高中数学选择填空专练(一)

合集下载

高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)

高中数学平面向量基础提高练习题含答案【选择填空精选50题难度分类】(最新)

高中数学 平面向量 选择填空题精选50道一、选择题(共36题)【基础题】1. 下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功;⑨电流强度;⑩摩擦系数,其中不是向量的有( )A. 4个B. 5个C. 6个D. 7个2. 下列六个命题中正确的是 ( )①两个向量相等,则它们的起点相同,终点相同; ②若丨a 丨=丨b 丨,则a =b ; ③若AB →=DC →,则ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB →=DC →;⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c. A. ①②③ B. ④⑤ C. ④⑤⑥ D. ⑤⑥3. 以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量4. 已知B 是线段AC 的中点,则下列各式正确的是( ) (A )AB →=-BC → (B )AC →=21BC →(C )BA →=BC → (D )BC →=21AC → 5. 下列四式不能化简为AD →的是()(A )(AB →+CD →)+BC → (B )(AD →+MB →)+(BC →+CM →)(C )MB →+AD →-BM →(D )OC →-OA →+CD →6、已知向量等于则MN ON OM 21),1,5(),2,3(--=-=( ) A .)1,8(B .)1,8(-C .)21,4(-D .)21,4(-7、已知向量),2,1(),1,3(-=-=则23--的坐标是()A .)1,7(B .)1,7(--C .)1,7(-D .)1,7(-8. 与向量a=(-5,4)平行的向量是( )A.(-5k,4k )B.(-k 5,-k4) C.(-10,2) D.(5k,4k)9. 已知),1,(),3,1(-=-=x 且∥b ,则x 等于( ) A .3B .3-C .31D .31-10.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A ) 22⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行11. 在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是()(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形【中等难度】12、下面给出的关系式中正确的个数是()① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 313. 已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( )(A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 2114.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a(B ))(21→→-a b(C ) →a +→b 21 (D ))(21→→+b a15. 设a ,b 为不共线向量, AB →=a +2b , BC →=-4 a -b ,CD →=-5 a -3 b ,则下列关系式中正确的是( )(A )AD →=BC → (B )AD →=2BC → (C )AD →=-BC → (D )AD →=-2BC →16. 设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是()(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数17. 在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足-2PA PM =,则()PA PB PC ⋅+等于( ) A.49 B.43 C.43- D. 49-18. 已知a 、b 均为单位向量,它们的夹角为60°,那么丨a +3b 丨=( )A .7B .10C .13D .419.已知| |=4, |b |=3, 与b 的夹角为60°,则| +b |等于()。

高中学考数学练习题

高中学考数学练习题

高中学考数学练习题一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 1,则f(1)的值为:A. 1B. -1C. 3D. -32. 已知向量a = (3, -1),向量b = (1, 2),则向量a与向量b的数量积为:A. 5B. -1C. 1D. -53. 下列函数中,为奇函数的是:A. y = x^2 + 1B. y = x^3 - xC. y = x^2 - 2xD. y = x - 1/x4. 函数y = sin(x)在区间[0, π/2]上是:A. 增函数B. 减函数C. 常数函数D. 先减后增函数5. 已知等差数列{an}的首项a1 = 2,公差d = 3,则a5的值为:A. 17B. 14C. 11D. 86. 已知双曲线x^2/a^2 - y^2/b^2 = 1的焦点在x轴上,且c = 5,b = 4,则a的值为:A. 3B. 4C. 5D. 67. 圆心在(2, 3),半径为5的圆的标准方程为:A. (x - 2)^2 + (y - 3)^2 = 25B. (x + 2)^2 + (y + 3)^2 = 25C. (x - 2)^2 + (y - 3)^2 = 9D. (x + 2)^2 + (y + 3)^2 = 98. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定9. 函数y = ln(x)的定义域为:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)10. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B的元素个数为:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)1. 若函数f(x) = ax^2 + bx + c,且f(1) = 3,f(-1) = 1,则f(0)的值为_________。

全国高中数学联赛选择填空训练题(3)

全国高中数学联赛选择填空训练题(3)

全国高中数学联赛选择填空训练题(3)一、选择题:(每小题6分,共36分)1.与函数y=f(x-a)+b的图像关于直线y=x对称的图像所对应的函数是( )A.y=f-1(x-a)+bB. y=f-1(x+a)-bC. y=f-1(x-b)+aD. y=f-1(x-b)-a2.半径为1的圆的内接十边形的最短边的最大值是( )A.12(5-1) B.123 C.14(5+1) D.13.小于50000且含有奇数个数字"5"的五位数共有( )A.2952个B.11808个C.16160个D.26568个4.三角形的三条边长均为正整数,其中有一条边长为4,但它不是最短的边,这样不同的三角形共有( )A.6个B.7个C.8个D.9个5.已知a∈(0,1)的常数,|x|+|y|≤1,函数f(x,y)=ax+y的最大值为( )A.aB.1C.a+1D.12(a+1)6.对于每一对实数x,y,函数f满足f(x)+f(y)=f(x+y)-xy-1,若f(1)=1,那么使f(n)=n(n ≠1)的整数n共有( )A.0个 B.1 个 C.2个 D.3个二、填空题:(每小题9分,共54分)7.对于已知的x,y,把2-x,2x-y,2y-1的最小值记作F(x,y),当0<x,y<1时,F(x,y)的最大值等于___________.8.用E(n)表示可使5k是乘积112233…n n的约数为最大的整数k,则E(150)= ___________9.设函数f(x)=E(x)-2E(x2),其中E(x)表示实数x的整数部分,则f(x)为周期函数,其最小正周期T为___________10.函数f(x)在R上有定义,且满足(1)f(x)是偶函数,且f(0)=2005,(2)g(x)=f(x-1)是奇函数,则f(2005)的值为_______.11.在平面上有一定点P,考虑所有可能的正三角形ABC,其中AP=3,BP=2,则CP的最大长度为__________.12.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为_________.答案:1.C.2.A.3.B.4.C.5.B.6.B.7.2-1/3.8.2975.9.2.10.0.11.5.12.1949.。

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

高中数学《等差数列》专项练习题

高中数学《等差数列》专项练习题

等差数列练习题一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、-101C、101D、-892、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为A、4B、5C、6D、不存在4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于()A、720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么a:b等于()A、14B、13C、13或1 D、126、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3B、C n= 8n - 1C、C n= 4n - 5D、C n= 8n - 97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有()A、6项B、8项C、10项D、12项8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为()A、0B、100C、10000D、505000二、填空题9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。

10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。

11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是______ 。

12、已知等差数列110,116,122,……,则大于450而不大于602的各项之和为______ 。

2020年最新高考数学--以圆或隐圆为背景的选择填空题(解析版)

2020年最新高考数学--以圆或隐圆为背景的选择填空题(解析版)

专题一 压轴选择填空题第4关 以圆或隐圆为背景的选择填空题【名师综述】直线与圆是高中数学的C 级知识点,是高中数学中数形结合思想的典型体现.近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.【典例解剖】类型一 以动点轨迹为圆考查直线与圆、圆与圆位置关系典例1.(2020上海控江中学高三月考)设三角形ABC 是位于平面直角坐标系xOy 的第一象限中的一个不等边三角形,该平面上的动点P 满足:222222||||||||||||PA PB PC OA OB OC ++=++,已知动点P 的轨迹是一个圆,则该圆的圆心位于三角形ABC 的( ) A .内心 B .外心C .重心D .垂心【答案】C 【解析】【分析】可设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++列出关系式,由P 的轨迹为圆,求出圆心坐标即可【详解】设(,)P x y ,()11,A x y ()22,B x y ,()33,C x y ,由222222||||||||||||PA PB PC OA OB OC ++=++得:222222222222112233112233()()()()()()x x y y x x y y x x y y x y x y x y -+-+-+-+-+-=+++++ 展开整理,得22123123332()2()0x y x x x x y y y y +-++-++=.∴2222123123123123111[()][()][()()]339x x x x y y y y x x x y y y -+++-++=+++++. ∴圆的圆心坐标为1231(()3x x x ++,1231())3y y y ++,为三角形ABC 的重心,故选C .【名师点睛】本题考查直线与圆的综合应用,圆的轨迹方程的求法,重心坐标公式的应用,计算量偏大,化简时需进行整体代换,简化运算难度,属于中档题. 【举一反三】(2020上海洋泾中学高三月考)已知定圆C :()2245x y -+=,其圆心为()4,0C ,点A 为圆C 所在平面内一定点,点P 为圆C 上一个动点,若线段PA 的中垂线与直线PC 交于点Q ,则动点Q 的轨迹可能为______.(写出所有正确的序号)(1)椭圆;(2)双曲线;(3)抛物线;(4)圆;(5)直线;(6)一个点. 【答案】(1)(2)(4)(6) 【解析】(1)若点A 在圆C 外部,=QA QC PC AC ->Q 点的轨迹是以,A C 为焦点的双曲线;(2)若点A 在圆上,则C Q ,点重合,如图,点Q 点的轨迹为点C ;(3)若点A 在圆内部且不为圆心,则QA QC PC +==AC <Q 点的轨迹是以,A C 为焦点的椭圆;(4)若点A 在圆内部且为圆心,,A C 重合时,Q 为半径PA 的中点,所以点Q 是以C 为半径的圆.综上所述,Q 点的轨迹可能是(1)(2)(4)(6)四种情况 答案为:(1)(2)(4)(6)类型二 以圆中直角三角形建立函数关系式或方程或不等式典例2.(2020上海师大附中期中)已知点A ,B ,C 在圆221x y +=上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r 的最大值为( )A .6B .7C .8D .9【答案】B 【解析】由题意,AC 为直径,所以24437PA PB PC PO PB PB ++=+≤+≤+=u u u r u u u r u u u r u u u r u u u r u u u r,当且仅当点B 为(-1,0)时,PA PB PC ++u u u r u u u r u u u r取得最大值7,故选B .考点:直线与圆的位置关系、平面向量的运算性质 【名师点睛】与圆有关的最值问题是命题的热点内容,它着重考查数形结合与转化思想.由平面几何知识知,圆上的一点与圆外一定点距离最值在定点和圆心连线与圆的两个交点处取到.圆周角为直角的弦为圆的半径,平面向量加法几何意义这些小结论是转化问题的关键. 【举一反三】1.(2020上海七宝中学高三月考)已知a b v v 、是平面内两个互相垂直的单位向量,且此平面内另一向量c v 在满足()()340a c b c +-=v v v v,均能使c b k -≤v v 成立,则k 的最小值是_________.【答案】52【解析】【分析】根据题意,()()()1,0,0,1,,a b c x y v v v===,利用()()340a c b c +⋅-=r r r r ,求得,x y 的关系,利用圆的几何性质,再求出c b -vv 的最大值,从而求出k 的最小值.【详解】因为a b v v 、是平面内两个互相垂直的单位向量,所以可设 ()()()1,0,0,1,,a b c x y v v v ===, ()33,a c x y ∴+=+r r ,()4,4b c x y -=--r r,又()()340a c b c +⋅-=r r r r ,()()340x x y y ∴-++-=,即()22325224x y ⎛⎫++-= ⎪⎝⎭, 它表示的圆心在3,22M ⎛⎫- ⎪⎝⎭,半径为52的圆,c b -v v 表示圆上的点到(0,1)B 的距离,圆心M 到点(0,1)B 的距离为d =c b ∴-r r 的最大值为52=,要使c b k -≤r r 恒成立,52k ≥,即k 的最小值是52,故答案为52.【名师点睛】本题主要考查向量模的几何意义、轨迹方程的应用以及圆的几何意义,考查了转化思想的应用,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将不等式恒成立问题转化为圆上动点到定点距离的最值问题是解题的关键. 类型三 利用数形结合揭示与刻画直线与圆、圆与圆位置关系典例3.(2020上海青浦中学月考)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( ) A .1 B .2 C .3 D .4【答案】C 【解析】【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +. 【详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C . 【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化. 【举一反三】(2020上海徐汇区一模)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4), 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51,解得﹣25<k <﹣9或k >11. ∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞),故选D .【精选名校模拟】1.(2020上海七宝中学月考)已知实数x 、y 满足:22(2)1x y +-=,ω=的取值范围是( )A .B .[1,2]C .(0,2]D .2【答案】B 【解析】【分析】构造直线0x +=,过圆上一点P 作直线的垂线PM 2sin POM =∠,求出sin POM ∠的范围即可得出.【详解】设(,)P x y 为圆22(2)1x y +-=上的任意一点,则P 到直线0x +=的距离PM =P 到原点的距离OP =22sin PMPOM OP==∠. 设圆22(2)1x y +-=与直线y kx =1=,解得k =,POM ∴∠的最小值为30︒,最大值为90︒,1sin 12POM ∴∠剟,12sin 2POM ∴∠剟,故选B .【名师点睛】本题主要考查直线与圆的位置关系,距离公式的应用,解题关键是数形结合思想的应用,能阅读出ω=2.(2020上海南模中学高三月考)设1x 、2x 是关于x 的方程220x mx m m ++-=的两个不相等的实数根,那么过两点211(,)A x x ,222(,)B x x 的直线与圆()2211x y -+=的位置关系是( )A .相离.B .相切.C .相交.D .随m 的变化而变化.【答案】D 【解析】22212121,ABx x k x x x x -==+∴-Q 直线AB 的方程为21121()()y x x x x x -=+-. 即1212()y x x x x x =+-,所以直线AB的方程为22,y mx m m d =-+-===因为2240,4()0,03m m m m ∆>∴-->∴<<, 所以221999225,(),(,),()()161616256t g t t t t g t g m =>∴=+∈+∞>=令,所以1615d =<=,所以直线AB 与圆可能相交,也可能相切,也可能相离. 3.(2020上海一模冲刺练)若对于任意角θ,都有cos (2)sin 1x y θθ+-=,则直线:cos (2)sin 1l x y θθ+-=围成的正多边形的最小面积是( )A.B .4C.D .不确定【答案】D 【解析】【分析】先根据点()02P ,到直线cos (2)sin 1x y θθ+-=的距离为1,确定直线为以()02,为圆心,1为半径的圆的切线,再取特殊直线运算否定ABC 即得选项. 【详解】由对于任意角θ,都有cos (2)sin 1x y θθ+-=,则点()02P ,到直线cos (2)sin 1x y θθ+-=1=,即此直线为以()02,为圆心,1为半径的圆的切线, 当三条切线如图所示时,则正三角形ABC 的面积11233S =⨯⨯=, 即存在直线:cos (2)sin 1l x y θθ+-=,即选项A ,B ,C 错误,故选D .4.(2020上海交大附中月考)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C 【解析】【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1),(-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都.结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误,故选C .5.(2020上海浦东复旦附中高三月考)在平面直角坐标系中,A ,B 分别是 x 轴和 y 轴上的动点,若以 AB 为直径的圆 C 与直线 240x y +-= 相切,则圆 C 面积的最小值为___ . 【答案】45π【解析】由题意,圆心C 到原点的距离与到直线的距离相等,所以面积最小时,圆心在原点到直线的垂线中点上,则d =r =,45S π=. 6.(2020上海二中高三期中考试)若定义域均为D 的三个函数f (x ),g (x ),h (x )满足条件:对任意x ∈D ,点(x ,g (x )与点(x ,h (x )都关于点(x ,f (x )对称,则称h (x )是g (x )关于f (x )的“对称函数”.已知g (x )f (x )=2x+b ,h (x )是g (x )关于f (x )的“对称函数”,且h (x )≥g (x )恒成立,则实数b 的取值范围是_____.【答案】)+∞ 【解析】【分析】根据对称函数的定义,结合h (x )≥g (x )恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可【详解】∵x ∈D ,点(x ,g (x )) 与点(x ,h (x ))都关于点(x ,f (x ))对称,∴g (x )+h (x )=2f (x ), ∵h (x )≥g (x )恒成立,∴2f (x )=g (x )+h (x )≥g (x )+g (x )=2g (x ),即f (x )≥g (x )恒成立, 作出g (x )和f (x )的图象,则g (x )在直线f (x )的下方或重合, 则直线f (x )的截距b >0,且原点到直线y=2x+b 的距离d≥1,1=≥⇒b ≤,即实数b 的取值范围是+∞),故答案为:)+∞.7.(2020上海育才中学高三月考)已知平面直角坐标系中两点12(,)A a a 、12(,)B b b ,O 为原点,有122112AOB S a b a b ∆=-.设11(,)M x y 、22(,)N x y 、33(,)P x y 是平面曲线2224x y x y +=-上任意三点,则12212332T x y x y x y x y =-+-的最大值为________【答案】20. 【解析】【分析】将圆的方程化为标准方程,得出圆心坐标和半径长,由题意得12212332T x y x y x y x y =-+-12212332222OMN OPN OMNP x y x y x y x y S S S ∆∆≤-+-=+=四边形,转化为圆内接四边形中正方形的面积最大,即可得出T 的最大值.【详解】将圆的方程化为标准方程得()()22125x y -++=,圆心坐标为()1,2-122123321221233222OMN OPN T x y x y x y x y x y x y x y x y S S ∆∆∴=-+-≤-+-=+2OMNP S =四边形,由于圆内接四边形中,正方形的面积最大,所以当四边形OMNP 为正方形时,T =所以2220T ≤⨯=,故答案为:20.8.(2020上海浦东新区高三期末)若函数2y ax a =+存在零点,则实数a 的取值范围是________.【答案】 【解析】【分析】将函数2y ax a =+()()2,()f x a x g x =+=像,观察图像得出实数a 的取值范围.【详解】设()()2,()f x a x g x =+=2y ax a =+存在零点等价于()()2,()f x a x g x =+=函数()()2f x a x =+的图像恒过点(2,0)-,当其和函数()g x =a ==,所以()()2,()f x a x g x =+=03a ≤≤,故答案为:.9.(2020永安三中高三期中考试)若曲线y =y x b =+始终有交点,则b 的取值范围是_______.【答案】[-【解析】由题设可知x b +=b x =有解,令借cos ,[0,]x θθπ=∈,则sin θ=,所以sin cos )4b πθθθ=-=-,由于0θπ≤≤,故3444πππθ-≤-≤,结合正弦函数的图像可知sin()124πθ-≤-≤,则)[4b πθ=-∈-,应填答案[-. 【名师点睛】解答本题的思路是依据题设条件将其转化为方程x b +=进而分离参数b x ,然后通过三角换元将其转化为求函数sin cos )4b πθθθ=-=-的值域问题,最后借助正弦函数的图像求出其值域使得问题获解.10.(2020上海四中高三期中考试)若点()1,1P 为圆2260x y x +-=的弦MN 的中点,则弦MN 所在直线方程为________. 【答案】210x y --=【解析】因为(1,1)P 为圆2260x y x +-=的弦MN 的中点,所以圆心坐标为()3,0,31201MN k -=-=-,MN 所在直线方程为()121y x -=-,化简为210x y --=,故答案为210x y --=. 11.(2020上海华师大二附中高三月考)设1234,,,a a a a R ∈,且14231a a a a -=,则代数式222212341324a a a a a a a a +++++的最小值为______.【解析】【分析】由222212341324a a a a a a a a +++++结构特征,构造向量12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r 的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r ,转化为求2||||a b a b +⋅r r r r的最小值,由14231a a a a -=,可得1||||,sin a b θ=r r cos sin a b θθ⋅=r r ,转化求2cos cos 2sin sin sin θθθθθ++=的最小值,即为(sin ,cos )M θθ与点(0,2)P -连线的斜率最小值,即可得结果.【详解】设12(,)OA a a a ==u u u r r ,34(,)OB b a a ==u u u r r,设,a b r r的夹角为θ,14231,,a a a a a b -=r r 不共线,0θπ<<,222212341324a a a a a a a a +++++=22||||2||||a b a b a b a b ++⋅≥+⋅r r r r r r r r,sin θ===1||||||||a b a b ==r r , 1cos ||||,sin sin a b a b θθθ=⋅=r r r r ,2||||a b a b +⋅r r r r 2cos cos 2sin sin sin θθθθθ+=+= ① 设(sin ,cos )M θθ,(0θπ<<),(0,2)P -,①式表示点(0,2)P -与单位圆(y 轴右侧)的点M 连线斜率,当PM12.(2020上海建平中学高三期中)已知a v 、b v 、2c v是平面内三个单位向量,若a b ⊥v v ,则4232a c a b c +++-v v v v v的最小值是________【答案】【解析】【分析】设2(,)c e x y ==r r ,(1,0)a =r ,(0,1)b =r ,将问题转化为求|2||64|a e a b e +++-r r r r r的最小值,再证明|2||2|a e a e +=+r r r r ,从而将原问题转化为求|2||64|a e a b e +++-r r r r r的最小值. 【详解】令2c e =r r,设(1,0)a =r ,(0,1)b =r ,e r 对应的点C 在单位圆上,所以问题转化为求|2||64|a e a b e +++-r r r r r的最小值.因为2222(2)(2)330a e a e e a +-+=-=r r r r r r ,所以|2||2|a e a e +=+r r r r ,所以|64||2|a e a b e ++-=+r r r rr ,表示C 点到点(2,0)-和(6,4)的距离之和,过点(2,0)-和(6,4)的直线为220x y -+=,原点到直线220x y -+=1=<,所以与单位圆相交,所以|2||64|a e a b e +++-r r r r r的最小值为:点(2,0)-和(6,4)之间的距离,即13.(2020上海高三模拟考试)已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈,当方程有实数根时,则实数t 的取值范围________. 【答案】[4,0]- 【解析】【分析】根据方程有实数根,再结合复数相等,建立条件关系可得点的轨迹为以()1,1-为半径的圆,再结合直线t y x =-与圆的位置关系即可得解.【详解】因为关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y R ++++-=∈有实数根,得222()0t t xy t x y i +++++=,由复数相等的充要条件可得:2220t t xy t x y ⎧++=⎨+-=⎩,消t 得22(1)(1)2x y -++=,则所求点的轨迹为以()1,1-为半径的圆,直线t y x =-≤,解得40t -≤≤,故答案为[4,0]-.14.(2020上海南模中学高三期中)在平面直角坐标系中,记曲线C 为点(2cos 1,2sin 1)P θθ-+的轨迹,直线20x ty -+=与曲线C 交于A 、B 两点,则||AB 的最小值为________.【答案】【解析】 【分析】由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,得曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆,再根据勾股定理以及圆的性质可得弦长的最小值. 【详解】 由2121x cos y sin θθ=-⎧⎨=+⎩消去θ得(x +1)2+(y ﹣1)2=4,∴曲线C 的轨迹是以C (﹣1,1)为圆心,2为半径的圆, 又直线20x ty -+=恒过点D ()2,0-,且此点在圆内部 故当CD AB ⊥时|AB |最短,∴|AB |==故答案为:15.(2020上海青浦中学高三月考)已知AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭则四边形ABCD 的面积n S 的极限值为___________.【答案】32 【解析】 【分析】由题意可得四边形ABCD 的面积n S 的表达式:2n AC BDS ⨯=,由于点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心,且此时四边形面积取到极限值,此时几何图形形状可求得面积的极限 【详解】由题可知,AC 、BD 为圆()()22:1216O x y -+-=的两条相互垂直的弦,垂足为121,2M n n ⎛⎫+- ⎪⎝⎭,由2n AC BDS ⨯=,由点121,2M nn ⎛⎫+- ⎪⎝⎭的极限位置是圆心()1,2,此时AC 、BD 都是直径,故n S 的极限值为22r ,4r =,n S 的极限值为32,圆内接四边形恰好为正方形 故答案为:32.16.(2020上海建平中学高三月考)在ABC ∆中,2BC =,45A ∠=︒,B Ð为锐角,点O 是ABC ∆外接圆的圆心,则OA BC ⋅u u u v u u u v的取值范围是______.【答案】(2,- 【解析】【分析】建立适当的直角坐标系,写出各点的坐标,进一步利用向量的数量积,将问题转化成求三角函数的值域问题,从而得到OA BC ⋅u u u r u u u r的取值范围.【详解】如图所示:||2BC =,90BOC ∠=°,45CAB ∠=︒,由于B Ð为锐角,则点A 只能在左半圆上,设AOB θ∠=,则)A θθ3()22ππθ<<,B ,C ,所以OA θ=u u u r )θ,(BC =u u u r ,2cos 2sin )4OA BC πθθθ⋅=-+=-u u u r u u u r ,因为322ππθ<<,所以5444πππθ<-<,则sin()124πθ-<-≤,所以2)4πθ-<-≤故答案为:(2,-.17.(2020上海松江区一模)若实数,0a b >,满足abc a b c =++,221a b +=,则实数c 的最小值为________【答案】- 【解析】【分析】先由题意,根据基本不等式,得到12≤ab ,得出112-≤-ab ,再由221a b +=,得到()212+-=a b ab ,根据abc a b c =++得()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b ,根据题意得到(=+∈t a b ,由函数单调性,得到3=-y t t的最值,进而可求出结果. 【详解】因为,0a b >,221a b +=,所以2212a b ab +=≥,即12≤ab ,当且仅当a b =时,取等号;因此111122-≤-=-ab , 又221a b +=,所以22212++=+a b ab ab ,即()212+-=a b ab ,由abc a b c =++得1+=-a b c ab ,所以()()()()22233+==+-+-+a b c a b a b a b ,令=+t a b,因为+===a b ,当且仅当a b =时取等号.所以(=+∈t a b , 又易知函数3=-y tt在(t ∈上单调递增,因此32=-≤=-y tt,因此()()2233==≥=-+--+ca b ta b t即实数c的最小值为-,故答案为:-18.(2020江苏盐城中学月考)在平面直角坐标系xOy中,已知点()2,2A,E、F为圆()()22:114C x y-+-=上的两动点,且EF=,若圆C上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,则m的取值范围为________.【答案】1⎤-⎦【解析】取EF中点为M,连接AM,则2+=u u u r u u u r u u u u rAE AF AM,又圆()()22:114C x y-+-=上存在点P,使得,0AE AF mCP m+=>u u u r u u u r u u u r,所以2=u u u u r u u u rAM mCP,因此22==u u u u r u u u rAM m CP m,即=u u u u rm AM;因为E、F为圆()()22:114C x y-+-=上的两动点,且EF=1==CM,设(,)M x y1=,即()()22111x y-+-=即为动点M的轨迹;所以AMu u u u r表示圆()()22111x y-+-=上的点与定点()2,2A之间的距离,因此11-≤≤+u u u urAC AM AC,11≤≤u uu u rAM11≤≤m,故答案为:1⎤⎦.。

高中数学 专题4.1.1 流程图(一)练习(含解析)新人教A版选修12

高中数学 专题4.1.1 流程图(一)练习(含解析)新人教A版选修12

流程图(一)班级:姓名:_____________一、选择题1.根据下边框图,当输入x为6时,输出的y=( )A.1 B.2C.5 D.10[答案] D2.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )A.26 B.24C.20 D.19[答案] D[解析] 路线D→C→B的最大信息量是3;路线D→E→B的最大信息量为4;路线G→F→B的最大信息量为6;路线G→H→B的最大信息量为6.故从A到B的最大信息量为3+4+6+6=19.3.两个形状一样的杯子A和B中分别装有红葡萄酒和白葡萄酒.现在利用空杯子C将A和B两个杯子里所装的酒对调,下面画出的流程图正确的是( )[答案] A二、填空题4.某算法的程序框图如图所示,若输出12,则输入的实数x 的值为__________________.[答案] 2[解析] 由程序框图知:该算法是求分段函数y =⎩⎪⎨⎪⎧ x -1,x ≤1log 2x ,x >1的函数值,∴由y =12,得x = 2. 5.某工程的工序流程图如图所示(工时单位:天),现已知工程总工时数为10天,则工序c 所需工时为__________________天.[答案] 4[解析] 设工序c 所需工时为x 天,由题意知:工序:①→③→④→⑥→⑦→⑧所需工时为0+2+3+3+1=9天,工序:①→②→④→⑥→⑦→⑧所需工时为1+0+3+3+1=8天,∴工序:①→②→⑤→⑦→⑧所需工时应为10天.∴1+x +4+1=10.∴x =4.[点评] 在工序流程图中,如果工序分几条进行,则最短工时应为各条工时中最长的.三、解答题6.某地残次木材系列资源开发利用的具体过程是:建立木材加工厂,利用残次木材加工各种小件木制用具(如打气筒手柄),再把加工后的下脚料粉碎,用于培养袋栽食用菌.试画出此资源开发利用的工序流程图.7.某药厂生产某种产品的过程如下:(1)备料、前处理、提取、制粒、压片、包衣、颗粒分装包装;(2)提取环节经检验,合格,进入下一工序,否则返回前处理;(3)包衣、颗粒分装两环节分别检验合格进入下一工序,否则为废品,画出生产该产品的工序流程图.[解析] 工序流程图如图所示:。

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全高中数学集合练习题一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a 的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a 的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1 0 ,m∈R}, 若A∩B=φ, 且A∪B=A,求m的取值范围.高中数学数列练习题一、选择题:(本大题共10小题,每小题5分,共50分)1.设数列,,2,,……则2是这个数列的 ( )D.第九项 A.第六项 B.第七项 C.第八项2.若a≠b,数列a,x1,x 2 ,b和数列a,y1 ,y2 , y3,b都是等差数列,则A.2 3B.3 4x2x1 ( ) y2y1C.1D.4 33. 等差数列{an}中,若a3+a4+a5+a6+a7=450 ,则前9项和S9= ( )A.1620B.810C.900D.6754.在-1和8之间插入两个数a,b,使这四个数成等差数列,则 ( )A. a=2,b=5B. a=-2,b=5C. a=2,b=-5D. a=-2,b=-55.首项为24的等差数列,从第10项开始为正数,则公差d的取值范围是( )A.d 888B.d 3C.≤d 3D. d≤3 p= 3336.等差数列{an}共有2n项,其中奇数项的和为90,偶数项的和为72,且a2na133,则该数列的公差为 ( )A.3B.-3C.-2D.-17.在等差数列{an}中,a100,a110,且a11|a10|,则在Sn中最大的负数为( )A.S17B.S18C.S19D.S208.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( )A.a11B.a10C.a9D.a89.设函数f(x)满足f(n+1)=A.95 2f(n)n_(n∈N)且f(1)=2,则f(20)为 ( ) 2 C.105 D.192B.9710.已知无穷等差数列{a n},前n项和S n 中,S 6 S 8 ,则 ( )A.在数列{a n }中a7 最大;B.在数列{a n }中,a 3 或a 4 最大;C.前三项之和S 3 必与前11项之和S 11 相等;D.当n≥8时,a n 0.二、填空题:(本大题共4小题,每小题5分,共20分)11.集合Mmm6n,nN_,且m60中所有元素的和等于_________.a1a2a3an,则S13_____ 12、在等差数列{an}中,a3a7a108,a4a1114.记Sn 13、已知等差数列{an}中,a7a916,a41,则a16的值是.Sn5n1a=,f(n)n;Tn3n1bn14.等差数列{an}、{bn}、{cn}与{dn}的前n项和分别记为Sn、Tn、Pn、Qn.f(n)cn5n2P=,g(n)n.则的最小值= g(n)dn3n2Qn三、解答题:15.(12分)(1)在等差数列{an}中,d1,a78,求an和Sn; 3(2)等差数列{an}中,a4=14,前10项和S10185.求an;16.(13分)一个首项为正数的等差数列{an},如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大17.(13分)数列{an}中,a18,a42,且满足an22an1an0|a1||a2||an|,求Sn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四部分题型专练
客观题专练(一)
【选题明细表】
一、选择题
1.(2014肇庆一模)若全集U={1,2,3,4,5},集合
M={1,3,5},N={3,4,5},则∁U(M∩N)等于( C )
(A){2} (B){1,2} (C){1,2,4} (D){1,3,4,5}
解析:M∩N={3,5},所以∁U(M∩N)={1,2,4},故选C.
2.(2014大连二模)设复数z满足zi=-3+i(i为虚数单位),则z的虚部是( C )
(A)-3 (B)-3i (C)3 (D)3i
解析:zi=-3+i
∴z===1+3i,
故z的虚部为3,选C.
3.(2014商丘三模)命题p:∀x∈[0,+∞),2x≥1,则 p是( A )
(A)∃x 0∈[0,+∞),<1
(B)∀x∈[0,+∞),2x<1
(C)∃x 0∈[0,+∞),≥1
(D)∀x∈[0,+∞),2x≤1
解析:全称命题的否定为特称命题,故选A.
4.(2014江门模拟)已知a=(1,-2),|b|=2,且a∥b,则b等于( C )
(A)(2,-4) (B)(-2,4)
(C)(2,-4)或(-2,4) (D)(4,-8)
解析:设b=(x,y),则
解得或
故b=(2,-4)或(-2,4),选C.
5.(2014郑州一模)如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为( B )
(A)3(B)9(C)6(D)18
解析:由三视图知原图是一个底面为边长为3的正方形,高为的斜四棱柱,所以V=Sh=3×3×=9,故选B.
6.(2014哈师大附中模拟)若sin (x-)=,则cos (-2x)等于( C )
(A) (B)-(C)(D)-
解析:cos (-2x)=cos (2x-)=cos [2(x-)]=1-2sin2
(x-)=1-2×()2=,故选C.
7.(2014山西四校联考)设等差数列{a n}的前n项和为S n,a2、a5是方程2x2-3x-2=0的两个根,则S6等于( A )
(A)(B)5 (C)-(D)-5
解析:由韦达定理可知a2+a5=,由等差数列的性质知a2+a5=a1+a6,根据等差数列的求和公式S6==,故选A.
8.(2014吉林三模)某社区医院为了了解社区老年人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的月患病(感冒)人数与当月平均气温,其数据如下表:
由表中数据算出线性回归方程=x+中的=-2,气象部门预测下个月的平均气温约为6℃,据此估计该社区下个月老年人与儿童患病人数约为( C )
(A)38 (B)40 (C)46 (D)58
解析:=(17+13+8+2)=10,
=(24+33+40+55)=38,
把(,)代入线性回归直线方程=-2x+得
38=-2×10+,解得=58,
∴=-2x+58,∴当x=6时,=-2×6+58=46,故选C.
9.(2014长春第四次调研)双曲线-=1(a>0,b>0)的左、右焦点分别是F1、F2,过F1作倾斜角为30°的直线交双曲线右支于点M,若MF2垂直于x轴,则双曲线的离心离为( A )
(A) (B) (C) (D)
解析:在Rt△MF1F2中,|F1F2|=2c,则|MF2|=,|MF1|=,由双曲线定义可知|MF 1|-|MF2|=2a,即=2a,化简得=,故选A.
10.(2014河南六市第二次联考)已知函数f(x)=若数列{a n}满足a n=f(n)(n∈N+),且{a n}是递增数列,则实数a的取值范围是( C )
(A)[,3) (B)(,3)
(C)(2,3) (D)(1,3)
解析:由题意可得
解得2<a<3,故选C.
11.(2014哈尔滨三中二模)△ABC三内角A、B、C的对应边分别为a,b,c,满足+≥1,则角A的范围是( A )
(A)(0,] (B)(0,]
(C)[,π) (D)[,π)
解析:由+≥1得b(a+b)+c(a+c)≥(a+c)(a+b),化简得b2+c2-a2≥
bc,同除以2bc得,≥,即cos A≥(0<A<π),所以0<A≤,故选
A.
12.(2014长春第三次调研)已知函数f(x)=x2的图象在点A(x1,f(x1))与点B(x2,f(x2))处的切线互相垂直,并交于点P,则点P的坐标可能是( D )
(A)(-,3) (B)(0,-4)
(C)(2,3) (D)(1,-)
解析:由题意可知,A(x 1,),B(x2,),f'(x)=2x,则过A、B两点的切线斜率k1=2x1,k2=2x2,又切线互相垂直,所以k1k2=-1,即x1x2=-.
两条切线方程分别为l 1:y=2x1x-,l2:y=2x2x-,
联立得(x1-x2)[2x-(x1+x2)]=0,
∵x1≠x2,∴x=,
代入l1的方程,解得y=x1x2=-,故选D.
二、填空题
13.在数字1,2,3,4四个数中,任取两个不同的数,其和大于积的概率是.
解析:在数字1,2,3,4四个数中,任取两个不同的数,共有6种情
况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),其中,满足其和大于积的取法有(1,2),(1,3),(1,4)共三种,故其和大于积的概率为=.
答案:
14.(2013大纲全国卷)若x、y满足约束条件则z=-x+y的最小值为.
解析:作出不等式组表示的可行域,如图阴影部分所示,
由图可知当目标函数z=-x+y经过点C(1,1)时取得最小值,即
z min=-1+1=0.
答案:0
15.
(2014西安市长安区一模)算法框图如图所示,如果输入x=5,则输出结果为.
解析:法一由程序框图可得,
每次所得的x的值为13,37,109,325,
所以输出的x=325.
法二由程序框图可知,
a n满足a n=3a n-1-2(n≥2),a1=5,
由a n=3a n-1-2,得a n-1=3(a n-1-1),
所以a n-1=4×3n-1,a n=4×3n-1+1.因为x>200时停止循环输出x,所以输出的x=4×35-1+1=4×81+1=325.
答案:325
16.(2014河北师大附中模拟)已知三棱锥S ABC的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为.
解析:
如图所示,球心为O,过A、B、C三点的圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC,
∵CO1=×=,
∴OO1==,
∴高SD=2OO1=,
∵△ABC是边长为1的正三角形,∴S△ABC=,
∴=××=.
答案:。

相关文档
最新文档