数学总复习 第6章 第25讲 圆的弧长和图形面积的计算课件

B
2.(2014·嘉兴)一个圆锥的侧面展开图是半径为6的半圆,则这个圆 锥的底面半径为( D ) A.15 B.2 C.2.5 D. 3 3.(2014·绍兴)如图,圆锥的侧面展开图是半径为3,圆心角为90° 的扇形,则该圆锥的底面周长为( B )
4.(2014· 金华)一张圆心角为45°的扇形纸板和 圆形纸板按如图方式分别剪得一个正方形,边长 都为1,则扇形和圆形纸板的面积比是( A )
2 2 2 2
阴影面积的计算
2.(2014· 昆明)如图,在△ABC中,∠ABC=90°,D是边AC上的一点, 连结BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D. (1)求证:AC是⊙O的切线; (2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号 和π)
解:(1)连结 OD,∵OB=OD,∴∠1=∠ODB,∴∠DOC=2∠1, ∵∠A=2∠1,∴∠A=∠DOC,∵∠ABC=90°,∴∠A+∠C=90°, ∴∠DOC+∠C=90°,∴∠ODC=90°,∵OD 为半径,∴AC 是⊙O 的切线 (2)∵∠A=∠DOC=60°,OD=2,∴在 Rt△ODC 中, DC 1 tan60°= ,DC=OD·tan60°=2× 3=2 3,∴S△ODC= OD·DC= OD 2 1 nπ r 60×π ×2 2 ×2×2 3=2 3,S 扇形 ODE= = = π ,∴S 阴影= 2 360 360 3 2 S△ODC-S 扇形 ODE=2 3- π 3
解:连结 OC,∵△ACE 中,AC=2,AE= 3,CE=1,∴ AE2+CE2=AC2,∴△ACE 是直角三角形,即 AE⊥CD,∵ CE CE sinA= ,∴∠A=30°,∴∠COE=60°,∴ =sin∠COE, AC OC 即 ︵ ︵ ︵ 1 3 2 3 = ,解得 OC= ,∵AE⊥CD,∴BC=BD,∴BD= OC 2 3
弧长和扇形面积的计算

弧长和扇形面积的计算弧长和扇形面积是数学中与圆相关的重要概念。
在几何学、物理学、工程学等领域中,我们经常需要计算弧长和扇形面积来解决问题。
本文将介绍如何计算弧长和扇形面积,并提供相关的公式和示例。
一、弧长的计算方法弧长是圆弧上的一段弯曲的长度,也是圆周上两个端点之间的弧段长度。
弧长的计算需要用到圆的半径和夹角。
弧长的计算公式如下:弧长 = 半径 ×弧度其中,半径是从圆心到弧上任一点的距离,弧度是圆心角所对的弧长与半径的比值。
示例一:假设一个半径为5米的圆,计算其1/4圆弧的长度。
解:根据弧长的计算公式,弧长 = 半径 ×弧度。
1/4圆弧的弧度为1/4 × 2π ≈ π/2因此,弧长= 5 × π/2 ≈ 7.85米所以,该1/4圆弧的长度为7.85米。
二、扇形面积的计算方法扇形是由圆心、两条半径和圆弧所围成的部分。
扇形面积的计算需要用到圆的半径和夹角。
扇形面积的计算公式如下:扇形面积 = 1/2 ×半径² ×弧度示例二:假设一个半径为8米的圆,计算其对应的圆心角为60度的扇形面积。
解:根据扇形面积的计算公式,扇形面积 = 1/2 ×半径² ×弧度。
60度对应的弧度为60/180 × π ≈ π/3因此,扇形面积= 1/2 × 8² × π/3 ≈ 33.51平方米所以,该圆心角为60度的扇形面积约为33.51平方米。
三、弧长和扇形面积的应用举例1. 建筑设计在建筑设计中,我们经常需要计算圆形的路径长度,例如园林景观的曲线走道长度、圆形大厅的墙壁长度等。
通过计算圆弧的弧长,可以得到精确的路径长度,从而确定施工材料的使用量。
2. 科研实验在科研实验中,圆形的扇形面积经常用来计算样本所占的百分比,例如细胞培养皿中的细胞密度分析、微孔板中试剂的摆放容量等。
通过计算扇形面积,可以得到样本在整个实验区域中的占比,从而帮助科研人员进行数据分析和实验设计。
弧长及扇形面积计算公式

弧长及扇形面积计算公式弧长计算公式:弧长是圆的一部分的弧所占据的长度。
弧长的计算公式如下:1.当弧是圆的整个周长的一部分时:弧长=圆的周长×(弧所占的角度÷360°)2.当弧的角度已知时:弧长=(圆的周长×弧的角度)÷360°3.当弧的度数已知时:弧长=(2π×弧的度数)÷360°注意:在计算弧长时,角度的度数要用度制,不要用弧度制。
扇形面积计算公式:扇形是由圆心和弧所围成的部分,计算扇形的面积需要知道扇形的半径和对应的弧度。
1.当扇形的角度已知时:扇形面积=(π×半径²×扇形的角度)÷360°2.当扇形的弧度已知时:扇形面积=(半径²×扇形的弧度)÷2注意:在计算扇形面积时,角度的度数要用度制,不要用弧度制。
示例问题:1. 如果一个圆的半径为10 cm,计算它的弧长和扇形面积,其中扇形的角度为60°。
解:对于弧长,使用公式弧长=(圆的周长×弧所占的角度)÷360°,得到弧长= (2π × 10 cm × 60°) ÷ 360° = 20π cm ≈ 62.83 cm 对于扇形面积,使用公式扇形面积=(π×半径²×扇形的角度)÷360°,得到扇形面积= (π × 10 cm² × 60°) ÷ 360° ≈ 5.24π cm² ≈ 16.42 cm²所以,该圆的弧长为约62.83 cm,扇形面积为约16.42 cm²。
2. 如果一个扇形的半径为8 m,计算它的弧长和扇形面积,其中扇形的弧度为2.5 rad。
中考数学专题复习:弧长和扇形面积

中考数学专题复习:弧长和扇形面积一.选择题(共6小题)1.已知扇形的半径为12,圆心角为60°,则这个扇形的弧长为( )A .9πB .6πC .3πD .4π2.如图,A 、B 是⊙O 上的两点,∠AOB =120°,OA =3,则劣弧AB 的长是( )A .πB .2πC .3πD .4π3.小明同学在计算某扇形的面积和弧长时,分别写出如下式子:S =36094π⨯,l =18029π⨯经核对,两个结果均正确,则下列说法正确的( ) A .该扇形的圆心角为3°,直径是4 B .该扇形的圆心角为4°,直径是3C .该扇形的圆心角为4°,直径是6D .该扇形的圆心角为9°,直径是44.若扇形面积为36π,圆心角为120°,则它的弧长为( )A .4πB .π24C .π34D .8π 5.用一个圆心角为120°,半径为6的扇形做成一个圆锥的侧面,则这个圆锥的底面圆的半径为( )A .2B .6C .32D .36.如图所示,矩形纸片ABCD 中,AB =4cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则底面圆的直径的长为( )A .2cmB .3cmC .4cmD .5cm二.填空题(共6小题)7.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为________度.8.在半径为6的圆中,一个扇形的圆心角是120°,则这个扇形的弧长等于________.9.若扇形的半径为2,圆心角为90°,则这个扇形的面积为________.10.扇形的半径为5,圆心角等于120°,则扇形的面积等于________.11.圆锥形的烟囱冒的底面直径是80cm,母线长是50cm,制作100个这样的烟囱冒至少需要________cm2的铁皮(结果保留π).12.已知圆锥的底面半径为5cm,侧面积为65πcm2,圆锥的母线是________cm.三.解答题(共8小题)13.如图,∠EAD是⊙O内接四边形ABCD的一个外角,且∠EAD=75°,DB=DC.(1)求∠BDC的度数.(2)若⊙O的半径为2,求弧BC的长.14.如图,O1、O2分别是两个扇形的圆心,求图中阴影部分的周长.15.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.2m的矩形门ABCD,量得门框对角线AC长为4m,16.学校花园边墙上有一宽(BC)为3为美化校园,现准备打掉地面BC上方的部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体(阴影部分)的面积是多少?(结果中保留π,3)17.一个圆锥的母线长为10,底面半径为5,求这个圆锥的侧面积和全面积.18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的母线长l.19.如图,已知矩形ABCD的周长为36cm,矩形绕它的一条边CD旋转形成一个圆柱.设矩形的一边AB的长为xcm(x>0),旋转形成的圆柱的侧面积为Scm2.(1)用含x的式子表示:矩形的另一边BC的长为________cm,旋转形成的圆柱的底面圆的周长为________cm;(2)求S关于x的函数解析式及自变量x的取值范围;(3)求当x取何值时,矩形旋转形成的圆柱的侧面积最大;(4)若矩形旋转形成的圆柱的侧面积等于18πcm2,则矩形的长是________cm,宽是________cm.20.如图①,水平放置的空圆柱形容器内放着一个实心的铁“柱锥体”(由一个高为5cm的圆柱和一个同底面的高为3cm圆锥组成的铁几何体).向这个容器内匀速注水,水流速度为5cm3/s,注满为止.整个注水过程中,水面高度h(cm)与注水时间t(s)之间的函数关系如图②所示.(1)圆柱形容器的高为________cm.(2)求线段BC所对应的函数表达式.(3)直接写出“柱锥体”顶端距离水面3.5cm时t的值.。
九年级上册数学弧长和扇形面积

九年级上册数学弧长和扇形面积一、弧长公式。
1. 公式推导。
- 在圆中,圆心角n^∘所对的弧长l与圆周长C = 2π r(r为圆的半径)存在比例关系。
- 因为整个圆的圆心角是360^∘,所以圆心角为n^∘所对的弧长l=(n)/(360)×2π r=(nπ r)/(180)。
2. 应用示例。
- 例:已知圆的半径r = 5cm,圆心角n = 60^∘,求弧长l。
- 解:根据弧长公式l=(nπ r)/(180),将r = 5cm,n = 60^∘代入公式,得到l=(60×π×5)/(180)=(5π)/(3)cm。
二、扇形面积公式。
1. 公式推导。
- 方法一:与弧长公式推导类似,因为扇形面积S与圆面积S=π r^2也存在比例关系,对于圆心角为n^∘的扇形,其面积S=(n)/(360)×π r^2。
- 方法二:由S=(1)/(2)lr(l为弧长,r为半径),把l = (nπ r)/(180)代入可得S=(1)/(2)×(nπ r)/(180)× r=frac{nπ r^2}{360}。
2. 应用示例。
- 例:已知扇形的半径r = 4cm,圆心角n = 90^∘,求扇形面积。
- 解:- 方法一:根据S=(n)/(360)×π r^2,将r = 4cm,n = 90^∘代入,得到S=(90)/(360)×π×4^2=4π cm^2。
- 方法二:先求弧长l=(nπ r)/(180)=(90×π×4)/(180)=2π cm,再根据S=(1)/(2)lr,l = 2π cm,r = 4cm,得到S=(1)/(2)×2π×4 = 4π cm^2。
三、弓形面积。
1. 弓形的定义。
- 弓形是由弦及其所对的弧组成的图形。
2. 弓形面积的计算。
- 当弓形所含的弧是劣弧时,弓形面积S_弓=S_扇-S_(S_扇为扇形面积,S_为三角形面积)。
人教版中考数学专题课件:正多边形、扇形的面积、弧长的计算问题

图 25-3
皖考解读
考点聚焦
皖考探究
当堂检测
正多边形、扇形的面积、弧长的计算问题
解 析
设正方形 BGFE 的边长是 x,根据几何图
形面积的和差关系,图中阴影部分面积=S 扇形 BAC+S△CEF 90²π ³42 1 1 2 +S 正方形 BGFE-S△AGF= + (4-x)x+x - (4+ 360 2 2 x)x=4π .
皖考解读
考点聚焦
皖考探究
当堂检测
正多边形、扇形的面积、弧长的计算问题
皖考解读
考点聚焦
皖考探究
当堂检测
正多边形、扇形的面积、弧长的计算问题
容易将扇形的弧长公式与扇形的面积公式相混淆而导致 解题错误.
皖考解读
考点聚焦
皖考探究
当堂检测
正多边形、扇形的面积、弧长的计算问题
探究三
计算扇形面积
命题角度: 1.已知扇形的半径和圆心角,求扇形的面积; 2.已知扇形的弧长和半径,求扇形的面积.
正多边形、扇形的面积、弧长的计算问题
考 点 聚 焦
考点1
正多 边形 和圆 的关系 正多 边形 和圆 的有 关概 念
正多边形和圆
正多边形和圆的关系非常密切,只要把一个圆分成相等的一 些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正 多边形的外接圆. 一个正多边形外接圆的圆心叫做这个正多边形的________. 中心 正多边形外接圆的半径叫做正多边形的________. 半径 正多边形每一边所对的圆心角叫做正多边形的________. 中心角 正多边形的中心到正多边形的一边的距离叫做正多边形的 ________ 边心距 ,也是正多边形内切圆的半径.
皖考解读
考点聚焦
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿
人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时说课稿一. 教材分析人教版九年级数学上册第二十四章圆《24.4弧长和扇形面积》第1课时,主要介绍了弧长和扇形面积的计算方法。
这部分内容是圆的知识的重要组成部分,也是中考的热点。
通过本节课的学习,让学生掌握弧长和扇形面积的计算公式,理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
二. 学情分析九年级的学生已经学习了平面几何、代数等基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于弧长和扇形面积的计算,学生可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解概念,掌握计算方法。
三. 说教学目标1.知识与技能目标:让学生掌握弧长和扇形面积的计算公式,能够正确计算弧长和扇形面积。
2.过程与方法目标:通过观察、实验、推理等方法,让学生理解弧长和扇形面积的概念,培养学生的空间想象能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够主动探索数学问题。
四. 说教学重难点1.教学重点:弧长和扇形面积的计算公式。
2.教学难点:理解弧长和扇形面积的概念,能够运用所学的知识解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的创新能力。
2.教学手段:利用多媒体课件、实物模型等,帮助学生直观地理解弧长和扇形面积的概念,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示生活中的实例,引发学生对弧长和扇形面积的思考,激发学生的学习兴趣。
2.新课导入:介绍弧长和扇形面积的概念,引导学生理解弧长和扇形面积的计算公式。
3.实例讲解:通过具体的例子,讲解弧长和扇形面积的计算方法,让学生加深理解。
4.练习巩固:设计相关的练习题,让学生运用所学的知识进行计算,巩固学习成果。
5.拓展提高:引导学生思考实际问题,运用弧长和扇形面积的知识解决问题,提高学生的应用能力。
人教版九年级数学上册课件:24.4弧长和扇形面积(共19张PPT)
-
1353π6×0 152=375π(cm2).
9
能力提升
11.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分.图2中, 图形的相关数据:半径OA=2 cm,∠AOB=120°,则图2的周长为 83π ________cm.(结果保留π)
10
12.如图,在△ABC中,AC=4,将△ABC绕点C逆时针旋 转30°得到△FGC,则图43中π 阴影部分的面积为________.
第二十四章 圆
弧长和扇形面积
第一课时
知识展示
知识点 1 弧长公式 n°的圆心角所对的弧长 l 的计算公式为 l=n1π8R0 ,其中 R 为半径. 核心提示:在弧长公式中,已知 l、n、R 中的任意两个量,都可以求出第三个 量. 知识点 2 扇形的定义 由组成圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形.
分析:先用扇形OAB的面积-三角形OAB的面积求出上面空白部分面积,再用扇形OCD的面积-三角形OCD的面积-上面空白部分的面
积7.,如即图可,求5分出.别阴以影【五部边分黑形的A龙面BC积D江.E的顶哈点尔为圆滨心,中以1考为半】径作一五个个圆,扇则图形中的阴影弧部分长的面是积之1和1为π__c___m___.,半径是18
2
知识点 3 扇形面积公式 (1)n°圆心角的扇形面积公式:S 扇形=n3π6R02 ,其中 R 为半径. (2)弧长为 l 的扇形面积公式:S 扇形=12lR,其中 R 为半径. 【典例】如图,半径为 12 的圆中,两圆心角∠AOB=60°、∠COD=120°,连接 AB、CD,求图中阴影部分的面积.
cm,则此扇形的圆心角是__________度. 71.2.如如图图,,分在别△以AB五C中边,形AACB=CD4E,的将顶△点AB为C圆绕心点,C逆以时11为针1半旋0 径转作30五°得个到圆△,FG则C,图则中图阴中影阴部影分部的分面的积面之积和为为________________.. 一列火车以6每.小时【28 江km的苏速度泰经州过10中秒通考过弯】道.如那么图弯,道所分对的别圆心以角为正___三_____角__度形.(π的取3.3个顶点为圆心, 98..一已段知铁扇边路形弯所长道在成圆为圆半弧 径半形为,4径,圆弧弧画长的为弧半6径π,,是则2三扇km形.段面积弧为_围_____成____.的图形称为莱洛三角形.若正三角 分 积析,:即先 可用 求形扇 出形 阴边影OA部长B的分面为的积面6-积三.c角m形,OAB则的面该积求莱出上洛面三空白角部分形6面π积的,再周用扇长形为OCD_的_面__积_-__三_角c形mOC. D的面积-上面空白部分的面
2022年最新中考数学知识点梳理 考点17 圆(教师版)
2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点17 圆考点总结一、圆的有关概念1.与圆有关的概念和性质1)圆:平面上到定点的距离等于定长的所有点组成的图形.2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.4)圆心角:顶点在圆心的角叫做圆心角.5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.6)弦心距:圆心到弦的距离.2.注意1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;2)3点确定一个圆,经过1点或2点的圆有无数个.3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质1)切线与圆只有一个公共点.2)切线到圆心的距离等于圆的半径.3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定1)与圆只有一个公共点的直线是圆的切线(定义法).2)到圆心的距离等于半径的直线是圆的切线.3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.八、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.九、与圆有关的计算公式1.弧长和扇形面积的计算:扇形的弧长l=π180n r;扇形的面积S=2π360n r=12lr.2.圆锥与侧面展开图1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=12ππ2l r rl⋅=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.真题演练一.选择题(共10小题)1.(2021秋•临河区校级期中)如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=40°,则∠D的度数为()A.70°B.120°C.140°D.110°【分析】根据圆周角定理求出∠BAC,根据圆内接四边形的性质计算即可.【解答】解:∵BC=CD,∴BĈ=CD̂,∵∠DAB=40°,∴∠BAC=12∠DAB=20°,∵AB为直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=70°,∵四边形ABCD内接于⊙O,∴∠D=180°﹣∠B=110°,故选:D.2.(2021•河北模拟)如图,在△ABC中,AB=AC,AD⊥BC于点D,点M是△ABC内一点,连接BM交AD于点N,已知∠AMB=108°,若点M是△CAN的内心,则∠BAC的度数为()A.36°B.48°C.60°D.72°【分析】过点M作ME⊥AD于点E,根据已知条件可得△ABC是等腰三角形,AD是BC边的中垂线,证明ME∥BC,可得∠NME=∠NBD,由点M是△CAN的内心,可得点M在∠NAC 和∠ANC的角平分线上,设∠NAM=x,∠NBD=y,所以∠BAC=4x,∠NBD=∠NCD=∠NME=y,∠ENM=∠CNM=2y,然后利用∠AMB=108°,列出方程组{y−x=18°2y+x=72°,求解即可得结论.【解答】解:如图,过点M作ME⊥AD于点E,∵AB=AC,AD⊥BC,∴△ABC是等腰三角形,AD是BC边的中垂线,∴NB=NC,∠BAD=∠CAD,∴∠NBD=∠NCD,∵ME⊥AD,AD⊥BC,∴ME∥BC,∴∠NME=∠NBD,∵点M是△CAN的内心,∴点M在∠NAC和∠ANC的角平分线上,∴∠NAM=∠CAM,∠ANM=∠CNM,设∠NAM=x,∠NBD=y,∴∠BAC=4x,∠NBD=∠NCD=∠NME=y,∴∠ENM=∠CNM=∠NBC+∠NCB=2y,∵∠AMB=108°,∴∠AME=∠AMB﹣∠EMN=108°﹣y,在△AEM中,∠EAM+∠AME=90°,∴x+108°﹣y=90°,∴y ﹣x =18°,在△ANM 中,∠NAM +∠ANM =180°﹣108°,∴x +2y =72°,{y −x =18°2y +x =72°, 解得{x =12°y =30°, ∴∠BAC =4x =48°.故选:B .3.(2021•桥东区二模)如图,点O 为△ABC 的内心,∠B =58°,BC <AB ,点M ,N 分别为AB ,BC 上的点,且∠MON =122°.甲、乙、丙三人有如下判断:甲:OM =ON ;乙:四边形OMBN 的面积是定值;丙:当MN ⊥BC 时,△MON 的周长取得最小值.则下列说法正确的是( )A .只有甲正确B .只有丙错误C .乙、丙都正确D .甲、乙、丙都正确【分析】过点O 作OD ⊥BC ,OE ⊥AB 于点D ,E ,根据三角形内心可得OD =OE ,然后证明△DON ≌△EOM ,可得ON =OM ;连接OB ,根据△DON ≌△EOM ,可得四边形OMBN 的面积=2S △BOD ,根据点D 的位置固定,可得四边形OMBN 的面积是定值;过点O 作OF ⊥MN 于点F ,根据ON =OM ,∠MON =122°,可得∠ONM =29°,MN =2NF =2ON cos29°,所以△MON 的周长=2ON (cos29°+1),可得当ON 最小时,即当ON ⊥BC 时,△MON 的周长最小值,进而可得结论.【解答】解:如图,过点O 作OD ⊥BC ,OE ⊥AB 于点D ,E ,∵点O 为△ABC 的内心,∴OB 是∠ABC 的平分线,∴OD =OE ,∵∠B =58°,∴∠DOE =122°,∵∠MON =122°,∴∠DON =∠EOM ,在△DON 和△EOM 中,{∠DON =∠EOMOD =OE ∠NDO =∠MEO,∴△DON ≌△EOM (ASA ),∴ON =OM ,所以甲的判断正确;连接OB ,∵△DON ≌△EOM ,∴四边形OMBN 的面积=2S △BOD ,∵点D 的位置固定,∴四边形OMBN 的面积是定值,所以乙的判断正确;如图,过点O 作OF ⊥MN 于点F ,∵ON =OM ,∠MON =122°,∴∠ONM =29°,∴MN=2NF=2ON cos∠ONM=2ON cos29°,∴△MON的周长=MN+2ON=2ON cos29°+2ON=2ON(cos29°+1),∴当ON最小时,即当ON⊥BC时,△MON的周长最小值,此时,MN不垂直于BC,所以丙的判断错误.综上所述:说法正确的是甲、乙.故选:B.4.(2021•开平区一模)如图所示的正方形网格中,A,B,C三点均在格点上,那么△ABC的外接圆圆心是()A.点E B.点F C.点G D.点H【分析】根据三角形的外接圆圆心的性质即可得到结论.【解答】解:作线段AB和线段BC的垂直平分线,两线交于点G,则△ABC的外接圆圆心是点G,故选:C.5.(2021•河北模拟)已知:直线AB及AB外一点P.如图求作:经过点P,且垂直AB的直线,作法:①以点P为圆心,适当的长为半径画弧,交直线AB于点C,D.②分别以点C、D为圆心,适当的长为半径,在直线AB的另一侧画弧,两弧交于点Q.③过点P、Q作直线.直线PQ即为所求.在作法过程中,出现了两次“适当的长”,对于这两次“适当的长”,下列理解正确的是()A.这两个适当的长相等B.①中“适当的长”指大于点P到直线AB的距离C.②中“适当的长”指大于线段CD的长D.②中“适当的长”指大于点P到直线AB的距离【分析】利用基本作图进行判断.【解答】解:①中“适当的长”指大于点P到直线AB的距离;②中“适当的长”指大于线段CD的长的一半.故选:B.6.(2021•河北模拟)有一题目:已知△ABC外接圆的半径为2,BC=2√3,求∠A的度数.嘉嘉这样求解:如图,作直径CD,点A在BDĈ上,∵CD为直径,∴∠CBD=90°,在Rt△BCD中,∵sin D=BCCD=2√34=√32,∴∠D=60°,∴∠A=∠D=60°.琪琪说:“嘉嘉的答案不全,∠A还有一个不同的值.”下列判断正确的是()A.嘉嘉的答案没有遗漏B.嘉嘉的结果错误,∠A=30°C.琪琪的说法错误D.琪琪的说法正确,还有一个答案为120°【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣60°=120°.故选:D.7.(2021•桥东区二模)下列由实线组成的图形中,为半圆的是()A.B.C.D.【分析】根据圆的有关定义进行解答.【解答】解:根据半圆的定义可知,选项B的图形是半圆.故选:B.8.(2021•桥东区二模)阅读图中的材料,解答下面的问题:已知⊙O是一个正十二边形的外接圆,该正十二边形的半径为1,如果用它的面积来近似估计⊙O的面积,则⊙O的面积约是()A.3 B.3.1 C.3.14 D.π【分析】设AB为正十二边形的边,连接OB,过A作AD⊥OB于D,由正十二边形的性质得出∠AOB=30°,由直角三角形的性质得出AD=12OA=12,求出△AOB的面积=12OB•AD=14,即可得出答案. 【解答】解:设AB 为正十二边形的边,连接OB ,过A 作AD ⊥OB 于D ,如图所示: ∴∠AOB =360°12=30°, ∵AD ⊥OB ,∴AD =12OA =12,∴△AOB 的面积=12OB ×AD =12×1×12=14,∴正十二边形的面积=12×14=3, ∴⊙O 的面积≈正十二边形的面积=3,故选:A .9.(2021•顺平县二模)如图,每个小三角形都是边长为1的正三角形,D 、E 、F 、G 四点中有一点是△ABC 的外心,该点到线段AB 的距离是( )A .√32B .√2C .12D .1【分析】根据等边三角形的性质、等腰三角形的三线合一得到△ABC 为直角三角形,根据直角三角形的外心的位置是斜边的中点解答.【解答】解:∵每个小三角形都是正三角形,∴AM =AN ,MB =BN ,∴AB ⊥MN ,∴△ABC 为直角三角形,∵G 是AN 的中点,GE ∥BC ,∴点E 是△ABC 斜边的中点,∴△ABC 的外心是斜边的中点,即点E ,∴E 到AB 的距离1,故选:D .10.(2021•河北模拟)如图,取正六边形ABCDEF 的各边中点并依次连接,得到正六边形A 1B 1C 1D 1E 1F 1,再取正六边形A 1B 1C 1D 1E 1F 1的各边中点并依次连接,得到正六边形A 2B 2C 2D 2E 2F 2,则正六边形A 2B 2C 2D 2E 2F 2与正六边形ABCDEF 的边长之比为( )A .12B .23C .34D .45 【分析】如图,设AF 1=FF 1=a ,求出AF ,F 2E 2(用a 表示),可得结论.【解答】解:如图,设AF 1=FF 1=a ,∵∠A =120°,AA 1=AF 1=a ,∴A 1F 1=√3a ,∴A 1F 2=F 2F 1=√32a ,∵∠F 2F 1E 2=120°,∴F 2E 2=√3F 2F 1=32a ,∴A 2B 2C 2D 2E 2F 2与正六边形ABCDEF 的边长之比=32a :2a =3:4,故选:C .二.填空题(共5小题)11.(2021•开平区一模)正多边形的外角为120度,边长为m ,则这个正多边形的面积是√34m 2 . 【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【解答】解:正多边形的边数是:360÷120=3.等边三角形的边长为2cm ,所以正六边形的面积=12×m ×m ×√32=√34m 2. 故答案为:√34m 2. 12.(2021•路南区二模)如图所示,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC于E ,F ,延长BA 交⊙A 于G ,连结GF 、FE ,当∠D =60°时,∠GFE = 30 °.【分析】先根据平行四边形的性质和平行线的性质得到∠GAD =∠D =60°,然后根据圆周角定理求解.【解答】解:∵四边形ABCD 为平行四边形,∴AB ∥CD ,∴∠GAD =∠D =60°,∴∠GFE =12∠GAE =12×60°=30°.故答案为30.13.(2021•长安区二模)如图,正方形ABCD 和正六边形AEFCGH 均内接于⊙O ,连接HD ;若线段HD 恰好是⊙O 的一个内接正n 边形的一条边,则n = 12 .【分析】连接OH 、OD 、OA ,如图,利用正多边形与圆,分别计算⊙O 的内接正四边形与内接六三角形的中心角得到∠HOA =60°,∠DOA =90°,∠DOH =∠DOA ﹣∠HOA =90°﹣60°=30°,然后计算n .【解答】解:连接OH 、OD 、OA ,如图,∵正方形ABCD和正六边形AEFCGH均内接于⊙O,∴∠HOA=360°6=60°,∠DOA=360°4=90°,∠DOH=∠DOA﹣∠HOA=90°﹣60°=30°,∴n=360°30°=12,即HD恰好是同圆内接一个正十二边形的一边.故答案为12.14.(2021•石家庄模拟)如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是√552,⊙O内一点D的坐标为(﹣2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是√552−√5,最大值是√552+√5.【分析】连接OB,根据垂径定理求出BC,根据勾股定理计算求出OC,根据勾股定理求出OD,求出点D到AB的距离的最值.【解答】解:连接OB,∵OC⊥AB,∴BC=12AB=32,由勾股定理得,OC =√OB 2−BC 2=√552,由勾股定理得,OD =√22+12=√5,当点D 在直线OC 上时,点D 到AB 的距离的最小或最大,∴点D 到AB 的距离的最小值为√552−√5,点D 到AB 的距离的最大值为√552+√5, 故答案为:√552;√552−√5;√552+√5.15.(2021•石家庄一模)如图,已知AB =AC =BE =CD ,AD =AE ,点F 为△ADE 的外心,若∠DAE =40°,则∠BFC = 140 °.【分析】由等腰三角形的性质得出∠BEA =∠BAE =70°,求出∠ABE =40°,连接AF ,EF ,DF ,由三角形外心的性质求出∠EBF =∠FCB =20°,由三角形内角和定理可得出答案.【解答】解:∵∠DAE =40°,AD =AE ,∴∠ADE =∠AED ,∴∠AED =12(180°﹣40°)=70°,∵AB =BE ,∴∠BEA =∠BAE =70°,∴∠ABE =40°,连接AF ,EF ,DF ,∵点F 为△ADE 的外心,∴AF =EF ,AF =DF ,∴点F 在AE 的垂直平分线上,同理点B 在AE 的垂直平分线上,∴∠ABF =∠EBF ,∴∠EBF =12∠ABE =20°,同理∠FCB =20°,∴∠BFC =180°﹣∠FBC ﹣∠FCB =180°﹣20°﹣20°=140°.故答案为:140.三.解答题(共3小题)16.(2021•开平区一模)如图,∠AOB 内有一点P ,PC ⊥OA ,垂足为C ,以P 为圆心PC 为半径画14⊙P ,与OB 交于点E , (1)过点D 作PD 的垂线与OB 交于点M ,连接PM ,过圆心P 作PN ⊥PM 交OA 于点N ,求证△PMN 是等腰直角三角形.(2)若PC =2,∠DPE =15°,计算扇形PEC 的面积(结果保留π).【分析】(1)连接MN .证明△DPM ≌△CPN (ASA ),推出PM =PN ,可得结论.(2)利用扇形面积公式求解即可.【解答】(1)证明:连接MN .∵PM ⊥PN ,∴∠MPN =90°,∵∠CPD =90°,∴∠CPD =∠MPN ,∴∠DPM =∠CPN ,∵DM ⊥PD ,PC ⊥OA ,∴∠PDM =∠PCN =90°,在△PDM 和△PCN 中,{∠PDM =∠PCNPD =PC ∠DPM =∠CPN,∴△DPM ≌△CPN (ASA ),∴PM =PN ,∵∠MPN =90°,∴△PMN 是等腰直角三角形.(2)解:∵∠DPE =15°,∴∠CPE =90°﹣15°=75°,∴S 扇形PEC =75×π×22360=5π6.17.(2021•滦州市一模)如图,AM ∥BN ,AB ⊥BN ,点C 在射线BN 上且∠ACB =50°,BQ ⊥AC于点Q ,点P 是线段QA 上任意一点,延长BP 交AM 于点D ,AB =6.(1)若点P 为AC 中点,求证:△APD ≌△CPB ;(2)当△PBC 为等腰三角形时,求∠PBC 的度数;(3)直接写出△PBC 的外心运动的路径长.【分析】(1)根据全等三角形的判定方法:ASA即可得到结论;(2)分三种情况:当PC=PB时,当BC=BP时,当BC=BP时,分别计算即可;(3)作BC的垂直平分线l1,QC的垂直平分线l2,AC的垂直平分线l3,l2交QC于E,l3交AC于F,设CQ=x,AQ=y,设△PBC外心运动路径长为h,外心一定在直线l1上,根据三角函数可得答案.【解答】解(1)∵P为AC中点,∴PA=PC,∵AM∥BN,∴∠DAC=∠ACB,∵∠BPC=∠APD,∴△APD≌△CPB(ASA).(2)当PC=PB时,∠PBC=∠ACB=50°,当CP=CB时,∠PBC=∠CPB=180°−50°2=65°,当BC=BP时,∠PBC=108﹣2x50=80°,综上:∠PBC=50°或65°或80°.(3)作BC的垂直平分线l1,QC的垂直平分线l2,AC的垂直平分线l3,l2交QC于E,l3交AC于F,设CQ =x ,AQ =y ,∴EF =x+y 2−x 2=y 2,设△PBC 外心运动路径长为h ,外心一定在直线l 1上,∵∠CFT =∠CAB =40°,∴cos40°=(y 2)÷h =AB AC =AQ AB =y 6, ∴y 2÷h =y ÷6, ∴h =3,故△PBC 的外心运动的路径长为3.18.(2021•南皮县一模)如图,射线AM ⊥AB ,O 是AM 上的一点,以O 为圆心,OA 长为半径,在AM 上方作半圆AOC ,BE 与半圆相切于点D ,交AM 于点E ,EF ⊥BO 于点F .(1)求证:BA =BD ;(2)若∠ABE =60°,①判断点F 与半圆AOC 所在圆的位置关系,并说明理由;②若AB =√3,直接写出阴影部分的面积.【分析】(1)由切线长定理可得出答案;(2)①证明△OBA≌△OEF(AAS),由全等三角形的性质得出OF=OA,则可得出答案;②连接OD,则OD⊥BE,由直角三角形的性质求出OD的长,根据扇形的面积公式和三角形的面积公式可得出答案.【解答】(1)证明:∵AM⊥AB,∴BA是半圆的切线,切点为A,又∵BE与半圆相切于点D,∴BA=BD;(2)解:①点F在半圆AOC所在的圆上,理由如下:∵∠ABE=60°,∴∠BEA=30°,又∵OBA=∠OBE=12∠ABE=30°,∴∠OBE=∠OEB,∴OB=OE,又∵∠AOB=∠FOE,∠A=∠F=90°,∴△OBA≌△OEF(AAS),∴OF=OA,∴点F在半圆AOC所在的圆上;②连接OD,则OD⊥BE,∵OB=OE,∴DE=BD=AB=√3,∵∠OBA=30°,∴OD=OA=AB•tan30°=√3×√33=1,2 360=√32−π6.∴S阴影=S△COE﹣S扇形COD=12×√3×1−60π×1。
弧长公式、扇形面积公式及其应用(含经典习题)
【本讲教育信息】一. 教学内容:弧长及扇形的面积圆锥的侧面积二. 教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。
2、了解圆锥的侧面积公式,并会应用公式解决问题。
三. 重点及难点重点:1、弧长的公式、扇形面积公式及其应用。
2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。
难点:1、弧长公式、扇形面积公式的推导。
2、圆锥的侧面积、全面积的计算。
[知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。
(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。
知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。
又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。
知识点3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。
(2)弓形的周长=弦长+弧长(3)弓形的面积图示面积知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。
(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
nR 180
B
nR2 S扇形 360
B
S 1 Rl 2
弧
圆心角 O
扇形
R
l n°
O
O
A
A
体验中考(师友互助)
1 圆心角为120°弧长为12π的扇形的半径 是() A 6π B 9 π C18 π D 36 π
2 一个扇形的弧长是10π,面积是60π cm2, 则此扇形的圆心角的度数是——。
l
r
重要图形
圆锥的高 S
l
母线
h
r
AO
B
侧面 展开重要结论
r2+h2=l2
S圆锥侧=πrl. S 圆锥全= S圆锥侧+ S圆锥底 = πrl+πr2
①其侧面展开图扇形的半径=母线的长l ②侧面展开图扇形的弧长=底面周长
体验中考(师友互助)
1 用圆心角为120°,半径为6的扇形围成一个圆锥的 侧面,则所围成的底面圆的半径是——。
2 将圆心角为90°,面积为4π cm2的扇形围成一个圆 锥的侧面,那么所围成的圆锥的底面半径为( )
A 1cm B 2cm C 3cm D 4cm 3 如图,圆锥的母线长为10cm,高为8cm,则该圆锥
的侧面展开图的弧长为——cm。
拓展延伸(师友互助)
1 如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°, AB=6,则阴影面积是() A π B 1.5π C 2 π D 2.5π
弧长 扇形面积的相关计算
学习目标
1熟练地运用弧长公式 扇形面积公式进行计 算
2掌握圆锥侧面积公式,能应用公式解决相关 问题
3根据图形结构特征,采用“转化”的数学思想 方法,灵活运用平移 旋转 轴对称求不规则 图形(阴影)的面积
教学重点
弧长 、扇形面积 、圆锥侧面积公式的计算。
教学难点
根据图形结构特征,采用“转化”的数学思想 方法,灵活运用平移 旋转 轴对称求不规则图 形(阴影)的面积。
基础知识(自主完成)
1 在半径为6cm的圆中,它的周长是——cm。那 么120°的圆心角所对的弧长是——cm。
2 在半径为6cm的圆中,它的面积为——cm2 那么60°的圆心角所对的扇形面积是——cm2
3 已知一个扇形的弧长是10πcm,半径为12cm, 则它的面积是——cm2
R
l O
弧长 扇形的面积公式
基础知识(自主完成)
1.圆锥的底面半径是2 cm,母线长6 cm,则它的侧面展开
图的面积是——
2如图,圆锥的侧面展开图是半径为3, 圆心角为90°的扇形,则该圆锥的底面 周长为——
3 路灯照射的空间可以看成如图所示的 圆锥,它的母线为8cm,底面半径 为4cm,那么它的高是——cm。
侧面 展开图
l or
知道其中两个量,就可以求第三个量。 (2)当问题涉及多个未知量时,可考虑用列方程组来求解
二 掌握圆锥和侧面展开图之间的等量关系
三 阴影部分的面积
(1)规则图形:按规则图形的面积公式去求.
(2)不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采 用“和差法”、“等积变形法”、“平移法”等转化为规则图形的面 积.
2 如图 在△ABC中, AB=AC,∠ABC=45°,以AB为 直径的 ⊙O交BC于D,若BC=4 2 则求阴影部分的面积。
课堂总结
通过本节课对弧长 扇形面积相关计算的复 习,请你谈谈有哪些收获?
一 弧长 扇形面积公式
弧长公式:l
nR 180
扇形面积公式:
S侧=πrl (圆锥)
(1)弧长,扇形面积公式涉及三个量 :弧长(面积) 圆心角,半径,
2 如图所示,点ABC在⊙O上, 若∠BAC=45°,OB=4,求阴影 部分的面积。
求阴影部分面积的方法 1和差法:图形均为规则图形时,利用面积
相加减
2 等积变形法:通过对图形的平移,旋转, 对称等变换创造条件,利用等面积转化
体验中考(小组合作)
1如图 等边三角应内接于⊙O,若 ⊙O的半径为2,则图中阴影部 分的面积等于——