2.1 线性规划问题的标准型解析
线性规划标准型以及定义

0
B6
2
1
B7
2
0 B8 6 1 B9 0 1
解的定义
2x1 x2 x3 x4 3 例: x1 x2 x3 x5 2
xi 0
解:A=
2 1
-1 -1
-1 1
-1 0
0 -1
P1
P2
min Z 2 x1 x2 3 x3
5 x1 x2 x3 7
x1 x2 4 x3 2 3 x1 x2 2 x3 5
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
解的定义
B4 P1
P5
=
2 1
0 -1
非奇异,
B31b
1 2
1 1
0 3
-2
2
1 2
3 -1
,
解
3 2
0
0
0
-
1 2
T
是基解,但非基可行解。
解的定义
类似可得所有基解。 代入目标函数,通过比较可得最优解。
思考: 线性规划的基解最多有多少个?基可行解呢?
可 行 解
非可行解
基解
基可行解
例1.4 求线性规划问题的所有基矩阵。
max Z 4 x1 2x2 x3
5x110x1x2
x3 x4 3 6x2 2x3 x5
2
x
管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
运筹学之线性规划的标准型及单纯形法

• 向量式:
Obj : MaxZ CX
S.T .
n
p j x j bi
j 1
i 1,2,, m
xj 0
j 1,2,, n
C (c1 ,c2,, cn )
x1
X
x2
x1,
x2 ,, xn T
xn
7
线性规划的标准型
• 矩阵式:
Obj :
MaxZ CX
S .T . AX B
16
基解
不失一般性,设B是A的前m列,即 B=(p1,p2,…,pm),其相对应的变量 XB=(x1,x2,…,xm)T,称为基变量;其余变量 XN=(Xm+1,…,Xn)T称为非基变量。 令所有非基变量等于零, 则X=(x1,x2,…xm,0,…,0)T称为基解 。
17
基可行解
• 基可行解:基解可正可负,负则不可行, 故称满足非负性条件的基解为基可行解。
3X1+10X2+x5 =300
3 10 0 0 1
Xj≥0 j=1,2,…,5
这里m=3,n=5。 Cmn=10
19
例题6 基可行解说明
• 基(P3,P4,P5),令非基变量x1,x2=0, 则基变量x3=360, x4=200, x5=300,可行解
• 基(p2,p4,p5),令非基变量x1=0,x3=0基变量 x2=90,x4=-250,x5=-600.非可行解
下步
• 4、根据max {σj } = σK 原则确定XK 进基变量;根
据θ规则 θ = min {b’i / a’ik a’ik >0} = b’l/ a’lk 确定XL出 基变量
• 5、以a’lk 为枢轴元素进行迭代
线性规划的标准型

线性规划的标准型线性规划是运筹学中的一种重要方法,它在管理、经济、工程等领域都有着广泛的应用。
线性规划的标准型是线性规划问题的一种特定形式,通过将问题转化为标准型,可以更方便地进行求解和分析。
本文将对线性规划的标准型进行详细介绍,包括标准型的定义、特点、转化方法以及实际应用等方面的内容。
首先,我们来看一下线性规划的标准型是如何定义的。
线性规划的标准型是指将线性规划问题转化为一种特定形式的数学模型,其数学表达形式为:Max z = c1x1 + c2x2 + ... + cnxn。
Subject to:a11x1 + a12x2 + ... + a1nxn ≤ b1。
a21x1 + a22x2 + ... + a2nxn ≤ b2。
...am1x1 + am2x2 + ... + amnxn ≤ bm。
xi ≥ 0, i = 1, 2, ..., n。
其中,x1, x2, ..., xn为决策变量,c1, c2, ..., cn为各决策变量的系数,a11,a12, ..., amn为约束条件的系数,b1, b2, ..., bm为约束条件的常数项,z为线性规划的目标函数,Max表示最大化目标函数的求解目标。
线性规划的标准型具有一些特点,首先是目标函数和约束条件均为线性关系,其次是决策变量的取值范围为非负实数。
这种形式的线性规划问题可以通过各种线性规划算法进行求解,求得最优解。
接下来,我们来讨论线性规划问题如何转化为标准型。
对于一般的线性规划问题,可以通过添加松弛变量、人工变量等方式,将其转化为标准型。
通过这种转化,可以将原始问题转化为一种更加方便求解的形式,从而简化求解过程。
线性规划的标准型在实际应用中具有广泛的价值。
例如,在生产计划中,可以利用线性规划的标准型来优化生产资源的配置,最大化生产效益;在运输调度中,可以利用标准型来优化运输路线,降低运输成本;在市场营销中,可以利用标准型来制定最优的营销策略,最大化市场份额等。
运筹学 第二章线性规划 第二讲 标准型与单纯形法

Chapter 1 线性规划 Linear Programming
或写成下列形式:
n
max Z c j x j j 1
n
aij x j
j 1
bi ,
i 1,2,, m
x j 0, j 1,2,, n
或用矩阵形式
max Z CX
AX b
X
0
2.3 线性规划的标准型 Standard form of LP
式(2.2)得
x1
1 5
,x4=4,则基本解为
X (2) ( 1 ,0,0,4,0)T 5
在 X (2) 中x1<0, 不是可行解,因此也不是基本可行解。
反之,可行解不一定是基本可行解,如
X (0,0, 1 , 7 ,1)T 满足式(2.2)~(2.3),但不是2任2何基矩阵的基本解。
2.4 基本概念 Basic Concepts
5 1
5 1 1 1 0
B2 10 0 A 10 6 2 0 1
在上例中B2的基向量是A中的第一列和第四列,其余列
向量是非基向量,x1、x4是基变量,x2、x3、x5是非基
变量。基变量、非基变量是针对某一确定基而言的,
不同的基对应的基变量和非基变量也不同。
2.4 基本概念 Basic Concepts
基本解(basic solution) : 对某一确定的基B,令非基变量
等于零,利用式(2.2)解出基变量,则这组解称为基B 的
基本解。
基本可行解(basic feasible solution): 若基本解是可行解 则称为是基本可行解(也称基可行解)。
非可行解(infeasible solution) 无界解 (unbounded solution)
线性规划化为标准型

线性规划化为标准型线性规划是运筹学中的一种重要方法,它在资源分配、生产计划、物流管理等领域有着广泛的应用。
将线性规划问题化为标准型是解决线性规划问题的基本步骤之一,本文将介绍线性规划问题的标准型及其转化方法。
一、线性规划问题的标准型。
线性规划问题的标准型是指将原始的线性规划问题转化为一种特定形式的数学模型。
线性规划问题的标准型通常具有以下形式:\[。
\begin{array}{ll}。
\text { Maximize } & c^{T} x \\。
\text { subject to } & A x=b \\。
& x \geq 0。
\end{array}。
\]其中,$x$是一个$n$维向量,表示决策变量;$c$是一个$n$维向量,表示目标函数的系数;$A$是一个$m \times n$的矩阵,$b$是一个$m$维向量,表示约束条件的系数。
在标准型中,约束条件通常包括等式约束和非负约束。
二、将线性规划问题转化为标准型的方法。
1. 将不等式约束转化为等式约束。
对于原始的线性规划问题,如果存在不等式约束,可以通过引入松弛变量将其转化为等式约束。
例如,对于不等式约束$a^{T} x \leq b$,可以引入松弛变量$y$,得到等式约束$a^{T} x+y=b$,其中$y \geq 0$。
2. 将目标函数转化为最大化形式。
如果原始的线性规划问题是最小化形式,可以通过取其相反数转化为最大化形式。
例如,对于最小化问题$\min c^{T} x$,可以转化为最大化问题$\max -c^{T} x$。
3. 引入人工变量。
对于原始的线性规划问题,如果约束条件中存在非负约束,可以通过引入人工变量将其转化为等式约束。
例如,对于非负约束$x \geq 0$,可以引入人工变量$y$,得到等式约束$x+y=b$,其中$y \geq 0$。
三、实例分析。
考虑以下线性规划问题:\[。
\begin{array}{ll}。
运筹学线性规划问题与图解法
线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 … … … am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
简写式
Max(min)z c j x j
j 1 n
aij x j (, )bi , i=1, 2,..., m st. j 1 x 0, j 1, 2,..., n j
n
向量式 Max(min)z CX
Pj x j (, )b st . j 1 x 0
min z C T X
线性规划的标准型
下列情况具体处理 若要求目标函数求最大化 若约束方程为不等式:非负松弛变量,非负 剩余变量 若变量不是非负:非正,自由变量, 右边为非正 任何形式的线性规划模型都可以化为标准型。
Ai
配料问题:每单位原料i含vitamin如下:
原料
1
A
4
B
1
C
0
每单位成本
2
2
3
6
1
1
7
2
1
5
6
4
每单位添 加剂中维生 素最低含量
2
5
3
8
12
14
8
求:最低成本的原料混合方案
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12
线性规划的标准形式
线性规划的标准形式线性规划是一种数学优化方法,用于解决一些实际问题,比如资源分配、生产计划、运输调度等。
线性规划的标准形式是指将问题转化为一个标准的数学模型,以便于使用线性规划方法进行求解。
在本文中,我们将介绍线性规划的标准形式以及相关的数学概念和方法。
首先,让我们来定义线性规划的标准形式。
一个线性规划问题可以表示为:\[。
\begin{aligned}。
& \text{maximize} \quad c^Tx \\。
& \text{subject to} \quad Ax \leq b \\。
& \quad x \geq 0。
\end{aligned}。
\]其中,c是一个n维向量,表示目标函数的系数;x是一个n维向量,表示决策变量;A是一个m×n的矩阵,表示约束条件的系数;b是一个m维向量,表示约束条件的右端项。
在这个标准形式中,我们的目标是最大化目标函数c^Tx,同时满足约束条件Ax≤b和x≥0。
这个问题可以用线性规划方法求解,得到最优的决策变量x和最优解c^Tx。
为了更好地理解线性规划的标准形式,让我们来看一个简单的例子。
假设有一个工厂需要生产两种产品A和B,利润分别为3和5。
同时,工厂有两种资源,分别是材料和人工,资源A和资源B的使用量分别为1和2。
工厂的资源总量分别为4和12。
那么,我们可以将这个问题表示为一个线性规划问题:\[。
\begin{aligned}。
& \text{maximize} \quad 3x_1 + 5x_2 \\。
& \text{subject to} \quad x_1 + 2x_2 \leq 4 \\。
& \quad x_1 + x_2 \leq 12 \\。
& \quad x_1, x_2 \geq 0。
\end{aligned}。
\]在这个例子中,目标函数是3x1+5x2,表示生产产品A和B的总利润;约束条件是资源A和资源B的使用量不超过总量。
线性规划的标准型
线性规划的标准型线性规划是运筹学中的一种重要方法,它在资源分配、生产计划、物流运输等领域有着广泛的应用。
线性规划的标准型是线性规划问题最基本的形式,它通常用于描述最大化或最小化一个线性目标函数的问题,并且受到一组线性约束条件的限制。
在这篇文档中,我们将对线性规划的标准型进行详细的介绍和解释。
首先,我们来定义线性规划的标准型。
对于一个线性规划问题,我们通常有如下的数学表达式:\[ \begin{array}{ll}。
\text{maximize} & c^T x \\。
\text{subject to} & Ax \leq b \\。
& x \geq 0。
\end{array} \]其中,\( x \) 是一个包含 \( n \) 个变量的向量,\( c \) 是一个包含 \( n \) 个系数的向量,\( A \) 是一个 \( m \times n \) 的矩阵,\( b \) 是一个包含 \( m \) 个常数的向量。
这里的目标是最大化目标函数 \( c^T x \),同时满足线性约束条件\( Ax \leq b \) 和变量的非负约束 \( x \geq 0 \)。
接下来,我们将详细介绍线性规划标准型中的各个部分。
首先是目标函数 \( c^T x \),它通常表示了我们希望最大化或最小化的某种目标,比如利润最大化、成本最小化等。
目标函数中的 \( c \) 是一个系数向量,它代表了各个变量对目标的贡献程度,而\( x \) 则是变量向量,代表了我们需要决策的变量。
通过调整变量向量 \( x \) 的取值,我们可以达到最大化或最小化目标函数的目的。
其次,线性规划标准型中的约束条件 \( Ax \leq b \) 也是非常重要的。
约束条件通常反映了问题的现实限制,比如资源的有限性、生产能力的限制等。
矩阵 \( A \) 中的每一行代表了一个约束条件,而向量 \( b \) 则是约束条件的右侧常数。
线性规划的标准形式
线性规划的标准形式线性规划是运筹学中的一种重要方法,它在工程、经济学、管理学等领域都有着广泛的应用。
线性规划的标准形式是指将线性规划问题转化为一种标准的数学形式,以便于进行求解。
在本文中,我们将介绍线性规划的标准形式及其相关内容。
首先,让我们来看一下线性规划的一般形式。
线性规划问题通常可以表示为如下形式:\[\max \{c^Tx | Ax \leq b, x \geq 0\}\]其中,c为n维向量,表示目标函数的系数;x为n维向量,表示决策变量;A 为m×n的矩阵,表示约束条件的系数矩阵;b为m维向量,表示约束条件的右端向量。
接下来,我们将线性规划问题转化为标准形式。
标准形式的线性规划问题可以表示为如下形式:\[\max \{c^Tx | Ax = b, x \geq 0\}\]在标准形式中,约束条件变为了等式约束,这样可以方便地应用线性代数的方法进行求解。
为了将原始问题转化为标准形式,我们需要引入松弛变量,将不等式约束转化为等式约束。
具体地,对于每一个不等式约束$A_ix \leq b_i$,我们引入一个松弛变量$s_i \geq 0$,使得$A_ix + s_i = b_i$。
这样,原始问题就可以转化为一个等式约束的线性规划问题。
除了将不等式约束转化为等式约束,我们还需要考虑目标函数的形式。
在标准形式中,目标函数通常是最大化形式,而原始问题可能是最小化形式。
为了将最小化问题转化为最大化问题,我们可以取目标函数的相反数。
具体地,如果原始问题是$\min \{c^Tx | Ax \leq b, x \geq 0\}$,那么对应的最大化问题就是$\max \{-c^Tx | Ax \leq b, x \geq 0\}$。
在将线性规划问题转化为标准形式之后,我们就可以利用标准形式的特点进行求解。
标准形式的线性规划问题可以应用诸如单纯形法、对偶理论等方法进行求解,这些方法在数学理论上有着严格的证明,并且在计算机实现上也有着高效的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2.1 将下列非标准型线性规划问题化 为标准型。
min z = 3x1 - 2 x2 + 4 x3 ì 2 x + 3x + 4 x ≥ 300 1 2 3 ï ï ï x1 + 5x2 + 6 x3 ≥ 400 s.t. í ï x1 + x2 + x3≥ 200 ï x ≥ 0, x ≥ 0, x ïin z = x1 + 2 x2 - 3x3 ì x +x +x £9 1 2 3 ï ï - x1 - 2 x2 + x3 ³ 2 s.t. í ï 3x1 + x2 - 3x3 = 5 ' '' max z = x1' - 2 x2 + 3( x3 - x3 ) ï x £ 0, x ³ 0, x 2 3 î 1 ì ' ' ''
非标准型转化举例(一)
max z = 70 x1 + 120 x2 ì 9 x + 4 x £ 360 1 2 ï ï 4 x1 + 5 x2 £ 200 s.t. í ï 3x1 + 10 x2 £ 300 ï max z = 70 x1 + 120 x2 x ³ 0, x ³ 0 1 2 î
ì 9 x1 + 4 x2 + x3 = 360 ï 4 x1 + 5 x2 + x4 = 200 ï s.t. í 3x1 + 10 x2 + x5 = 300 ï ï x ³ 0, x ³ 0, x ³ 0, x ³ 0, x ³ 0 2 3 4 5 î 1
第2章 线性规划单纯形法
线性规划单纯形法
2.1 线性规划问题的标准型
2.2
2.3 2.4
改进的单纯形法和对偶问题
线性规划问题的应用案例 单纯形法的原理
2.5
线性规划问题的Excel处理
2.1 线性规划问题的标准型
由上一章可知,线性规划模型有各种不同的形 式;即目标函数可以求极大值,也可以求极小值; 约束条件可以是等式也可以是不等式,不等号可 以是“ ≤ ”也可以是“ ≥ ”;决策变量一般是非 负的,但在理论模型中可能会允许在区间( −∞ , +∞)内取值。 为适应通用的代数求解方法,将不同形式的线 性规划模型转化为统一的标准形式是十分必要的。
2.1.2 非标准型线性规划问题的标准化
解 按照前面的变换方法,执行下列步骤。 ①将min z转化为max (−z)。 ②令x3 = x'3− x"3,且x'3≥0,x"3≥0。 ③将第一个约束方程的左边减去一个非负 的松弛变量 x4 ,将第 2 、第 3 个约束方程的 左边分别加上一个非负的松弛变量x5和x6 这样,可以将原来的线性规划问题标准化 为
13
8
2.1.2 非标准型线性规划问题的标准化
当决策变量xj不满足xj≥0时,则增加两个新的 非负决策变量xj’≥0和xj"≥0,用xj’-xj"替代 xj,即令xj=xj’-xj"。 当约束条件中第i 个方程右端出现常数项bi < 0 时,则在方程两边同时乘(-1),得到bi>0。
9
2.1.2 非标准型线性规划问题的标准化
3
2.1 线性规划问题的标准型
一般线性规划问题的标准型为(SLP)
代 数 式 :
max z = CX ì AX = B s.t. í îX,B≥ 0
4
2.1 线性规划问题的标准型
矩阵式:
5
2.1 线性规划问题的标准型
和式: 向量式:
6
2.1 线性规划问题的标准型
标准型有以下4个特征
1. 目标函数值总为求最大。 2. 约束条件全为线性等式。 3. 约束条件右端常数项全部为非负数。
4. 决策变量全大于或等于零。
7
2.1.2 非标准型线性规划问题的标准化
目标函数极小化转为极大化: minZ=-max(-Z) ,求 z 的最小值就是求 −z 的最 大值 不等式约束的转化: åaij xij £ bi加入松弛变量
åa x
ij ij
³ bi
减去剩余变量
当约束条件中第个方程出现 ai1x1+ai2x2+…+ainxn≥bi 时, 则减去一个“松弛变量”xi1≥0,使它成为等式ai1x1+ ai2x2+…+ainxn − xi1=bi。
ï ï ï s.t. í ï ï ï î
- x1 + x2 - ( x3 - x3 ) + x4 = 9
' ' '' x1 - 2 x 2 + ( x3 - x3 ) - x5 = 2 ' '' -3x1' + x2 - 3( x3 - x3 )=5
' '' x1' ³ 0, x3 ³ 0, x3 ³ 0, x4 ³ 0, x5 ³ 0