特殊三角形单元检测 (困难)培优提升 答案

合集下载

三角形难点题型提高精选题(含答案)

三角形难点题型提高精选题(含答案)

三角形难点题型精选题一.选择题(共17小题)1.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.92.如图,在Rt△ADB中,∠D=90°,C为AD上一点,∠ACB=6x,则x值可以是()A.10°B.20°C.30°D.40°3.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个 B.2个 C.3个 D.4个4.如图三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)5.如图,∠ACB=90°,CD⊥AB,则∠1与∠B的关系是()A.互余B.互补C.相等D.不确定6.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5 B.6 C.7 D.107.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°8.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能9.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在10.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.6米 B.8米 C.12米D.不能确定11.已知△ABC的三边a,b,c满足a2+b+|﹣2|=10a+2,则△ABC 为()A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形12.已知正六边形的半径为2,则这个正六边形的面积是()A.6 B.12 C.D.13.如果正n边形的一个内角等于一个外角的2倍,那么n的值是()A.4 B.5 C.6 D.714.把一副三角尺按如图所示叠放在一起,则下图中∠α=()A.75°B.60°C.65°D.55°15.如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP 为直角三角形,则满足这样条件的点P共有()A.2个 B.4个 C.6个 D.7个16.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.21 B.26 C.37 D.4217.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形二.填空题(共8小题)18.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.20.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有个三角形出现.21.△ABC中,∠B的外角平分线的与∠C外角平分线相交于点P,且∠BPC=80°,则∠BAP的度数为.22.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于度.23.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.24.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.25.如图,学校有一块三角形空地(即△ABC),现准备将它分成面积相等的两块地,栽种不同的花草,请你把它分出来.(作图题要求:尺规作图,保留作图痕迹,不写作法,不要求证明).三.解答题(共1小题)26.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.三角形难点题型精选题参考答案与试题解析一.选择题(共17小题)1.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【解答】解:五边形的内角和为(5﹣2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选B.2.如图,在Rt△ADB中,∠D=90°,C为AD上一点,∠ACB=6x,则x值可以是()A.10°B.20°C.30°D.40°【解答】解:根据三角形的外角性质,∠ACB=6x>90°,解得x>15°,∵∠ACB是钝角,∴6x<180°,∴x<30°,∴15°<x<30°,纵观各选项,只有20°符合.故选B.3.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选:B.4.如图三角形的顶点落在折叠后的四边形内部,则∠γ与∠α+∠β之间的关系是()A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)【解答】解:如图,∠1+∠2=180°﹣∠γ,∵三角形的顶点落在折叠后的四边形内部,∴∠α+2∠1+∠β+2∠2=180°×2,即∠α+∠β+2(∠1+∠2)=360°,∴∠α+∠β+360°﹣2∠γ=360°,∴2∠γ=∠α+∠β.故选B.5.如图,∠ACB=90°,CD⊥AB,则∠1与∠B的关系是()A.互余B.互补C.相等D.不确定【解答】解:∵∠ACB=90°,∴∠1+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,∴∠1=∠B.故选C.6.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()A.5 B.6 C.7 D.10【解答】解:已知4条木棍的四边长为2、3、4、6;①选2+3、4、6作为三角形,则三边长为5、4、6;5﹣4<6<5+4,能构成三角形,此时两个螺丝间的最长距离为6;②选3+4、6、2作为三角形,则三边长为2、7、6;6﹣2<7<6+2,能构成三角形,此时两个螺丝间的最大距离为7;③选4+6、2、3作为三角形,则三边长为10、2、3;2+3<10,不能构成三角形,此种情况不成立;④选6+2、3、4作为三角形,则三边长为8、3、4;而3+4<8,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为7.故选:C.7.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=∠ACE,∠2=∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=∠A=25°.故选C.8.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能【解答】解:∵内角和是1620°的多边形是边形,又∵多边形截去一个角有三种情况.一种是从两个角的顶点截取,这样就少了一条边,即原多边形为12边形;另一种是从两个边的任意位置截,那样就多了一条边,即原多边形为10边形;还有一种就是从一个边的任意位置和一个角顶点截,那样原多边形边数不变,还是11边形.综上原来多边形的边数可能为10、11、12边形,故选D.9.如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=()A.30°B.40°C.80°D.不存在【解答】解:∵108÷12=9,∴小林从P点出发又回到点P正好走了一个9边形,∴α=360°÷9=40°.故选B.10.科技馆为某机器人编制一段程序,如果机器人在平地上按照图中所示的步骤行走,那么该机器人所走的总路程为()A.6米 B.8米 C.12米D.不能确定【解答】解:∵机器人从点A出发再回到点A时正好走了一个正多边形,∴多边形的边数为360°÷30=12,∴他第一次回到出发点O时一共走了12×1=12米.故选C.11.已知△ABC的三边a,b,c满足a2+b+|﹣2|=10a+2,则△ABC 为()A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形【解答】解:∵a2+b+|﹣2|=10a+2,∴a2﹣10a+25+b﹣4﹣2+1+|﹣2|=0即(a﹣5)2+(﹣1)2+|﹣2|=0根据几个非负数的和为0,则这几个非负数同时为0,得a=5,b=5,c=5.故该三角形是等边三角形,即正三角形.故选B.12.已知正六边形的半径为2,则这个正六边形的面积是()A.6 B.12 C.D.【解答】解:根据题意,正六边形的半径为2,而正六边形可以分解为六个全等的三角形,如图且每个三角形的边长都为2,易得每个三角形的面积为,故这个正六边形的面积是6.故选C.13.如果正n边形的一个内角等于一个外角的2倍,那么n的值是()A.4 B.5 C.6 D.7【解答】解:设外角是x度,则内角是2x度,根据题意得x+2x=180,解得x=60度,所以n=360÷60=6.故选C.14.把一副三角尺按如图所示叠放在一起,则下图中∠α=()A.75°B.60°C.65°D.55°【解答】解:已知,∠ADE=45°,∠F=60°,∴∠α=180°﹣60°﹣45°=75°.故选A.15.如图,已知点A(﹣1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP 为直角三角形,则满足这样条件的点P共有()A.2个 B.4个 C.6个 D.7个【解答】解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选C.16.如图,多边形的相邻两边均互相垂直,则这个多边形的周长为()A.21 B.26 C.37 D.42【解答】解:多边形的周长=16×2+5×2=42.故选D.17.若一个多边形的内角和为外角和的3倍,则这个多边形为()A.八边形B.九边形C.十边形D.十二边形【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)•180°=3×360°,解得:n=8,即这个多边形为八边形.故选A.二.填空题(共8小题)18.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.【解答】解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.19.如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240度.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.20.某同学在纸上画了四个点,如果把这四个点彼此连接,连成一个图形,则这个图形中会有0或3或4或8个三角形出现.【解答】解:∵①当四个点共线时,不能作出三角形;②当三个点共线,第四个点不在这条直线上时,能够画出3个三角形;③若4个点能构成凹四边形,则能画出4个三角形;④当任意的三个点不共线时,则能够画出8个三角形.∴0或3或4或8.21.△ABC中,∠B的外角平分线的与∠C外角平分线相交于点P,且∠BPC=80°,则∠BAP的度数为10°.【解答】解:如图,BP、CP为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCP=(∠A+∠ABC)、∠PBC=(∠A+∠ACB),由三角形内角和定理得,∠BPC=180°﹣∠BCP﹣∠PBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;∵∠BPC=80°,∴∠CAB=20°,∴∠BAP=10°;故答案为:10°22.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于270度.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故答案为:270°.23.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为7.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°+180°,n=7.故答案为:7.24.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1得∠A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009,得∠A2009,则∠A2009=.【解答】解:∵∠ACA1=∠A1CD=∠ACD=(∠A+∠ABC),又∵∠ABA1=∠A1BD=∠ABD,∠A1CD=∠A1BD+∠A1,∴∠A1=∠A=α.同理∠A2=∠A1,…即每次作图后,角度变为原来的.故∠A2009=.25.如图,学校有一块三角形空地(即△ABC),现准备将它分成面积相等的两块地,栽种不同的花草,请你把它分出来.(作图题要求:尺规作图,保留作图痕迹,不写作法,不要求证明).【解答】解:作图如下:.三.解答题(共1小题)26.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:∠BOC=90°﹣∠A.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.。

浙教版八年级数学上册第二章:特殊三角形 培优检测卷(含答案)

浙教版八年级数学上册第二章:特殊三角形  培优检测卷(含答案)

第2章特殊三角形培优提高卷一、选择题。

(本题有10个小题,每小题3分,共30分)1.如图,等腰直角△ABC中AB=AC,将其按下图所示的方式折叠两次,若DA’=1,给出下列说法:①DC’平分∠BDA’;②BA’长为;③△BC’D是等腰三角形;④△CA’D的周长等于BC的长.其中正确的有﹙﹚A.1个B.2个C.3个D.4个2.在如图所示的正方形网格中,网格线的交点成为格点.已知A,B是两个格点,如果点C 也是图中的格点,且使△ABC为等腰直角三角形,则点C的个数是﹙﹚A.6个B.7个C.8个D.9个(第2题) (第3题) (第4题)3.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④BE=BF.其中正确的有﹙﹚A.②③④B.①③④C.①②④D.①②③4.如图,△ABC中,AB=20㎝,AC=12㎝,点P从点B出发以3㎝/s的速度向点A运动,点Q从点A同时出发以2㎝/s的速度想点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是()A.2.5s;B.3s;C.3.5s;D.4s请你帮他找来﹙ ﹚ A .13,12,12B .12,12,8C .13,10,12D .5,8,46.如图,△ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE +CF 的大小关系﹙ ﹚ A .EF =BE +CF B .EF >BE +CF C .EF <BE +CF D .不能确定(第6题) (第7题) (第8题)7.如图,Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为﹙ ﹚ A .67 B .65 C .35 D .348.如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为23,则点P 的个数为﹙ ﹚ A .2 B .3 C .4 D .59.如图,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,AC 在直线l 上.将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=23;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=33;…,按此规律继续旋转,直到得到点P 2014为止,则P 1P 2014=﹙ ﹚A .2012+3B .2013+3C .2014+3D .2015+3(第9题) (第10题)10.如图,已知△ABC 中,∠ABC =45°,AC =4,H 是高AD 和BE 的交点,则线段BH 的长度为( )A.6 B .23 C .5 D .4 二、填空题。

三角形培优专题 - 参考答案

三角形培优专题 - 参考答案

《三角形培优专题》参考答案【例题讲解】例题1.已知等腰三角形的周长为24,试求腰长x 的取值范围和底边长y 的取值范围.【解答】解:依题意有2x +y = 24 ;对于腰长,有:y < 2x < 24 ,即:24 - 2x < 2x < 24 ,解得:6 <x < 12 ;对于底长,有:0 <y < 2x ,即:0 <y < 24 -y ,解得:0 <y < 12 .故腰长x 的取值范围是 6 <x < 12 ,底边长y 的取值范围是0 <y < 12 .例题2.如图,已知∠B =∠C =∠BAD ,∠ADC =∠DAC ,AE ⊥BC ,求∠DAE 的度数.【解答】解: ∠ADC =∠B +∠BAD ,∠B =∠C =∠BAD ,∠ADC =∠DAC ,∴∠B +∠C +∠BAD +∠DAC = 180︒,∴ 5∠B = 180︒,解得∠B = 36︒,∴∠ADC = 72︒.AE ⊥BC ,∴∠DAE = 90︒-∠ADE = 90︒- 72︒= 18︒.例题3.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B 向右移动到AC 上,那么还能求出∠A +∠DBE +∠C +∠D +∠E 的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点 B 向右移动到AC 的另一侧时,上面的结论还成立吗?(4)如图4,当点B 、E 移动到∠CAD 的内部时,结论又如何?根据图3 或图4,说明你计算的理由.【解答】解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(2)如图,由三角形的外角性质,∠A +∠D =∠1 ,∠1 +∠DBE +∠C +∠E = 180︒,∴∠A +∠DBE +∠C +∠D +∠E = 180︒;(3)如图,由三角形的外角性质,∠A +∠C =∠1,∠B +∠D =∠2 ,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(4)如图,延长CE 与AD 相交,由三角形的外角性质,∠A +∠C =∠1,∠B +∠E =∠2 , ∠1 +∠2 +∠D = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒.例题4.Rt∆ABC 中,∠C = 90︒,点D 、E 分别是∆ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2 ,∠DPE =∠α.(1)若点 P 在线段 AB 上,如图(1)所示,且∠α= 50︒,则∠1 +∠2 =140 ︒;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2 之间有何关系?(3)若点P 在Rt∆ABC 斜边BA 的延长线上运动(CE <CD) ,则∠α、∠1、∠2 之间有何关系?猜想并说明理由.【解答】解:(1)如图,连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠DPE =∠α= 50︒,∠C = 90︒,∴∠1+∠2 = 50︒+ 90︒=140︒,故答案为:140︒;(2)连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠C = 90︒,∠DPE =∠α,∴∠1+∠2 = 90︒+∠α;(3)如图1,由三角形的外角性质,∠2 =∠C +∠1+∠α,∴∠2 -∠1 = 90︒+∠α;如图2,∠α= 0︒,∠2 =∠1+ 90︒;如图3,∠2 =∠1-∠α+∠C ,∴∠1-∠2 =∠α- 90︒.例题 5.如图 1,在 ∆ABC 中, BE 平分∠ABC ,CE 平分∠ACB ,若∠A = 82︒,则∠BEC = 131︒;若∠A =a︒,则∠BEC = .【探究】(1)如图2,在∆ABC 中,B D ,B E 三等分∠ABC ,CD ,CE 三等分∠ACB ,若∠A =a︒,则∠BEC = ;(2)如图3,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 和∠A 有怎样的关系?请说明理由;(3)如图4,O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.【解答】解: ∠A = 82︒,∴∠ABC +∠ACB = 180︒-∠A = 180︒- 82︒= 98︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ 98︒= 49︒,2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- 49︒= 131︒;由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A = 180︒-a︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ (180︒-a︒) = 90︒-1a︒,2 2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (90︒-1a︒) = 90︒+1a︒;2 2故答案为:131︒,90︒+1a︒;2探究:(1)由三角形的内角和定理得,∠ABC+∠ACB=180︒-∠A=180︒-a︒, BD ,BE 三等分∠ABC ,CD ,CE 三等分∠ACB ,∴∠EBC =2∠ABC ,∠ECB =2∠ACB ,3 3∴∠EBC +∠ECB =2(∠ABC +∠ACB) =2⨯ (180︒-a︒) = 120︒-2a︒,3 3 3∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (120︒-2a︒) = 60︒+2a︒;3 3故答案为:60︒+2a︒;3(2)∠BOC =1∠A .2理由如下:由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠OCD =∠BOC +∠OBC ,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,∴∠ABC = 2∠OBC ,∠ACD = 2∠OCD ,∴∠A +∠ABC = 2(∠BOC +∠OBC ) ,∴∠A = 2∠BOC ,∴∠BOC =1∠A ;2(3)∠BOC = 90︒-1∠A .2理由如下: O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC =1(180︒-∠ABC) = 90︒-1∠ABC ,∠OCB =1(180︒-∠ACB) = 90︒-1∠ACB ,2 2 2 2在∆OBC 中,∠BOC =180︒-∠OBC -∠OCB =180︒- (90︒-1∠ABC) - (90︒-1∠ACB) =1(∠ABC +∠ACB) 2 2 2,由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A ,∴∠BOC =1(180︒-∠A) = 90︒-1∠A .2 2【巩固练习】1.已知线段AB = 3cm ,BC =1cm ,则线段AC 的长度为( )A .一定是4cmB .一定是2cmC .一定是2cm 或4cmD .以上都不对【解答】选:D.2.如图,∠ABC =∠ACB ,AD ,BD ,CD 分别平分∆ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD / / B C ;②∠ACB = 2∠ADB ;③DB 平分∠ADC ;④∠ADC = 90︒-∠ABD ;⑤∠BDC =1∠BAC .其中正确的结论有( ) 2A.1 个B.2 个C.3 个D.4 个【解答】解: AD 平分∠EAC ,∴∠EAC = 2∠EAD ,∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD / / BC ,∴①正确;AD / / BC ,∴∠ADB =∠DBC ,BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB = 2∠DBC ,∴∠ACB = 2∠ADB ,∴②正确;BD 平分∠ABC ,∴∠ABD =∠DBC ,∠ADB =∠DBC ,∠ADC = 90︒-1∠ABC ,2∴∠ADB 不等于∠CDB ,∴③错误; AD 平分∠EAC ,CD 平分∠ACF ,∴∠DAC =1∠EAC ,∠DCA =1∠ACF ,2 2∠EAC =∠ACB +∠ACB ,∠ACF =∠ABC +∠BAC ,∠ABC +∠ACB +∠BAC = 180︒,∴∠ADC = 180︒- (∠DAC +∠ACD)= 180︒-1(∠EAC +∠ACF ) 2= 180︒-1(∠ABC +∠ACB +∠ABC +∠BAC) 2= 180︒-1(180︒+∠ABC) 2= 90︒-1∠ABC ,∴④正确;2∠BDC =∠DCF -∠DBF =1∠ACF -1∠ABC =1∠BAC ,∴⑤正确,2 2 2故选:D .3.如图,要使六边形木架(用六根木条钉成)不变形,至少要再钉上木条的根数是( )A .1B .2C .3D .4【解答】解:过六边形的一个顶点作对角线,有6 - 3 = 3 条对角线, 所以至少要钉上 3 根木条. 故选: C .4.如图,在 ∆ABC 中, ∠ABC 的平分线与 ∠ACD 的平分线交于点 A 1 , ∠A 1BC 的平分线与∠A CD 的平分线交于点 A ,依此类推 .已知∠A = α,则∠A 的度数为α(用含12n 、α的代数式表示).n2n【解答】解: ∆ABC 中, ∠A = ∠ACD - ∠ABC , A 1 是 ∠ABC 角平分与 ∠ACD 的平分线的交点, ∠A = α,∴∠A = ∠A CD - ∠A BC = 1 (∠ACD - ∠ABC ) = 1∠A ;1 1 12 2同理可得, ∠A = 1 ∠A = 1∠A ,22 1 22∠A = 1 ∠A = 1∠A , 32 2 23依此类推, ∠A = 1∠A ,即∠A = α .n 2n 故答案为: α.2nn2n5.如图,线段 AB 、CP 相交于点O ,连接 AD 、CB , ∠DAB 、∠BCD 的平分线 AP 、CP 相交于点 P ,并且为CD 、 AB 分别相交于 M 、N 两点,若∠D = 40︒ ,∠B = 30︒ ,则∠P 的度数为 35︒ .【解答】解:在∆AOD 中,∠AOD =180︒-∠OAD -∠D ,在∆BOC 中,∠BOC = 180︒-∠B -∠OCB ,∠AOD=∠BOC(对顶角相等),∴180︒-∠OAD -∠D = 180︒-∠B -∠OCB ,∴∠OAD +∠D =∠B +∠OCB ,∠D = 40︒,∠B = 30︒,∴∠OAD + 40︒=∠OCB + 30︒,∴∠OCB -∠OAD = 10︒,AP 、CP 分别是∠DAB 和∠BCD 的角平分线,∴∠1 =1∠OAD ,∠3 =1∠OCB ,2 2又 ∠1 +∠D =∠3 +∠P ,∴∠P =∠1 +∠D -∠3 =1(∠OAD -∠OCB) +∠D =1⨯ (-10︒) + 40︒= 35︒.2 2故答案为:35︒.6.在∆ABC 中,AB =AC ,AC 边上的中线BD 把三角形ABC 的周长分为9cm 和12cm 的两部分,求三角形各边的长.【解答】解:根据题意画出图形,如图,设等腰三角形的腰长AB =AC = 2x ,BC =y ,BD 是腰上的中线,∴AD =DC =x ,若AB +AD 的长为12,则2x +x = 12 ,解得x = 4cm ,则x +y = 9 ,即 4 +y = 9 ,解得y = 5cm ;若AB +AD 的长为9,则2x +x = 9 ,解得x = 3cm ,则x +y = 12 ,即3 +y = 12 ,解得y = 9cm ;所以等腰三角形的腰长为8 厘米,底边长为 5 厘米.或腰长为6cm ,底长为9cm .7.已知a,b,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c 及x 的取值范围;(2)若x 是小于18 的偶数①求c 的长;②判断△ABC 的形状.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x 的范围为12<x<20.(2)①因为周长为小于18 的偶数,所以x=16 或x=14.当x 为16 时,c=6;当x 为14 时,c=4.②当c=6 时,b=c,△ABC 为等腰三角形;当c=4 时,a=c,△ABC 为等腰三角形.综上,△ABC 是等腰三角形.8.如图,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C = 90︒,试猜想BE 与DF 有何位置关系?请说明理由.【解答】解:BE / / DF ,理由是: 四边形内角和等于360︒,∠A =∠C = 90︒,∴∠ABC +∠ADC = 180︒,BE 、CF 分别是∠B 、∠D 的平分线,∴∠1 =1∠ABC ,∠2 =1∠ADC ,2 2∴∠1 +∠2 = 90︒,在Rt∆DCF 中,∠3 +∠2 = 90︒,∴∠1 =∠3 ,∴BE / / DF .9.如图,∆ABC 中,三条内角平分线AD 、BE 、CF 相交于点O ,OG ⊥BC 于点G .(1)若∠ABC = 40︒,∠BAC = 60︒,求∠BOD 和∠COG 的度数.(2)若∠ABC =α,∠BAC =β,则∠BOD 和∠COG 相等吗?请说明理由.【解答】解:(1)∠BOD=∠OAB+∠OBA=1∠BAC +1∠ABC = 50︒2 2∠COG = 90︒-∠OCG= 90︒-1(180︒-∠ABC -∠BAC) 2= 90︒- 40︒= 50︒;(2)∠BOD 和∠COG相等. 理由: ∠BOD =∠OAB +∠OBA=1∠BAC +1∠ABC 2 2=1(α+β) 2=1(180︒-∠ACB) 2= 90︒-1∠ACB 2= 90︒-∠OCG =∠COG .10.如图1 ,在∆ABC 中,∠B = 90︒,分别作其内角∠ACB 与外角∠DAC 的平分线,且两条角平分线所在的直线交于点 E .(1)∠E = 45 ︒;(2)分别作∠EAB 与∠ECB 的平分线,且两条角平分线交于点F .①依题意在图1 中补全图形;②求∠AFC 的度数;(3)在(2)的条件下,射线FM 在∠AFC 的内部且∠AFM =1∠AFC ,设3EC 与AB 的交点为H ,射线HN 在∠AHC 的内部且∠AHN =1∠AHC ,射线3HN 与 FM 交于点 P ,若∠FAH ,∠FPH 和∠FCH 满足的数量关系为∠FCH =m∠FAH +n∠FPH ,请直接写出m ,n 的值.【解答】解:(1)如图 1 , EA平分∠DAC ,EC 平分∠ACB ,∴∠CAF =1∠DAC ,∠ACE =1∠ACB ,2 2设∠CAF =x ,∠ACE =y ,∠B = 90︒,∴∠ACB +∠BAC = 90︒,∴ 2 y +180 - 2x = 90,x -y = 45,∠CAF =∠E +∠ACE ,∴∠E =∠CAF -∠ACE =x -y = 45︒,故答案为: 45 ;(2)①如图 2 所示,②如图 2 , CF 平分∠ECB ,∴∠ECF = 1 y , 2∠E + ∠EAF = ∠F + ∠ECF ,∴ 45︒ + ∠EAF = ∠F + 1 y ①, 2同理可得: ∠E + ∠EAB = ∠B + ∠ECB , ∴ 45︒ + 2∠EAF = 90︒ + y ,∴∠EAF = 45 + y ②,2把②代入①得: 45︒ + 45 + y = ∠F + 1 y ,2 2∴∠F = 67.5︒,即∠AFC = 67.5︒ ;(3) 如图 3 ,设∠FAH =α,AF 平分∠EAB ,∴∠FAH = ∠EAF =α,∠AFM = 1∠AFC = 1⨯ 67.5︒ = 22.5︒ ,3 3 ∠E + ∠EAF = ∠AFC + ∠FCH ,∴45 +α= 67.5 + ∠FCH ,∴∠FCH =α- 22.5①,∠AHN = 1 ∠AHC = 1 (∠B + ∠BCH ) = 1 (90 + 2∠FCH ) = 30 + 2∠FCH , 3 3 3 3 ∠FAH + ∠AFM = ∠AHN + ∠FPH ,∴α+ 22.5 = 30 + 2∠FCH + ∠FPH ,②3 把①代入②得: ∠FPH = α+ 22.5 ,3∠FCH = m ∠FAH+ n ∠FPH ,α- 22.5 = m α+ n α+ 22.5 ,3解得: m = 2 , n = -3.。

专题2.17第2章特殊三角形单元测试(培优提升卷)(原卷版)【浙教版】

专题2.17第2章特殊三角形单元测试(培优提升卷)(原卷版)【浙教版】

专题2.17第2章特殊三角形单元测试(培优提升卷)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,试题共24题,选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019春•覃塘区期中)如图,在Rt ABCACB∠=︒,若CD,CM分别是斜边AB上的高和中线,∆中,90则下列结论中错误的是()A.MCB MCA∠=∠D.MCA BCD∠=∠∠=∠C.B ACD∠=∠B.MCB ACD2.(2020春•龙岗区期末)在下列各图中,可以由题目条件得出12∠=∠的图形个数为()A.1B.2C.3D.43.(2019秋•盐都区期末)如图,在ABCAB=,6BC=,则=,AD是边BC上的中线,若5∆中,AB ACAD的长为()A.3B7C.4D114.(2020•温州模拟)如图,ABC∠交BC于点E,点D为ABBC=,AE平分BAC∆中,8==,6AB AC的中点,连接DE,则BDE∆的周长是()A.75+D.11+B.10C.4255.(2019•海珠区校级模拟)下列判断一定正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有一个角和一边对应相等的两个直角三角形全等C.有两边和其中一边的对角对应相等的两个三角形全等D.有两边对应相等,且有一个角为30︒的两个等腰三角形全等6.(2018秋•曲阳县期末)如图,在ABC∠=︒,点A关于BC的对称点是A',点B关B∆中,70A∠=︒,90'''的面积是()于AC的对称点是B',点C关于AB的对称点是C',若ABC∆的面积是1,则△A B CA.2B.3C.4D.57.(2021•南通一模)如图,在Rt ACB∠=︒,AD BC⊥,垂足为D,ABDBAC∆中,90∆'关于直∆与ADB线AD对称,点B的对称点是点B',若14∠的度数为()∠'=︒,则BB ACA.38︒B.48︒C.50︒D.52︒8.(2019春•雁塔区校级期末)如图,在ABC∆外作等腰ACD∆,ACB∆中,90∠=︒,以AC为底边在ABC过点D作ADCBC=,ABC∆的周长为30,点P是AC=,5∠的平分线分别交AB,AC于点E,F.若12直线DE上的一个动点,则PBC∆周长的最小值为()A.15B.17C.18D.209.(2021春•大埔县期末)如图,在ABCBC cm∠,交BC于点E.D=,AE平分BAC=,8∆中,AB AC为AE上一点,且ACD CAD=,连接CD.过点D作DF AB∠=∠,3DE cm⊥,垂足为点F,则下列结论正确的有()10cm.①5∆的面积为2=;②10=;④ACDCD cmAC cm=;③3DF cmA.1个B.2个C.3个D.4个10.(2021•苏州模拟)如图,AC,BD在AB的同侧,2AB=,M为AB的中点.若BD=,8AC=,8∠=︒,则CD长的最大值是()CMD120A.12B.46C.5D.14二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2021春•津南区期中)如图,在ABD∆,使∆中,BA BD=.在BD的延长线上取点E,C,作AEC∠=︒,则DACB∠的度数为.EA EC=.若90BAE∠=︒,4512.(2020秋•宝应县期末)已知ABC ∆的三边长分别为6、8、10,则最长边上的高为.13.(2021春•顺德区期末)如图,在ABC ∆中,点D 在边AB 上,点A 关于直线CD 的对称点E 在BC 上.若7AB =,9AC =,12BC =,则DBE ∆的周长为.14.(2021春•汉台区期末)如图,MON ∠内有一点P ,点P 关于OM 的轴对称点是G ,点P 关于ON 的轴对称点是H ,GH 分别交OM 、ON 于A 、B 点,若35MON ∠=︒,则GOH ∠=.15.(2019秋•斗门区期末)如图,在第一个1ABA ∆中,20B ∠=︒,1AB A B =,在1A B 上取一点C ,延长1AA 到2A ,使得121A A A C =,得到第二个△12A A C ;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;⋯,按此做法进行下去,则第5个三角形中,以点4A 为顶点的等腰三角形的底角的度数为.16.(2020秋•大冶市期末)如图,D 是等边三角形ABC 外一点,3AD =,2CD =,则BD 的最大值是.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021春•济阳区期末)如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作ABC ∆关于直线MN 对称的图形△A B C '''.(2)若网格中最小正方形的边长为1,求ABC∆的面积.18.(2021春•驿城区期末)如图,已知ABC∆,点P为BC上一点.(1)尺规作图:作直线EF,使得点A与点P关于直线EF对称,直线EF交直线AC于E,交直线AB于F;(保留作图痕迹,不写作法)(2)连接PE,AP,AP交EF于点O,若AP平分BAC∠,请在(1)的基础上说明PE AF=.19.(2021春•平川区校级期末)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且//DE AB,过点E作EF DE⊥,交BC的延长线于点F.(1)求证:CEF∆是等腰三角形;(2)若2CD=,求DF的长.20.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.21.(2020秋•武昌区期中)如图,ABD∆都是等边三角形,若BE与AC相交于点F.∆与CDE(1)求BFA∠的度数;(2)连接FD,求证:FD平分AFE∠.22.(2011秋•仪陇县校级期中)如图,ABC∆是两个边长为2的等边三角形,另一个足够大的等∆和ACD边AEF∆绕点A旋转,AE与BC相交于点M,AF与CD相交于点N.(1)证明:DAN CAM∠=∠;(2)求四边形AMCN的面积;(3)在AEF∠=时,MN的值最小?(直接填写结果,不要求写推理过程)∆转动中,BAM23.(2021春•郏县期末)已知点P在MON∠内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若50∠=︒,则GOH∠=;MON②若5GH=;PO=,连接GH,请说明当MON∠为多少度时,10(2)如图2,若60MON ∠=︒,A 、B 分别是射线OM 、ON 上的任意一点,当PAB ∆的周长最小时,求APB ∠的度数.24.(2019秋•垦利区期中)已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 的同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F .(1)如图1,若60ACD ∠=︒,则AFB ∠=则,如图2,若90ACD ∠=︒,则AFB ∠=,如图3,若ACD α∠=,则AFB ∠=(用含α的式子表示);(2)设ACD α∠=,将图3中的ACD ∆绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),如图4,试探究AFB ∠与α的数量关系,并予以证明.。

最新浙教版八年级数学上学期《特殊三角形》单元测试题及答案解析.docx

最新浙教版八年级数学上学期《特殊三角形》单元测试题及答案解析.docx

《第2章特殊三角形》一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中,只有一个是正确的请将正确的答案选出来.1.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个B.2个C.3个D.4个2.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个3.在平面直角坐标系xoy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个4.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55° C.70°或55°D.60°5.已知三角形的周长为15cm,且其中两边都等于第三边的2倍,那么最短边的长是()A.1cm B.2cm C.3cm D.4cm6.如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55° B.60° C.65° D.70°7.若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上都不对8.如图所示,在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C′≌△ABC,则∠BCA′:∠BCB′等于()A.1:2 B.1:3 C.2:3 D.1:49.如图所示,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=3,BC=5,则DC的长度是()A.B.C.D.10.一个三角形两边中点的连线叫做这个三角形的中位线.只要顺次连结三角形三条中位线,则可将原三角形分割为四个全等的小三角形(如图(1));把三条边分成三等份,再按照图(2)将分点连起来,可以看作将整个三角形分成9个全等的小三角形;把三条边分成四等份,…,按照这种方式分下去,第n个图形中应该得到()个全等的小三角形.A.B.C.D.(n+1)2二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题应当是填最简洁,最正确的答案!11.如图,△ABC是Rt△,BC是斜边,P是三角形内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于.12.在△ABC中,∠B=2∠C,AD⊥AC,交BC于D,若AB=a,则CD= .13.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是.14.如图所示,在Rt△ABC中,CD是斜边上的中线,CE是高.已知AB=10cm,DE=2.5cm,则∠BDC= 度,S△BCD= cm2.15.若直角三角形两条直角边上的中线分别是5厘米和厘米,则斜边长为厘米.16.已知:如图,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC= .三、解答题(共8题,共66分)温馨提示:解答题应把必要的解答过程表述出来!17.如图所示,已知:AB=BC=AC,CD=DE=EC,求证:AD=BE.18.如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是.19.如图,CD是Rt△ABC斜边上的高,且BC=6,AB=10,求AC和CD.20.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.21.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.求证:(1)BF=AC;(2)CE=BF.22.如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP= 时,△AOP为等边三角形;(2)当OP= 时,△AOP为直角三角形;(3)当OP满足时,△AOP为钝角三角形.23.已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.24.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?《第2章特殊三角形》参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中,只有一个是正确的请将正确的答案选出来.1.△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,则图中的等腰三角形有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定与性质;三角形内角和定理.【分析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.【解答】解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故选C.【点评】本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.2.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形是轴对称图形.A.1个B.2个C.3个D.4个【考点】等腰三角形的性质.【分析】认真阅读每一问题给出的已知条件,根据等腰三角形的概念、性质判断正误.【解答】解:①等腰三角形的两腰相等,正确;②等腰三角形的两底角相等,正确;③等腰三角形底边上的中线与底边上的高相等,正确;④等腰三角形是轴对称图形,对称轴就是底边上的高所在的直线,正确.故选D.【点评】本题考查了等腰三角形的性质;熟练掌握并灵活应用这些知识是解答本题的关键.3.在平面直角坐标系xoy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的点P有()A.1个B.2个C.3个D.4个【考点】等腰三角形的判定;坐标与图形性质.【分析】如果OA为等腰三角形的腰,有两种可能,以O为圆心OA为半径的圆弧与y 轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点;符合条件的点一共4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A 为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故选D.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;针对线段OA在等腰三角形中的地位,分类讨论用画圆弧的方式,找与y轴的交点,比较形象易懂.4.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55° C.70°或55°D.60°【考点】等腰三角形的性质;三角形内角和定理.【专题】计算题;分类讨论.【分析】根据已知可求得∠A的度数,题中没有指明∠A是顶角还是底角,故应该分情况进行分析,从而不难求解.【解答】解:①当∵∠A是顶角时,∵∠A的相邻外角是110°,∴∠A=180°﹣110°=70°,∵只有当∠B=∠C时,△ABC为等腰三角形,∴∠B=(180°﹣70°)÷2=55°,②当∠A=∠B是底角时,∵∠A的相邻外角是110°,∴∠A=180°﹣110°=70°,∴∠B=70°,故选C.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用,注意分类讨论思想的运用.5.已知三角形的周长为15cm,且其中两边都等于第三边的2倍,那么最短边的长是()A.1cm B.2cm C.3cm D.4cm【考点】三角形三边关系.【分析】可设这个三角形的最短边为x厘米,根据三角形的周长为15厘米可列出方程求解即可.【解答】解:设这个三角形的最短边为x厘米,依题意有x+2x+2x=15,5x=15,x=3.故这个三角形的最短边为3厘米.故选C.【点评】考查了等腰三角形的性质,本题关键是根据三角形的周长列出方程求解.6.如图所示,△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55° B.60° C.65° D.70°【考点】三角形的外角性质.【分析】由DE⊥AC,∠BDE=140°,可计算出∠A,再利用等腰三角形的性质求出∠C,最后利用EF⊥BC及同角的余角相等得到∠DEF的度数.【解答】解:∵DE⊥AC,∠BDE=140°,∴∠A=50°,又∵AB=AC,∴∠C==65°,∵EF⊥BC,∴∠DEF=∠C=65°.所以A错,B错,C对,D错.故选C.【点评】考查了垂直的性质,等腰三角形的性质和三角形的外角性质.7.若三角形中的一条边是另一条边的2倍,且有一个角为30°,则这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上都不对【考点】三角形.【分析】如图,分AB是30°角所对的边AC的2倍和AB是30°角相邻的边AC的2倍两种情况求解.【解答】解:如图:(1)当AB是30°角所对的边AC的2倍时,△ABC是直角三角形;(2)当AB是30°角相邻的边AC的2倍时,△ABC是钝角三角形.所以三角形的形状不能确定.故选D.【点评】解答本题关键在于已知30°的角与边的关系不明确,需要讨论求解,所以三角形的形状不能确定.8.如图所示,在△ABC中,∠A:∠B:∠C=3:5:10,又△A′B′C′≌△ABC,则∠BCA′:∠BCB′等于()A.1:2 B.1:3 C.2:3 D.1:4【考点】全等三角形的性质.【分析】设∠A=3k,∠B=5k,∠C=10k,根据全等三角形对应角相等可得∠A′CB′=∠ACB=10k,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BCB′=8k,然后求出∠A′CB=2k,求出比值即可.【解答】解:∵∠A:∠B:∠C=3:5:10,∴设∠A=3k,∠B=5k,∠C=10k,∵△A′B′C′≌△ABC,∴∠A′CB′=∠ACB=10k,在△ABC中,∠B′CB=∠A+∠B=3k+5k=8k,∴∠A′CB=∠A′CB′﹣∠B′CB′=10k﹣8k=2k,∴∠BCA′:∠BCB′=2k:8k=1:4.故选D.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,利用“设k法”表示出各角更简便.9.如图所示,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=3,BC=5,则DC的长度是()A.B.C.D.【考点】相似三角形的判定与性质;勾股定理.【专题】计算题.【分析】在Rt△ABC中,根据勾股定理计算AC===4,易证得Rt △CAD∽Rt△CBA,根据相似三角形的性质得到CD:AC=AC:BC,即CD:4=4:5,即可求出CD.【解答】解:∵△ABC中,∠BAC=90°,AB=3,BC=5,∴AC===4,∵AD⊥BC,∴∠ADC=90°,而∠C公共,∴Rt△CAD∽Rt△CBA,∴CD:AC=AC:BC,即CD:4=4:5,∴CD=.故选C.【点评】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;相似三角形对应边的比相等.也考查了勾股定理.10.一个三角形两边中点的连线叫做这个三角形的中位线.只要顺次连结三角形三条中位线,则可将原三角形分割为四个全等的小三角形(如图(1));把三条边分成三等份,再按照图(2)将分点连起来,可以看作将整个三角形分成9个全等的小三角形;把三条边分成四等份,…,按照这种方式分下去,第n个图形中应该得到()个全等的小三角形.A.B.C.D.(n+1)2【考点】三角形中位线定理;规律型:图形的变化类.【分析】第一图形中三角形的个数为4,第二个图形中三角形的个数为9,这两个数均为完全平方数,那么就可得到第n个图形中全等的三角形个数.【解答】解:由图(1)可知:顺次连接各中点所得全等的小三角形为1+3=(1+1)2;图(2)中顺次连接各中点所得全等的小三角形为1+3+5=(2+1)2;同理如果把三条边分成3等分可得到1+3+5+7=(3+1)2个全等的小三角形,按照这种方式分下去,第n个图形中应该得到(n+1)2个全等的小三角形.故选:D.【点评】本题考查了三角形中位线定理,用加法表示出全等三角形的个数,进而找到相应规律是解决本题的关键.二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题应当是填最简洁,最正确的答案!11.如图,△ABC是Rt△,BC是斜边,P是三角形内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于.【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质得到AP′=AP=3,∠P′AP=∠CAB=90°,然后根据等腰直角三角形的性质可得到出PP′的长.【解答】解:∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP=3,∠P′AP=∠CAB=90°,∴△P′AP为等腰直角三角形,∴P′P=AP=3.故答案为3.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.12.在△ABC中,∠B=2∠C,AD⊥AC,交BC于D,若AB=a,则CD= 2a .【考点】等腰三角形的判定与性质.【分析】如图:作CD的中点E,连接AE,由直角三角形的性质可以得出AE=CD,可以得出∠AEB=2∠C,得出∠AEB=∠B,就有AB=AE=a,就可以得出结论.【解答】解:如图,作CD的中点E,连接AE,∴DE=CE=CD.∵AD⊥AC,∴∠DAC=90°,∴AE=CD,∴AE=CE,∴∠C=∠EAC,∵∠AED=∠C+CAE,∴∠AED=2∠C.∵∠B=2∠C,∴∠AEB=∠B,∴AB=AE=CD,∴CD=2AB.∵AB=a,∴CD=2a.故答案为:2a.【点评】本题考查了作辅助线的运用及直角三角形的斜边上的中线的性质的运用等腰三角形的性质的运用,解答本题作斜边上的中线是关健.13.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16 .【考点】正方形的性质;全等三角形的判定与性质.【分析】由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S△AEB=S△AFD,那么它们都加上四边形ABCF 的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【解答】解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,在△AEB和△AFD中,∵,∴△AEB≌△AFD(ASA),∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故答案为:16.【点评】本题主要考查全等三角形的判定和性质、正方形的面积公式,正方形的性质,关键在于求证△AEB≌△AFD.14.如图所示,在Rt△ABC中,CD是斜边上的中线,CE是高.已知AB=10cm,DE=2.5cm,则∠BDC= 120 度,S△BCD= cm2.【考点】直角三角形斜边上的中线;等边三角形的判定与性质;勾股定理.【分析】首先根据直角三角形斜边上的中线等于斜边的一半可得CD=5cm,再根据三角函数值算出∠ECD的度数,然后根据三角形的内角与外角的关系可得∠CDB=∠CED+∠ECD,进而得到∠CDB的度数;再根据勾股定理可计算出CE的长,然后再利用三角形的面积公式进行计算即可.【解答】解:∵在Rt△ABC中,CD是斜边上的中线,∴CD=AB,∵AB=10cm,∴CD=5cm,∵CE是高,∴△CED是直角三角形,∵DE=2.5cm,∴sin∠ECD==,∴∠ECD=30°,∴∠CDB=∠CED+∠ECD=90°+30°=120°;在Rt△CED中:CE===(cm),∴S△BCD=DB•CE=×5×=(cm2).故答案为:120;.【点评】此题主要考查了直角三角形的性质、勾股定理,以及三角函数的应用,解决问题的关键是掌握直角三角形斜边上的中线等于斜边的一半.15.若直角三角形两条直角边上的中线分别是5厘米和厘米,则斜边长为厘米.【考点】勾股定理.【分析】如图,在Rt△ABE与Rt△CBD中,利用勾股定理列出关于a、b的方程组,通过解方程组求得a、b的值;然后在Rt△ABC中根据勾股定理来求斜边AC的长度.【解答】解:如图,在Rt△ABC中,∠B=90°,AE、CD分别是直角边BC、AB上的中线,且AE=5厘米,CD=厘米,则由勾股定理知,解得,则AB=2a=4,BC=2b=6.则在Rt△ABC中,根据勾股定理得AC===2(厘米).故答案是:2.【点评】本题考查了勾股定理.注意:勾股定理应用的前提条件是在直角三角形中.16.已知:如图,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC= 8 .【考点】含30度角的直角三角形.【分析】根据已知条件易求得∠BDE=30°,∠BAD=30°,则”30度角所对的直角边是斜边的一半“,所以BD=2BE=2,AB=2BD=4,BC=2AB=8.【解答】解:如图,∵∠BAC=90°即AC⊥B,DE⊥AB,∴ED∥AC,∴∠BDE=∠C=30°,∴BD=2BE.又∵AD⊥BC,∴∠BAD=30°,∴AB=2BD=4BE,∴BC=2AB=8BE=8.故填:8.【点评】本题考查了含30度角的直角三角形.在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(共8题,共66分)温馨提示:解答题应把必要的解答过程表述出来!17.如图所示,已知:AB=BC=AC,CD=DE=EC,求证:AD=BE.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】先根据等边三角形的内角等于60°推出∠ACD=∠BCE,然后利用边角边证明△ACD与△BCE全等,然后根据全等三角形对应边相等即可证明.【解答】证明:∵AB=BC=AC,CD=DE=EC,∴△ABC与△CDE是等边三角形,∴∠ACB=∠DCE=60°,∴∠ACB﹣∠BCD=∠DCE﹣∠BCD,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.【点评】本题考查了等边三角形的性质,全等三角形的判定与性质,判定出△ABC与△CDE是等边三角形并求出∠ACD=∠BCE是解题的关键.18.如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别为E、F,添加一个条件,使DE=DF,并说明理由.解:需添加条件是BD=CD,或BE=CF .【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:需添加的条件是:BD=CD,或BE=CF.添加BD=CD的理由:如图,∵AB=AC,∴∠B=∠C.又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∴△BDE≌△CDF(AAS).∴DE=DF.添加BE=CF的理由:如图,∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD.又∵BE=CF,∴△BDE≌△CDF(ASA).∴DE=DF.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.19.如图,CD是Rt△ABC斜边上的高,且BC=6,AB=10,求AC和CD.【考点】勾股定理.【分析】首先利用勾股定理求得直角边AC=8;然后利用面积法来求CD的长度.【解答】解:∵如图,在Rt△ABC中,BC=6,AB=10,∴由勾股定理,得AC===8∴,∴.【点评】本题考查了勾股定理.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.【考点】全等三角形的判定;等边三角形的判定.【专题】证明题;压轴题.【分析】(1)关键是证出CE=AF,可由AE=AB,AC=BF,两两相加可得.再结合已知条件可证出△AEF≌△CDE.(2)有(1)中的全等关系,可得出∠AFE=∠CED,再结合△DEF是等边三角形,可知∠DEF=60°,从而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC 是等边三角形.【解答】证明:(1)∵BF=AC,AB=AE(已知)∴FA=EC(等量加等量和相等).∵△DEF是等边三角形(已知),∴EF=DE(等边三角形的性质).又∵AE=CD(已知),∴△AEF≌△CDE(SSS).(2)由△AEF≌△CDE,得∠FEA=∠EDC(对应角相等),∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换),△DEF是等边三角形(已知),∴∠DEF=60°(等边三角形的性质),∴∠BCA=60°(等量代换),由△AEF≌△CDE,得∠EFA=∠DEC,∵∠DEC+∠FEC=60°,∴∠EFA+∠FEC=60°,又∠BAC是△AEF的外角,∴∠BAC=∠EFA+∠FEC=60°,∴△ABC中,AB=BC(等角对等边).∴△ABC是等边三角形(等边三角形的判定).【点评】本题利用了等量加等量和相等,全等三角形的判定和性质,还有三角形的外角等不相邻的两个内角之和,等边三角形的判定(三个角都是60°,那么就是等边三角形).21.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.求证:(1)BF=AC;(2)CE=BF.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的判定与性质.【专题】证明题;压轴题.【分析】(1)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根据ASA证出△AEB≌△CEB,推出AE=CE即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.【点评】本题考查了三角形的内角和定理,等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是推出△BDF≌△CDA和△AEB≌△CEB,题目综合性比较强.22.如图,已知OA=a,P是射线ON上一动点(即P可以在射线ON上运动),∠AON=60°,填空:(1)当OP= a 时,△AOP为等边三角形;(2)当OP= 时,△AOP为直角三角形;(3)当OP满足时,△AOP为钝角三角形.【考点】等边三角形的判定;含30度角的直角三角形.【分析】(1)由∠AON=60°,可得当OP=OA=a时,△AOP为等边三角形;(2)分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得OP的长;(3)结合(2)的结论,即可求得答案.【解答】解:(1)∵∠AON=60°,∴当OP=OA=a时,△AOP为等边三角形;(2)若AP⊥ON,∵∠AON=60°,∴OP=OA•cos60°=a;若PA⊥OA,则OP==2a,∴当OP=时,△AOP为直角三角形;(3)由(2)可得:当OP满足时,△AOP为钝角三角形.故答案为:(1)a,(2)a或2a,(3)OP>2a或OP<a.【点评】此题考查了等边三角形的性质、直角三角形的性质以及三角函数等知识.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.23.(2008秋•广安校级期中)已知,如图,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,请你说明下列结论成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)由AD∥BC,∠A=90°,根据两直线平行,同旁内角互补,可得∠B=90°,根据直角三角形的HL定理,即可证得;(2)由(1)△AED≌△BCE,根据全等三角形的性质,可得AE=BC,又AB=AE+BE,等量代换,即可得出;【解答】证明:(1)∵AD∥BC,∠A=90°,∴∠B=90°,∵∠EDC=∠ECD,∴ED=EC,在直角△AED和直角△BCE中,,∴△AED≌△BCE;(2)∵△AED≌△BCE,∴AE=BC,AD=BE,又∵AB=AE+BE,∴AB=AD+BC.【点评】本题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件.24.(12分)(2013秋•高邮市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得OC=CD,∠OCD=60°,然后根据有一个内角是60°的等腰三角形是等边三角形判定即可;(2)根据旋转的性质可得∠ADC=α,然后求出∠ADO=90°,即可得解;(3)分AO=AD时,表示出∠AOC=∠ADC=α,然后根据周角等于360°列式求解即可;DA=DO时,先表示出∠ADO,再根据等腰三角形的性质表示出∠AOD,然后根据周角列出方程求解即可;AO=DO时,先表示出∠ADO,再根据等腰三角形的性质表示出∠AOD,然后根据周角列出方程求解即可.【解答】(1)证明:∵OC=CD,∠OCD=60°,∴∠OCD是等边三角形(有一个内角是60°的等腰三角形是等边三角形);(2)当∠α=150°时,由旋转的性质,∠ADC=α=150°,∵∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,∴△AOD直角三角形;(3)当AO=AD时,∠AOD=∠ADO=α﹣60°,∴∠AOC=∠ADC=α,∴2α+110°=360°,∴α=125°,当DA=DO时,∠ADO=α﹣60°,∴∠AOD=(180°﹣∠ADO)=(180°﹣α+60°)=120°﹣α,∴120°﹣α+60°+α+110°=360°,∴α=140°,当AO=OD时,∠ADO=α﹣60°,∴∠AOD=180°﹣2(α﹣60°)=300°﹣2α,∴300°﹣2α+110°+α+60°=360°,∴α=110°.【点评】本题考查了旋转的性质,等边三角形的判定与性质,等腰三角形的两底角相等的性质,难点在于(3)要分情况讨论.。

人教版八年级数学上册 三角形认识 单元培优卷(含答案)

人教版八年级数学上册 三角形认识 单元培优卷(含答案)

八年级数学上册三角形认识单元培优卷一、选择题:1、如图所示的△ABC中,线段BE是△ABC边AC上的高的是( ).2、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB 间的距离不可能是()A.15mB.17mC.20mD.28m3、已知一个多边形的内角和是720º,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4、若一个正多边形的一个外角是45°,则这个正多边形的边数是()A.10B.9C.8D.65、将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°6、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于( )A.50°B.30°C.20°D.15°7、三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个8、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根可以组成不同三角形的个数 ( )A.1个B.2个C.3个D.4个9、如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°11、一个正方形和两个等边三角形的位置如图所示,若∠1= 50°,则∠2+∠3 =()A.190°B.130°C.100°D.80°12、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°二、填空题:13、如图,自行车的三角形支架,这是利用三角形具有性.14、已知三角形的边长分别为4、a、8,则a的取值范围是;如果这个三角形中有两条边相等,那么它的周长为.15、如果一个多边形的每一个外角都是30°,则这个多边形对角线的条数是,它的内角和是,它的外角和是 .16、如图所示,求∠A+∠B+∠C+∠D+∠E+∠F= .17、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为__________.18、如图,已知∠A=α,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线相交于点A1,得∠A1;若∠A1BC的平分线与∠A1CD的平分线相交于点A2,得∠A2……∠A2015BC的平分线与∠A2015CD的平分线相交于点A2018,得∠A2018,则∠A2018=____.(用含α的式子表示)三、解答题:19、如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD周长为15cm,求AC长.20、在各个内角都相等的多边形中,一个外角比一个内角少120°,求这个多边形的一个内角的度数和它的边数.21、如图, AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=36°,求∠BED的度数;(2)作出△BED中DE边上的高,垂足为H;(3)若△ABC面积为20,过点C作CF//AD交BA的延长线于点F,求△BCF的面积。

浙教版2022-2023学年八上数学第2章 特殊三角形 培优测试卷(解析版)

浙教版2022-2023学年八上数学第2章 特殊三角形 培优测试卷(解析版)

浙教版2022-2023学年八上数学第2章 特殊三角形 培优测试卷(答案解析)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.如图,以 Rt △ABC 的三边为直角边分别向外作等腰直角三角形.若 AB =√3 ,则图中阴影部分的面积为( )A .3B .92C .3√2D .3√5【答案】A【解析】∵ Rt △ABC ∴AC 2+BC 2=AB 2=3∴S 阴影= 12 AC 2+ 12 BC 2+ 12 AB 2= 12 (AC 2+BC 2)+ 12 AB 2= 12 AB 2+ 12AB 2=AB 2=3.故答案为:A.2.如图,在△ABC 中,AC =BC >AB ,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构成△PAB ,△PBC ,△PAC 均是等腰三角形,则满足上述条件的所有点P 的个数为( )A .3B .4C .6D .7【答案】C【解析】如图所示,作AB 的垂直平分线,①作AC 的垂直平分线交AB 的垂直平分线于一点P ,得到△ABC 的外心P ,为满足条件的一个点;②以点C 为圆心,以AC 长为半径画圆,交AB 的垂直平分线于两点,P 2,P 3为满足条件的点; ③分别以点A 、B 为圆心,以AC 长为半径画圆,P 4为满足条件的点;④分别以点A、B为圆心,以AB长为半径画圆,得到P5、P6为满足条件的点;综上所述,满足条件的所有点P的个数有6个.故答案为:C.3.如图,D为∠BAC的外角平分线上一点并且满足BD=CD,∠DBC=∠DCB,过D作DE⊥AC 于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC =∠BAC;④∠DAF=∠CBD.其中正确的结论有()个A.1B.2C.3D.4【答案】D【解析】∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,在Rt△CDE和Rt△BDF中,{BD=CDDE=DF,∴Rt△CDE≅Rt△BDF,故①正确;∴CE=AF,在Rt△ADE和Rt△ADF中,{AD=ADDE=DF,∴Rt△ADE≅Rt△ADF,∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵Rt△CDE≅Rt△BDF,∴∠DBF=∠DCE,又∵∠AOB=∠DOC,∴∠BDC=∠BAC,故③正确;∵AD平分∠CAF,∴∠DAF=∠DAE,∵BD=CD,∴∠DBC=∠DCB,∵∠BAC+∠DAF+∠DAE=180°,∠BDC+∠DBC+∠DCB=180°,∠BDC=∠BAC,∴∠DAF+∠DAE=∠DBC+∠DCB,∴∠DAF=∠CBD,故④正确;综上所述,正确的有①②③④;故答案为:D.4.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ= α,∠PQN= β,当MP+PQ+QN最小时,则β−α的值为( )A.10°B.20°C.40°D.60°【答案】C【解析】【解答】如图,作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,交OA 于点Q,交OB于点P,则MP+PQ+QN最小,∵∠MPM′+∠MPQ=180°,∠OPM=∠OPM′,∠OPM+∠OPM′=∠MPM,∠MPQ=α,∴∠OPM= 12(180°-α),∵∠1=∠O+∠OPM,∴∠1=20°+ 12(180°-α)=110°-12α,∵∠2=∠3,∠2+∠3+∠MQN=180°,∠PQN=β,∴∠3= 12(180°-β),∴∠MQP=∠3= 12(180°-β),在△PMQ中,∠1+∠MPQ+∠MQP=180°,即110°- 12α+α+12(180°-β)=180°,∴β-α=40°,故答案为:C.5.如图,在Rt△ABC中,点D,E分别是边AC、AB上的两点,连接BD,CE,CD=AE,已知BC =6,AB=8,则BD+CE的最小值是()A.√136B.10C.9.6D.5+ √45【答案】A【解析】过点A作AF⊥AC,并使得AF=BC,连接EF,则∠FAC=90°,∴∠FAE+∠EAC=90°,∵在Rt△ABC中,∠BAC+∠BCD=90°,∴∠FAE=∠BCD,∵AF=CB,AE=CD,∴△BCD≌△FAE(SAS),∴EF=BD,∴BD+CE=EF+CE,连接CF,即可得知CF的长度即为EF+CE的最小值,也就是BD+CE的最小值,∵AB=8,BC=6,∠ABC=90°,∴AF=BC=6,AC=10,∴CF=√AF2+AC2=√62+102=√136,∴BD+CE的最小值是√136.故答案为:A.【分析】过点A作AF⊥AC,并使得AF=BC,连接EF,则∠FAC=90°,由同角的余角相等可得∠FAE =∠BCD,证明△BCD≌△FAE,得到EF=BD,连接CF,可得CF的长度即为EF+CE的最小值,也就是BD+CE的最小值,据此求解.6.如图,边长为9的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM 绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.3B.94C.92D.9√32【答案】B【解析】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB = 12AB ,∴HB =BG ,又∵MB 旋转到BN , ∴BM =BN ,在△MBG 和△NBH 中,{BG =BH∠MBG =∠NBH MB =NB,∴△MBG ≌△NBH (SAS ), ∴MG =NH ,根据垂线段最短,当MG ⊥CH 时,MG 最短,即HN 最短,此时∠BCH = 12 ×60°=30°,CG = 12 AB = 12 ×9= 92 , ∴MG = 12 CG = 12 × 92 = 94, ∴HN = 94,故答案为:B.7.如图△ABC 中,∠A =60°,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于点H ,若CE =4,BD =5,则 DH HB的值( )A .12B .25C .14D .27【答案】C【解析】∵BD ⊥AC ,CE ⊥AB , ∴∠ADB=∠AEC=90°, 在Rt △BDA 中,∠A=60°,BD=5, ∴∠ABD=30°, ∴AB=2AD ,∵AB 2=AD 2+BD 2,即4AD 2=AD 2+52,∴AD= 5√33,在Rt △ACE 中,∠A=60°,CE=4, ∴∠ACE=30°, ∴AC=2AE ,∵AC 2=AE 2+CE 2,即4AE 2=AE 2+42,∴AE= 4√33 ,AC= 8√33,∴CD= AC- AD= 8√33−5√33= √3 ,在Rt △CDH 中,∠DCH=30°,CD= √3 , ∴CH=2DH ,∵CH 2=DH 2+CD 2,即4DH 2=DH 2+( √3 )2, ∴DH=1,∴BH=BD-DH=5-1=4,∴DHHB=14,故答案为:C.8.如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=4,点D是斜边AB的中点,以CD为底边在其右侧作等腰三角形CDE,使∠CDE=∠A,DE交BC于点F,则EF的长为()A.3B.√15C.√152D.3.5【答案】D【解析】过点E作EH⊥CD于点H,∵∠ACB=90°,点D是斜边AB的中点∴CD=AD=BD=2,∴∠A=∠ACD=∠CDE,∴AC∥DE,∴点F为BC的中点,∴DF=12AC=0.5;∵CE=DE∴DH=12CD=1=AC,∴△EHD≌△ACB(ASA),∴DE=BA=4,∴EF=DE-DF=4-0.5=3.5.故答案为:D.9.如图,△ABC是等边三角形,AB=10,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A.5B.6C.8D.10【答案】A【解析】设BD=x,则CD=10﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BDE=30°,∠CDF=30°,∴BE=12BD=x2同理可得,CF=10−x 2,∴BE+CF=x2+10−x2=5.故答案为:A.10.如图,在△ABC中,∠ACB=90°,AC=BC=2,D是AB的中点,点E在AC上,点F 在BC上,且AE=CF,给出以下四个结论:(1)DE=DF;(2)△DEF是等腰直角三角形;(3)四边形CEDF面积=12S△ABC;(4)EF2的最小值为2.其中正确的有().A.4个B.3个C.2个D.1个【答案】A【解析】∵∠ACB=90°,AC=BC=2∴AB=√22+22=2√2∴∠A=∠B=45°∵点D是AB的中点∴CD⊥AB,且AD=BD=CD=12AB=√2∴∠DCB=45°∴∠A=∠DCF,在△ADE和△CDF中{AD=CD∠A=∠DCFAE=CF∴△ADE≌△CDF(SAS)∴DE=DF,∠ADE=∠CDF∵CD⊥AB∴∠ADC=90°∴∠EDF=∠EDC+∠CDF=∠EDC+∠ADE=∠ADC=90°∴△DEF是等腰直角三角形∵△ADE≌△CDF∴△ADE和△CDF的面积相等∵D为AB中点∴△ADC的面积=12△ABC的面积∴四边形CEDF面积=S△EDC+S△CDF=S△EDC+S△ADE=S△ADC=12S△ABC;当DE⊥AC,DF⊥BC时,EF2值最小根据勾股定理得:EF2=DE2+DF2此时四边形CEDF是正方形即EF=CD=√2∴EF 2=(√2)2=2 ∴正确的个数是4个 故答案为:A.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则∠B = . 【答案】66°或24°【解析】如图,由题意得:AB =AC ,∠ADE =42°,DH 是AB 的垂直平分线,∴∠B =∠C ,∠DHA =90°,∴∠DAH =90°−42°=48°=∠B +∠C ,∴∠B =12∠DAH =24°,如图,由题意得:AB =AC ,∠ADE =42°,DH 是AB 的垂直平分线,∴∠ABC =∠ACB ,∠ADH =42°,∴∠A =90°−42°=48°,∠B =12(180°−48°)=66°, 综上:∠B =24°或∠B =66°. 故答案为:24°或66°.12.已知在 Rt △ABC 中, AB =AC =2 , ∠BAC =90° ,以 AC 为一边在 Rt △ABC 外部作等腰直角三角形 ACD ,线段 BD 的长为 . 【答案】2√5 或 √10 或4. 【解析】分三种情况讨论:如解图,以 A 为直角顶点,向外作等腰直角三角形 DAC ,∵∠DAC =90° ,且 AD =AC , ∴BD =BA +AD =2+2=4 ;如解图,以 C 为直角顶点,向外作等腰直角三角形 ACD ,连接 BD ,过点 D 作 DE ⊥BC ,交 BC 的延长线于点 E ,∵△ACD 是等腰直角三角形, ∠ACD =90° , ∴∠DCE =45° , CD =AC =2 , 又 ∵DE ⊥CE , ∴∠DEC =90° , ∴∠CDE =45° ,∴CE =DE =√2=2√22=√2 ,在 Rt △BAC 中, BC =√AB 2+AC 2=2√2 , ∴BE =BC +CE =3√2 , ∴BD =√BE 2+DE 2=2√5 ;如解图,以 AC 为斜边,向外作等腰直角三角形 ADC ,∵∠ADC =90° , AD =DC ,且 AC =2 ,∴AD =DC =√2=2√22=√2 ,又 ∵△ABC , △ADC 是等腰直角三角形, ∴∠ACB =∠ACD =45° , ∴∠BCD =90° ,在 Rt △ABC 中, BC =√AB 2+AC 2=2√2, ∴BD =√BC 2+CD 2=√10 . 综上所述, BD 的长为4或 2√5 或 √10 . 故答案为:4或 2√5 或 √10 .13.如图,在Rt △ABC 中,AC =BC =1,D 是斜边AB 上一点(与点A ,B 不重合),将△BCD 绕着点C 旋转90°到△ACE ,连结DE 交AC 于点F ,若△AFD 是等腰三角形,则AF 的长为 .【答案】12或√2−1【解析】∵Rt △ABC 中,AC=BC=1, ∴∠CAB=∠B=45°,∵△BCD 绕着点C 旋转90°到△ACE , ∴∠ECD=90°,∠CDE=∠CED=45°, ①AF=FD 时,∠FDA=∠FAD=45°, ∴∠AFD=90°, ∠CDA=45°+45°=90°=∠ECD=∠DAE , ∵EC=CD ,∴四边形ADCE 是正方形, ∴AD=DC ,∴AF= 12AC= 12×1= 12;②AF=AD 时,∠ADF=∠AFD=67.5°,∴∠CDB=180°-∠ADE-∠EDC=180°-67.5°-45°=67.5°, ∴∠DCB=180°-67.5°-45°=67.5°,∴∠DCB=∠CDB , ∴BD=CB=1,∴AD=AB-BD= √2−1, ∴AF=AD= √2−1, 故答案为: 12或 √2−1.14.如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 、点E 在直线BC 上,点F 为AE 上一点,连接BF ,分别交AD 、AC 于点G 、点H ,若∠BAD =∠CAE ,∠AGH =∠E ,AF+AD =BF ,AC =3√6,则AE 的长为 .【答案】6√3【解析】如图所示,过点C 作CI ⊥BE 交AE 于I , ∴∠ICD=90°,∵AB=AC ,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∴∠ACI=45°, ∴∠ABD=∠ACI ,在△ABD 和△ACI 中, {∠BAD =∠CAI AB =AC ∠ABD =∠ACI, ∴△ABD ≌△ACI (ASA ),∴AI=AD ,∠ADB=∠AIC ,BD=CI ,延长FA 到K 使得AK=AD=AI ,连接KB ,KD ,DI ,∴∠AKD=∠ADK ,∠ADI=∠AID , ∵∠AKD+∠KDI+∠AID=180°, ∴∠ADK+∠ADI=90°,即∠KDI=90°, ∵∠BAD=∠CAE ,∠BAC=90°,∴∠BAD+∠CAD=∠CAE+∠CAD=90°,即∠DAI=90°, ∴△ADK 和△ADI 都是等腰直角三角形, ∴∠DKI=∠DIK=∠ADK=45°,∴KD=ID ,∠BDK+∠ADK=∠DIK+∠DIC , ∴∠DIC=∠KDB ,在△KDB 和△DIC 中,{BD =CI∠KDB =∠DIC KD =DI,∴△KDB ≌△DIC (SAS ), ∴∠KBD=∠DCI=90°, ∴∠BKE+∠E=90°,∠KBF+∠EBF=90°, ∵BF=AF+AD , ∴BF=AF+AK=KF , ∴∠BKF=∠KBF , ∴∠E=∠EBF ,∴∠BFA=∠E+∠EBF=2∠E , ∵∠AGH=∠E ,∠GAF=90°, ∴3∠E=90°, ∴∠E=30°,过点A 作AM ⊥BE 于M , ∵∠ACM=45°, ∴∠MAC=45°, ∴∠ACM=∠MAC , ∴AM=CM ,∵AC 2=AM 2+CM 2, ∴2AM =AC 2=54, ∴AM =3√3,∴AE =2AM =6√3, 故答案为:6√3.15.如图,线段AB =4,E 为AB 中点,点C 、D 为直线AB 同侧不重合的两点,且∠ACB =∠ADB =90°,连接CE 、DE 、CD ,设△CDE 的面积为S ,则S 的范围是 .【答案】0<S ≤2【解析】由题意知:S △CDE >0,即S>0, ∵∠ACB =∠ADB =90°,E 为AB 中点,AB =4, ∴CE=12AB=2,DE=BE=12AB=2,当△CDE 为直角三角形,且∠CED =90°时,S 有最大值, ∴S △CDE =12CE ×ED =2,即S 的最大值为2,∴0<S ≤2.故答案为:0<S ≤2.16.如图,等腰直角三角形ABC 中, ∠ACB =90° ,AC =BC ,点M 为△ABC 外一点,BM =13,MA =5, ∠AMC =45° ,则MC 的长为 .【答案】6√2【解析】过点 C 作 CD ⊥CM ,且 CD =CM , 连接 AD ,MD ,如下图:∴∠MCD =90° , ∵∠ACB =90° , ∴∠MCD =∠ACB ,∴∠MCD +∠ACM =∠ACB +∠ACM , ∴∠BCM =∠ACD ,∵AC =BC ,CD =CM , ∴△BCM ≌△ACD(SAS) , ∴BM =AD =13 ,∵CM =CD ,∠MCD =90° , ∴∠CMD =∠CDM =45° ,∵∠AMC =45° , ∴∠AMD =90° ,∴DM =√132−52=12 , ∵CM 2+CD 2=DM 2 , ∵CM =CD , ∴2CM 2=144 , 解得: CM =6√2 . 故答案为: 6√2 .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,已知AB =12,AB ⊥BC 于B ,AB ⊥AD 于A ,AD =5,BC =10点E 是CD 的中点,求AE 的长.【答案】解:如图,延长AE 交BC 于F .∵AB ⊥BC ,AB ⊥AD , ∴AD ∥BC∴∠D=∠C ,∠DAE=∠CFE , 又∵点E 是CD 的中点, ∴DE=CE .∵在△AED 与△FEC 中,{∠D =∠C∠DAE =∠CFE DE =CE,∴△AED ≌△FEC (AAS ), ∴AE=FE ,AD=FC . ∵AD=5,BC=10. ∴BF=5在Rt △ABF 中,AF = √AB 2+BF 2=√122+52=13 , ∴AE= 12AF=6.5.18.如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC =BD .(1)求证:△OAB 是等腰三角形; (2)若∠CBA =60°,求证AC =3OC . 【答案】(1)证明:∵AC ⊥BC ,BD ⊥AD , ∴∠ADB =∠ACB =90°,在Rt△ABC和Rt△BAD中,{AB=BAAC=BD,∴Rt△ABC≌Rt△BAD(HL),∴∠CAB=∠DBA,∴AO=BO,即△OAB是等腰三角形;(2)解:由(1)得:∠CAB=∠DBA,∴AO=BO,∵∠CBA=60°,∠ACB=90°,∴∠DBA=∠CAB=90°﹣∠ACB=30°,∴∠OBC=∠CBA﹣∠DBA=30°,∴AO=BO=2OC,∵AC=AO+OC,∴AC=3OC.19.如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF =∠BAE,连接EF,EF与AC交于点G.(1)求证:EF=BC;(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.【答案】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠CAE=∠BAE+∠CAE,即∠EAF=∠BAC,∵AE=AB,AC=AF,∴△EAF≌△BAC,∴EF=BC;(2)解:∵△EAF≌△BAC,∴∠AEF=∠ABC=65°,∵AB=AE,∴∠AEB=∠ABC=65°,∴∠FEC=180°-∠AEB-∠AEF=50°,∴∠FGC=∠FEC+∠ACB=78°.20.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE 相交于点P,交AC于点M,交AD于点N.(1)求证:BD=CE.(2)求证:AP平分∠BPE.(3)若α=60°,试探寻线段PE、AP、PD之间的数量关系,并说明理由.【答案】(1)证明:∵∠BAC=∠DAE=α, ∴∠BAD=∠CAE ,又∵AB=AC ,AD=AE , ∴△BAD ≌△CAE (SAS ), ∴BD=CE ;(2)证明:如图,过点A 作AH ⊥BD ,AF ⊥CE ,∵△BAD ≌△CAE ,∴S △BAD=S △CAE ,BD=CE , ∴12BD×AH=12CE×AF , ∴AH=AF ,又∵AH ⊥BD ,AF ⊥CE , ∴AP 平分∠BPE ;(3)解:PE=AP+PD ,理由如下:如图,在线段PE 上截取OE=PD ,连接AO ,∵△BAD ≌△CAE , ∴∠BDA=∠CEA , 又∵OE=PD ,AE=AD , ∴△AOE ≌△APD (SAS ), ∴AP=AO ,∵∠BDA=∠CEA ,∠PND=∠ANE , ∴∠NPD=∠DAE=α=60°,∴∠BPE=180°-∠NPD=180°-60°=120°,又∵AP 平分∠BPE , ∴∠APO=60°, 又∵AP=AO ,∴△APO 是等边三角形, ∴AP=PO , ∵PE=PO+OE , ∴PE=AP+PD .21.如图,△ABC 是等边三角形,DE ∥BC ,分别交AB ,AC 于点D ,E.(1)求证:△ADE 是等边三角形;(2)点F 在线段DE 上,点G 在△ABC 外,BF =CG ,∠ABF =∠ACG ,求证:AF =FG . 【答案】(1)解:∵△ABC 是等边三角形, ∴∠ABC =∠ACB =∠BAC =60°, ∵DE ∥BC ,∴∠ADE =∠ABC =60°,∠AED =∠ACB =60°, ∴∠ADE =∠AED =60°, ∴△ADE 是等边三角形;(2)证明:连接AG ,如图所示:∵△ABC 是等边三角形, ∴∠BAC =60°,AB=AC , ∵BF =CG ,∠ABF =∠ACG , ∴△ABF ≌△ACG (SAS ), ∴AF =AG ,∠BAF =∠CAG , ∵∠BAF +∠FAC =∠BAC =60°, ∴∠CAG +∠FAC =∠FAG =60°, ∴△AFG 是等边三角形, ∴AF =FG .22.如图,△ABC 是等边三角形,延长BC 到点E ,使CE=12BC ,若D 是AC 的中点,连接ED 并延长交AB 于点F .(1)若AF=3,求AD 的长; (2)求证:DE=2DF . 【答案】(1)解:∵△ABC 为等边三角形, ∴AC=BC ,∠A=∠ACB=60°, ∵D 为AC 中点, ∴CD=AD=12AC ,∵CE=12BC ,∴CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE , ∴∠E=∠CDE=30°, ∴∠ADF=∠CDE=30°, ∵∠A=60°,∴∠AFD=180°-∠A-∠ADF=90°,∵AF=3,∴AD=2AF=6,(2)解:连接BD ,∵△ABC 为等边三角形,D 为AC 中点, ∴BD 平分∠ABC ,∠ABC=60°, ∴∠DBC=∠ABD=12∠ABC=30°,∵∠BFD=90°, ∴BD=2DF ,∵∠DBC=∠E=30°, ∴BD=DE , ∴DE=2DF , 23.问题发现:(1)如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE ,①求证:△ACD ≌△BCE ; ②求∠AEB 的度数. (2)拓展探究:如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高交AE 于M ,连接BE.请求∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由. 【答案】(1)解:①证明:∵△ACB 和△DCE 均为等边三角形, ∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°, ∴∠ACD =60°﹣∠DCB =∠BCE.在△ACD 和△BCE 中,{AC =BC∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ). ②解:∵△ACD ≌△BCE , ∴∠ADC =∠BEC.∵△DCE 为等边三角形,∴∠CDE =∠CED =60°. ∵点A ,D ,E 在同一直线上, ∴∠ADC =120°,∴∠BEC =120°. ∴∠AEB =∠BEC ﹣∠CED =60°. (2)解:∠AEB =90°,AE =BE+2CM.理由如下: 如图2所示:由题意得:CM ⊥DE ,∵△ACB 和△DCE 均为等腰直角三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =90°. ∴∠ACD =∠BCE.在△ACD 和△BCE 中,{CA =CB∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE (SAS ). ∴AD =BE ,∠ADC =∠BEC. ∵△DCE 为等腰直角三角形,∴∠CDE =∠CED =45°. ∵点A ,D ,E 在同一直线上, ∴∠ADC =135°,∴∠BEC =135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.24.定义:若a,b,c是△ABC的三边,且a2+b2=2c2,则称△ABC为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是.A.①一定是“方倍三角形”B.②一定是“方倍三角形”C.①②都一定是“方倍三角形”D.①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边AB=√3,则该三角形的面积为;(3)如图,△ABC中,∠ABC=120°,∠ACB=45°,P为AC边上一点,将△ABP沿直线BP进行折叠,点A落在点D处,连接CD,AD.若△ABD为“方倍三角形”,且AP=√2,求△PDC的面积.【答案】(1)A(2)√22(3)解:由题意可知:△ABP≌△DBP,∴BA=BD,∠ABP=∠DBP,根据“方倍三角形”定义可知:BA2+BD2=2AD2=2BA2,∴AD=AB=BD,∴△ABD为等边三角形,∠BAD=60°,∴∠ABP=∠DBP=30°,∴∠PBC=90°,∵∠CPB=45°,∴∠APB=180°﹣45°=135°,∴∠DPC=90°,∵∠ABC=120°,∠ACB=45°,∴∠BAC=15°,∴∠CAD=45°,∴△APD为等腰直角三角形,∴AP=DP=√2,∴AD=2,延长BP交AD于点E,如图,∵∠ABP=∠PBD,∴BE⊥AD,PE=12AD=AE=1,∴BE=√AB2−AE2=√4−1=√3,∴PB=BE﹣PE=√3﹣1,∵∠CPB=∠PCB=45°,∴△PBC为等腰直角三角形,∴PC=√2PB=√6﹣√2,∴S△PDC=12×PC•PD=12×(√6﹣√2)×√2=√3﹣1.【解析】(1)对于①等边三角形,三边相等,设边长为a,则a2+a2=2a2,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:a2+b2=c2,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故答案为:A;(2)设Rt△ABC其余两条边为a,b,则满足a2+b2=3,根据“方倍三角形”定义,还满足:a2+3=2b2,联立解得{a=1b=√2,则Rt△ABC的面积为:√22;故答案为:√22;。

第二章 特殊三角形 单元培优测试卷 (含答案)2024-2025学年 八年级上册数学

第二章 特殊三角形 单元培优测试卷 (含答案)2024-2025学年 八年级上册数学

特殊三角形单元培优卷一、选择题(每题3分,共30分)1.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9 B.7C.12 D.9或122.如图,等边△ABC的边长为4,点E是边AB的中点,且BE=CF,则CD的长为( )第2题图第4题图第5题图A.4B.3C.2D.1 3.在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以,1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是( ).A.3个B.4个C.5个D.6个4.如图,△ABC的面积为6,AB=5,AD平分∠BAC.若E,F分别是AC,AD上的动点,则FE+FC的最小值( )A.245B.125C.52D.35.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为( )A.7B.8C.10D.12 6.如图:点C在AB上,△DAC、△EBC均是等边三角形,AE、BD分别与CD、CE交于点M,N,则下列结论①AE=DB,②CM=CN,③△CMN为等边三角形,④MN//BC.正确的有个.( )第6题图第7题图第8题图A.1个B.2个C.3个D.4个7.如图,Rt△ABC中,∠C=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.若已知AC×BC=12,则S1+S2+S3+S4的值为( )A.18B.24C.25D.36 8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③9.如图,已知∠AOB=120°,点D是∠AOB的平分线上的一上定点,点E,F分别在射线OA和射线OB上,且∠EDF=60°.下列结论:①△DEF是等边三角形;②四边形DEOF的面积是一个定值;①当DE⊥OA时,△DEF的周长最小;④当DE∥OB时,DF也平行于OA. 其中正确的个数是( )第9题图第10题图A.1个B.2个C.3个D.4个10.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤SΔPBA:SΔPCA=AB:AC,正确的有( )A.5个B.4个C.3个D.2个二、填空题(每题4分,共24分)11.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为 .第11题图第13题图第14题图12.等腰三角形一腰上的高与另一腰的夹角为52°,则该三角形的底角的度数为 .13.如图,在△ACD中,∠ACD=90°,∠A=30°,AC=b,CD=a,以C为圆心,CD为半径画弧,交斜边AD于点B,AB=c,则下列说法正确的是 .(填序号)①△BCD是等边三角形,②a+c<b,③a=c,④b=2a14.如图,在四边形ABCD中,∠B=∠D=90°,∠C=55°,M,N分别是边BC,CD上的动点,当△AMN的周长最小时,∠MAN= °.15.如图,在△ABC中,AH是高,AE//BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC= .第15题图第16题图16.如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=1,CD⊥AB于点D.F,G分别是线段AD,BD上的点,H,Ⅰ分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处.当FG=EG时,AF的长是 .三、综合题(17-19每题6分,20-21题每题8分,22题12分,共46分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5,求:(1)△ABC的周长;(2)△ABC是否是直角三角形?为什么?18.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数.19.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.20.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=8,BC=6,E,F分别是直线AC,AB上的动点,连结EF.(1)求CD的长.(2)若点E在边AC上,且3AE=2CE,EF⊥AC,求证:CF平分∠ACD.(3)是否存在点E,F,使得以C,E,F为顶点的三角形与△CDF全等?若不存在,请说明理由;若存在,求出所有符合条件的DF的长.21.在△ABC中,∠B=40°,∠ACB=110°,D为边BC延长线上一点,连接AD.(1)如图1,当∠D=∠B时,求证:AB=CD;(2)如图2,当∠D=2∠B时,求证:AB=AD+CD;、(3)如图3,当AB=CD时,求证:∠D=∠B.22.概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)理解概念如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”(2)概念应用如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.答案解析部分1-5.【答案】CDCBC6-10.【答案】DAACB11.【答案】6412.【答案】71°或19°13.【答案】①③14.【答案】7015.【答案】5216.【答案】2517.【答案】(1)解:∵AD⊥BC,AD=12,BD=16∴AB= AD2+BD2=122+162=20同理:AC= AD2+CD2=122+52=13∴△ABC的周长为AC+BC+AB=AC+BD+DC+AB=13+16+5+20=54;(2)解:∵BC2=(BD+DC)2=212=441,AB2=202=400,AC2=132=169 ∴BC2≠AB2+ AC2∴△ABC不是直角三角形.18.【答案】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中{AE=CFAB=BC,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB−∠CAE=45°−30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.19.【答案】(1)证明:∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE 和△ACD 中{∠ABD =∠ACD AB =AC ∠BAE =∠CAD,∴△ABE ≌△ACD (ASA ),∴AE =AD ;(2)解:∵∠ACB =65°,AB =AC ,∴∠ABC =∠ACB =65°,∴∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣65°=50°,∵∠ABD =∠ACD ,∠AOB =∠COD ,∴∠BDC =∠BAC =50°.20.【答案】(1)解:∵∠ACB=90°,AC=8,BC=6,∴AB =62+82=10.∵CD ⊥AB 于点D ,∴S △ABC =12AC·BC =12AB·CD ,∴ 10CD=6×8,即CD =245.(2)解:如图1,∵3AE=2CE ,AC=8,CD =245,∴CE =35×8=245,即CE=CD.∵CD ⊥AB ,EF ⊥AC ,∴∠CDF=∠CEF=90°.∵CF=CF ,∴△CEF ≌△CDF(HL),∴∠ECF=∠DCF ,∴CF平分∠ACD.(3)解:存在点E,F,使得以C,E,F为顶点的三角形与△CDF全等.由题意,以C,E,F为顶点的三角形与△CDF全等,CF是公共边,有四种情形:①如图2,若点E,F在线段AC,AD上.当CE=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≌△CDF,∴CE=CD=245,AE=8−245=165.∵EF=FD,EF2+AE2=AF2,∴FD2+(165)2=(325−FD)2,∴FD=125.②如图3,若点E,F在射线AC,AB上.同①可得△CEF≌△CDF,∴CE=CD=245,AE=8+245=645.∵EF=FD,EF2+AE2=AF2,∴FD2+(645)2=(FD+325)2,∴FD=485.③如图4,若点E在线段AC上,点F在线段BD上.当EF=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≅△FDC,∴EF=CD=245,CE=FD.∵E F2+A E2=A F2,∴(245)2+(8−FD)2=(325+FD)2,∴FD=85.④如图5,若点E在射线CA上,点F在射线BA上.当EF=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≅△FDC,此时△ACD≅△AFE,∴FD=AF+AD=AC+AD=8+325=725.综上,所有符合条件的DF的长是85,125,485,725.21.【答案】(1)证明:∵∠ACB=110°,∴∠ACD=180°−∠ACB=70°,∵∠D=∠B=40°,∴AB=AD,∠CAD=180°−∠D−∠ACD=70°,∴∠ACD=∠CAD,∴CD=AD,∴AB=CD;(2)证明:如图所示,在AB上截取一点E使得AE=AD,连接CE,∵∠ACB=110°,∴∠ACD=180°−∠ACB=70°,∵∠D=2∠B=80°,∴∠CAD=180°−∠ACD−∠ADC=30°,∵∠BAC=180°−∠B−∠ACB=30°,∴∠CAE=∠CAD,又∵AE=AD,AC=AC,∴△CAE≌△CAD(SAS),∴CD=CE,∠AEC=∠D,∵∠AEC=∠D=2∠B=∠B+∠BCE,∴∠B=∠BCE,∴BE=CE,∴BE=CD,∵AB=AE+BE∴AB=AD+CD;(3)证明:如图所示,在射线CD上取一点H,使得AB=AH,连接AH,∴∠B=∠AHB由(1)同理可证明AB=CH,又∵AB=CD,∴CH=CD,∴点H和点D重合,∴∠B=∠ADB.22.【答案】(1)解:△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)证明:∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°−∠A−∠B=80°∵CD为角平分线,∠ACB=40°,∴∠ACD=∠DCB=12∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°−∠DCB−∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)解:∠ACB的度数为111°或84°或106°或92°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章、特殊三角形单元测试(难度:困难)参考答案与试题解析一.选择题(共10小题)1.下列图标中轴对称图形的个数是()A.4个B.3个C.2个D.1个【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:B.【点评】此题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°﹣αB.β=180°﹣αC.β=D.β=120°﹣α【分析】分点D在线段BC上,在BC延长线上,在CB延长线上讨论,根据外角和等于不相邻的两个内角和及三角形内角和定理可求β与α的等量关系式.【解答】解:当点D在线段BC上,∵∠ABC=α,CA=AB,∴∠C=∠ABC=α,∵CD=CA,∴∠ADC=∠CAD==90°﹣α,∵∠ADC=∠B+∠BAD,∴90°﹣α=α+β,即β=90°﹣α;当点D在线段BC的延长线上,同理可得:β=180°﹣α;当点D在线段CB的延长线上,同理可得:β=α﹣90°.故选:D.【点评】此题考查了等腰三角形的判定与性质以及三角形外角的性质.注意分类思想的应用是解此题的关键.3.若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中()A.至少有一个角是钝角或直角B.没有一个角是锐角C.没有一个角是钝角或直角D.每一个角都是钝角或直角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中没有一个角是钝角或直角.故选:C.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.三角形C.等腰梯形D.正五边形【分析】针对各图形的对称轴,对各选项分析判断后利用排除法求解.【解答】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、三角形对称轴只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一个等腰三角形与一个等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.【点评】本题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解题的关键.5.如图将长方形ABCD沿EF折叠,B、C分别落在点H、G的位置,延长EH交边CD于点M.下列说法不正确的是()A.∠1<∠2B.∠2=∠3C.∠MEB=2∠2D.∠2与∠4互补【分析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,根据矩形的性质可得AB ∥CD,∠B=90°,再根据折叠可得:∠B=∠GHE=90°,从而可得GH∥FN,进而可得∠1=∠MFN,即可判断A;根据角平分线和平行线的性质即可判断B和C;根据平角定义即可判断D.【解答】解:过点F作FN⊥EH,垂足为N,且点N在线段EH上,∴∠FNE=90°,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,由折叠得:∠B=∠GHE=90°,∴∠GHE=∠FNE=90°,∴GH∥FN,∴∠1=∠MFN,∵∠2=∠MFN+∠EFN,∴∠1<∠2,故A不符合题意;∵AB∥CD,∴∠2=∠FEB,由折叠得:∠FEB=∠3,∴∠2=∠3,故B不符合题意;∵∠FEB=∠3,∴∠MEB=2∠3,∵∠3=∠2,∴∠MEB=2∠2,故C不符合题意;∵ME≠EF,∴∠2≠∠EMF,∵∠4+∠EMF=180°,∴∠4与∠2不一定互补,故D符合题意;故选:D.【点评】本题考查了平行线的性质,余角和补角,等腰三角形的判定与性质,熟练掌握等腰三角形的判定与性质,以及平行线的性质是解题的关键.6.如图,在△ABC中,∠ACB=90°,∠B﹣∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【解答】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B﹣∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=180°﹣40°﹣x°=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°﹣40°﹣40°=100°,∴140﹣x=100+40+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140﹣x=40+40+x,解得x=30,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=,∴140﹣x=70+40+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【点评】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.7.在直角三角形ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,∠ABC的平分线BE交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.有以下结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】由三角形的内角和与角平分线的定义求∠AFB,由DG∥AB和BE平分∠ABC判断②,结合DG⊥DG求∠GBC与∠ABC的关系判断③,由三角形的内角和与平行线的性质判断④.【解答】解:∵AD平分∠BAC,BE平分∠ABC,∴∠BAF=∠CAF=∠BAC,∠FBA=∠CBE=∠ABC,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∴∠F AB+∠FBA=(∠BAC+∠ABC)=45°,∴∠AFB=180°﹣(∠F AB+∠FBA)=180°﹣45°=135°,故①正确,符合题意;∵DG∥AB,∴∠BDG=∠ABC,∵∠CBE=∠ABC,∴∠BDG=2∠CBE,故②正确,符合题意;∵BG⊥DG,∴∠G=90°,∴∠GDB+∠GBD=90°,又∵∠GDB=∠ABC,∴∠ABC+∠GBD=90°,无法判定∠GBD=∠ABC,故③错误,不符合题意;又∵∠BAC+∠ABC=90°,∴∠BAC=∠GBD,∵∠ABF=∠EBC,∴∠ABF+∠BAC=∠EBC+∠GBD,∴∠BEC=∠EBG,故④正确,符合题意;故选:C.【点评】本题考查了三角形的内角和与外角和、平行线的性质、垂直的定义和角平分线的定义,整体思想的应用是判断①的关键,解题的时候要多次应用等量代换.8.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】先证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,再由勾股定理得出BC2=(4+2)x2,即可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,在△BPG和△BCG中,,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2=x2(+1)2+x2=(4+2)x2,∴===2+.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.9.如图,△ABC中,AC=DC=3,∠BAC的角平分线AD⊥BD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【解答】解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=S△ABH,S△CDH=S△ABH,∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为×3×3=.故选:C.【点评】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.10.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH 交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二.填空题(共6小题)11.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为16.【分析】由勾股定理得AB2+AC2=BC2,=(2)2=8,则AB2+AC2+BC2=2BC2,即可得出结论【解答】解:∵Rt△ABC中,斜边BC=2,∴AB2+AC2=BC2=(2)2=8,∴AB2+AC2+BC2=2BC2=2×8=16.故答案为:16.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.12.如图,已知,∠MON=∠BAC=90°,且点A在OM上运动,点B在ON上运动,若AB=8,AC=6,则OC的最大值为4+2.【分析】取AB的中点E,连接OE,CE,利用勾股定理求出CE,再利用直角三角形斜边上中线的性质得OE的长,最后利用三角形三边关系可得答案.【解答】解:取AB的中点E,连接OE,CE,∴AE=4,在Rt△ACE中,由勾股定理得,CE===2,∵∠AOB=90°,点E为AB的中点,∴OE=AB=4,∵OC≤OE+CE,∴当点O、E、C共线时,OC最大值为4+2,故答案为:4+2.【点评】本题主要考查了勾股定理,直角三角形斜边上中线的性质等知识,熟练掌握三角形三边关系求单线段的最值是解题的关键.13.如图,已知四边形ABCD中,AB=AD=,CB=CD=,∠DAB=90°,若线段DE平分四边形ABCD的面积,则DE=.【分析】连接BD交AC于点O,证明AC垂直平分BD,利用勾股定理可求解BD=2,OC=2,再利用面积法可求解DE的长.【解答】解:连接BD交AC于点O,过D点作DM⊥BC于点M,∵AB=AD=,CB=CD=,∴A,C在BD的垂直平分线上,即AC垂直平分BD,∵∠DAB=90°,∴BD=,S△ABD=AB•AD=,∴AO=DO=BO=1,∴CO=,∴S△BCD==,∴四边形ABCD的面积=1+2=3,∵S△BCD=BC•DM=2,∴DM==,∴BM=,∵线段DE平分四边形ABCD的面积,∴S△CDE=,S△BDE=,∴BE:CE=1:3,∴BE=,∴EM=BM﹣BE=,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线,勾股定理,三角形的面积,证明AC垂直平分BD是解题的关键.14.如图,△ABC中,∠A=45°,AB=3,AC=2,若点D、E、F分别是三边AB、BC、CA上的动点,则△DEF周长的最小值为.【分析】如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN 交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,推出△DEF的周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等腰直角三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE的最小值即可解决问题.【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,∴△DEF的周长DE+EF+FD=DM+DF+FN,∴当点E固定时,此时△DEF的周长最小,∵∠BAC=45°,∠BAE=∠BAM,∠CAE=∠CAN,∴∠MAN=90°,∴△MNA是等腰直角三角形,∴MN=AE,∴当AE的值最小时,MN的值最小,∵AC=2,∴AK=KC=2,∵AB=3,∴BK=AB﹣AK=1,在Rt△BKC中,∠BKC=90°,BK=1,CK=2,∴BC==,∵•BC•AH=•AB•CK,∴AH=,根据垂线段最短可知:当AE与AH重合时,AE的值最小,最小值为,∴MN的最小值为,∴△DEF的周长的最小值为.【点评】本题考查了轴对称问题,解题的关键是学会利用轴对称解决最短问题.15.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是88°,90°,99°,108°,116°.【分析】当它为顶角时,根据等腰三角形的性质,可以求得最大角是90度,如图①所示;当它是侧角时,用同样的方法,可求得最大角有4种情况.【解答】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此题涉及等知识点并不多,但是要分4种情况解答,因此,属于难题.16.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是4.【分析】如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F 作FH⊥CA交CA的延长线于H.则DE=AD,则DC+DB+DA=DC+DE+EF≥CF,求出CF即可得出结论.【解答】解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.【点评】本题考查轴对称最短问题,解直角三角形等知识,解题的关键是学会利用旋转变换,把问题转化为两点之间线段最短,属于中考填空题中的压轴题.三.解答题(共7小题)17.图①、图②、图③均是9×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求作图,保留适当的作图痕迹.(1)在图①中,画△ABC关于AC的轴对称图形,得到四边形ABCD.(2)在图②中,画EF∥BC,点E在AC上,点F在AB上,且AE=2EC.(3)在图③中,画△ABC关于BC的轴对称图形,得到四边形ACMB.【分析】(1)依据要求,根据轴对称的性质作图即可.(2)利用平行线分线段成比例定理作图即可.(3)取格点P,Q,连接PQ,过点A作BC的垂线,与PQ交于点M,连接CM,BM 即可.【解答】解:(1)如图①,四边形ABCD即为所求.(2)如图②,EF即为所求.(3)如图③,四边形ACMB即为所求.【点评】本题考查作图﹣轴对称变换、平行线分线段成比例定理,熟练掌握相关知识点是解答本题的关键.18.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AC边上,且∠CBE=45°,BE分别交AC,AD于点B、F.(1)如图1,若AB=13,BC=10,求AF的长;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,在Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,在Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.19.求证:等腰三角形两底角的平分线相等.【分析】根据等腰三角形的两底角相等可得到∠ABC=∠ACB,再根据角平分线的性质可得到∠BCE=∠CBF,从而可利用ASA判定△BCE≌△CBF,由全等三角形的对应边相等即可证得结论.【解答】已知:△ABC中,AB=AC,BF,CE分别∠ABC,∠ACB的角平分线.求证:BF=CE,即等腰三角形的两底角的平分线相等证明:∵AB=AC,∴∠ABC=∠ACB,∵BF,CE分别是∠ABC,∠ACB的角平分线,∴∠BCE=∠CBF,∵∠ABC=∠ACB,BC=BC,∴△BCE≌△CBF,∴BF=CE,即等腰三角形两底角的平分线相等.【点评】此题主要考查等腰三角形的性质以及全等三角形的判定与性质的综合运用.20.如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB 的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO =33°,∠PNO=70°,求∠QPN的度数.【分析】先根据点P与点Q关于直线OA对称可知OM是线段PQ的垂直平分线,故PM =MQ,∠PMQ=2∠PMO,根据三角形内角和定理求出∠PQM的度数,同理可得出PN =RN,故可得出∠PNR=2∠PNO,再由平角的定义得出∠PNQ的度数,由三角形外角的性质即可得出结论.【解答】解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.21.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM,∴AC ﹣AB=AC﹣AM=CM.再利用∠4是△BCM的外角,再利用等腰三角形对边相等,CM=BM利用等量代换即可求证.【解答】证明:延长BE交AC于M∵BE⊥AE,∴∠AEB=∠AEM=90°在△ABE中,∵∠1+∠3+∠AEB=180°,∴∠3=90°﹣∠1同理,∠4=90°﹣∠2∵∠1=∠2,∴∠3=∠4,∴AB=AM∵BE⊥AE,∴BM=2BE,∴AC﹣AB=AC﹣AM=CM,∵∠4是△BCM的外角∴∠4=∠5+∠C∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5∴3∠C=∠4+∠5=2∠5+∠C∴∠5=∠C∴CM=BM∴AC﹣AB=BM=2BE【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,此题的关键是作好辅助线,延长BE交AC于M,利用三角形内角和定理,三角形外角的性质,考查的知识点较多,是一道难题.22.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE的度数(直接写出结果).【分析】(1)设∠B=x,∠ADE=y,根据已知等量求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD,便可得出结论;(2)分四种情形画出图形分别求解可得结论.【解答】解:(1)结论:∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(2)当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE=∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°,∴∠ADE+∠ADE′=∠AED+∠AE′D=90°,∴∠CDE=90°+12.5°=102.5°.如图3中,当点D在CB的延长线上时,同法可得∠CDE′=12.5°,∠CDE=77.5°综上所述:∠CDE的度数为12.5°或102.5°或77.5°.【点评】本题主要考查了三角形的内角和定理,三角形性质的外角定理,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD =3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若P A=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.【点评】本题考查了等腰三角形的性质、勾股定理,解决本题的关键是动点运动到不同位置形成不同的等腰三角形.。

相关文档
最新文档