实验数据的误差与结果处理
实验结果的偏差与误差分析

实验结果的偏差与误差分析实验是科学研究中常用的方法之一,通过实验可以验证理论假设并获取数据结果。
然而,在实验中我们常常会面对实验结果与理论值之间的偏差与误差。
本文将探讨实验结果的偏差与误差产生的原因,并分析如何进行误差分析以提高实验结果的准确性。
一、偏差与误差的定义在实验中,偏差和误差是常见的概念,但两者有着不同的含义。
偏差是指实验结果与理论值或标准值之间的差异,它可以是正向的或负向的。
而误差则是指实验结果相对于实际值的差异,它包括了系统误差和随机误差两个方面。
二、偏差的原因分析1.系统误差:系统误差是由于实验设置、仪器精度、操作方法等方面引入的固定偏差。
例如,在实验测量中如果仪器的刻度存在固定的偏移或者实验条件中存在系统性的误差,都会导致实验结果产生偏差。
2.随机误差:随机误差是由于实验环境、人为操作等因素引起的不确定的、无规律的误差。
例如,在重复实验中由于个体差异、观察判断的主观性等原因都会导致实验结果的随机误差。
三、误差分析方法1.确定系统误差:首先要通过仔细分析实验过程和条件,确定可能引入系统误差的原因。
然后,采取相应的修正措施,如校准仪器、优化实验设计等,以减小系统误差的影响。
2.重复实验:通过重复实验来减小随机误差的影响,获取更加准确的实验结果。
多次实验可以通过对数据进行统计处理,如计算平均值和标准偏差,以评估实验结果的准确性。
3.数据分析:对实验数据进行统计分析,可以进一步揭示偏差和误差。
利用统计方法,如相关性分析、回归分析等,可以探究实验结果与各个因素之间的关系,找出可能导致偏差和误差的原因。
四、实验结果的准确性提高为提高实验结果的准确性,除了要进行误差分析,还可以采取以下方法:1.提高实验技能:熟练掌握实验技术和操作方法,减少人为误差的发生。
2.增加样本量:增加实验样本数量可以提高数据的可靠性,降低随机误差的影响。
3.改进实验设计:精心设计实验方案,优化实验条件,减小系统误差和随机误差的发生。
误差与实验数据处理实验报告

误差与实验数据处理实验报告误差与实验数据处理实验报告引言:实验是科学研究的基础,而数据处理则是实验结果的关键环节。
在实验中,我们不可避免地会遇到误差,而正确处理误差对于实验结果的准确性和可靠性至关重要。
本实验旨在探讨误差的来源、分类以及如何进行实验数据处理,以提高实验结果的可信度。
一、误差的来源1.1 人为误差人为误差是由实验操作者的技术能力、主观判断和个人经验等因素引起的误差。
例如,在使用仪器时,操作者的手部不稳定、读数不准确等都可能导致人为误差的产生。
1.2 仪器误差仪器误差是由于仪器本身的设计、制造和使用不完美而产生的误差。
每个仪器都有其精度和灵敏度限制,而这些限制会对实验结果产生影响。
因此,在进行实验前,我们需要了解仪器的精度和灵敏度,并在数据处理时进行相应的修正。
1.3 环境误差环境误差是由实验环境中的温度、湿度、气压等因素引起的误差。
这些因素会对实验结果产生影响,因此,在实验过程中,我们需要控制环境条件,或者在数据处理时进行环境误差的修正。
二、误差的分类2.1 系统误差系统误差是由于实验装置、仪器或操作方法等造成的误差,其特点是在多次实验中具有一定的规律性。
系统误差可以通过校正仪器、改进操作方法等方式进行减小。
2.2 随机误差随机误差是由于实验过程中的偶然因素引起的误差,其特点是在多次实验中无规律可循。
随机误差可以通过增加实验次数、采用统计方法等方式进行减小。
三、实验数据处理方法3.1 平均值处理平均值处理是最常用的实验数据处理方法之一。
通过多次实验,取得的数据可以计算出平均值,从而减小随机误差的影响。
在计算平均值时,需要注意排除掉明显与其他数据不符的异常值,以保证结果的准确性。
3.2 不确定度分析不确定度是对实验结果的精度进行评估的指标。
在实验数据处理中,我们需要对每个数据的不确定度进行分析,以确定实验结果的可靠程度。
不确定度的计算可以采用传统的“合成法”或“最大偏差法”,具体选择哪种方法取决于实验的特点和要求。
实验中常见误差及处理方法

实验中常见误差及处理方法实验是科学研究的基础和重要手段,然而在实验过程中常常会出现一些误差,这些误差可能会影响到实验结果的准确性和可靠性。
因此,探究和解决实验中的误差是非常重要的。
本文将就实验中常见的误差及处理方法展开讨论。
一、系统误差及其处理方法系统误差是指实验观测值与真实值之间的差距,它会导致实验结果产生偏离。
系统误差通常由于仪器仪表的固有缺陷、实验条件的不恒定等因素造成。
为了减小系统误差,我们可以采取以下几个方法:1. 仪器校准:定期对仪器进行校准是减小系统误差的重要手段。
通过与标准物质进行对比,可以及时发现仪器的偏差并进行修正。
2. 精确控制实验条件:在进行实验过程中,保持实验条件的恒定性也可以减小系统误差。
例如,控制实验温度、湿度、压力等因素的变化,确保实验环境的稳定。
3. 重复实验:进行多组实验并取平均值可以有效减小系统误差。
通过重复实验,可以消除个别实验结果的偶然误差,提高结果的可靠性。
二、随机误差及其处理方法随机误差是指在相同的条件下,多次重复实验所得结果之间的差异,它是由于各种偶然因素引起的。
随机误差是不可避免的,但我们可以采用以下方法来减小其影响:1. 增加实验样本量:随机误差的大小与实验样本量有关,样本量越大,随机误差的影响越小。
因此,在进行实验时,应尽可能选择足够大的样本量。
2. 使用统计学方法:统计学有助于识别和分析随机误差。
通过运用均值、方差、标准差等统计指标,可以得出实验结果的信度范围,并用于判断结果的可靠性。
3. 建立模型:对一些复杂的实验系统,我们可以建立适当的数学模型来描述实验结果与影响因素之间的关系。
通过模型的拟合与分析,可以减小随机误差对结果的影响。
三、个人误差及其处理方法个人误差是指实验操作人员在实验过程中由于技术水平、经验等方面的差异造成的误差。
为了减小个人误差的影响,我们可以采取以下几个方法:1. 统一操作标准:制定统一的实验操作规程,明确实验操作的每个环节和细节,并对实验人员进行培训,提高其操作技能和纪律性。
实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理第一节实验数据误差分析一、概述由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差;为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论;实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案;实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高;二、实验误差的来源实验误差从总体上讲有实验装置包括标准器具、仪器仪表等、实验方法、实验环境、实验人员和被测量五个来源;1.实验装置误差测量装置是标准器具、仪器仪表和辅助设备的总体;实验装置误差是指由测量装置产生的测量误差;它来源于:1标准器具误差标准器具是指用以复现量值的计量器具;由于加工的限制,标准器复现的量值单位是有误差的;例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的;又如,标称值为1kg的砝码的实际质量真值并不等于1kg等等;2仪器仪表误差凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值;例如,温度计、电流表、压力表、干涉仪、天平,等等;由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差;例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等;但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差;3附件误差为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件;如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差;又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等;按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差;结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等;这些误差大部分是由于制造工艺不完善和长期使用磨损引起的;调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等;这些误差是由于仪器仪表在使用时,未调整到理想状态引起的;变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等;这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的;2.环境误差环境误差系指测量中由于各种环境因素造成的测量误差;被测量在不同的环境中测量,其结果是不同的;这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一;环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着;测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差;3.方法误差方法误差系指由于测量方法包括计算过程不完善而引起的误差;事实上,不存在不产生测量误差的尽善尽美的测量方法;由测量方法引起的测量误差主要有下列两种情况:第一种情况:由于测量人员的知识不足或研究不充分以致操作不合理,或对测量方法、测量程序进行错误的简化等引起的方法误差;第二种情况:分析处理数据时引起的方法误差;例如,轴的周长可以通过测量轴的直径d,然后由公式:L=πd计算得到;但是,在计算中只能取其近似值,因此,计算所得的L也只能是近似值,从而引起周长L的误差;4.人员误差人员误差系指测量人员由于生理机能的限制,固有习惯性偏差以及疏忽等原因造成的测量误差;由于测量人员在长时间的测量中,因疲劳或疏忽大意发生看错、读错、听错、记错等错误造成测量误差,这类误差往往相当大是测量所不容许的;为此,要求测量人员养成严格而谨慎的习惯,在测量中认真操作并集中精力,从制度上规定,对某些准确性较高而又重要的测量,由另一名测量人员进行复核测量;5.测量对象变化误差被测对象在整个测量过程中处在不断地变化中;由于测量对象自身的变化而引起的测量误差称为测量对象变化误差;例如,被测温度计的温度,被测线纹尺的长度,被测量块的尺寸等,在测量过程中均处于不停地变化中,由于它们的变化,使测量不准而带来误差;三、误差的分类误差是实验测量值包括间接测量值与真值客观存在的准确值之差别,误差可以分为下面三类:1. 系统误差由某些固定不变的因素引起的;在相同条件下进行多次测量,其误差的数值大小正负保持恒定,或误差随条件按一定规律变化;单纯增加实验次数是无法减少系统误差的影响,因为它在反复测定的情况下常保持同一数值与同一符号,故也称为常差;系统误差有固定的偏向和确定的规律,可按原因采取相应的措施给予校正或用公式消除;2. 随机误差偶然误差由一些不易控制的因素引起,如测量值的波动,肉眼观察误差等等;随机误差与系统误差不同,其误差的数值和符号不确定,它不能从实验中消除,但它服从统计规律,其误差与测量次数有关;随着测量次数的增加,出现的正负误差可以相互抵消,故多次测量的算术平均值接近于真值;3.过失误差由实验人员粗心大意,如读数错误,记录错误或操作失误引起;这类误差与正常值相差较大,应在整理数据时加以剔除;四、实验数据的真值与平均值1.真值真值是指某物理量客观存在的确定值,它通常是未知的;虽然真值是一个理想的概念,但对某一物理量经过无限多次的测量,出现的误差有正、有负,而正负误差出现的概率是相同的;因此,若不存在系统误差,它们的平均值相当接近于这一物理量的真值;故真值等于测量次数无限多时得到的算术平均值;由于实验工作中观测的次数是有限的,由此得出的平均值只能近似于真值,故称这个平均值为最佳值;2.平均值油气储运实验中常用的平均值有:1算术平均值设x,x,.,x为各次测量值, n 为测量次数,则算术平均值为:算术平均值是最常用的一种平均值,因为测定值的误差分布一般服从正态分布,可以证明算术平均值即为一组等精度测量的最佳值或最可信赖值;2均方根平均值3几何平均值五、误差的表示方法1.绝对误差测量值与真值之差的绝对值称为测量值的误差,即绝对误差;在实际工作中常以最佳值代替真值,测量值与最佳值之差称为残余误差,习惯上也称为绝对误差;设测量值用x 表示,真值用X 表示,则绝对误差D 为D=|X-x|如在实验中对物理量的测量只进行了一次,可根据测量仪器出厂鉴定书注明的误差,或取测量仪器最小刻度值的一半作为单次测量的误差;如某压力表精确度为级,即表明该仪表最大误差为相当档次最大量程的%,若最大量程为,该压力表的最大误差为:×%=如实验中最常用的U 形管压差计、转子流量计、秒表、量筒等仪表原则上均取其最小刻度值为最大误差,而取其最小刻度值的一半作为绝对误差计算值;2.相对误差绝对误差D 与真值的绝对值之比,称为相对误差:式中真值X 一般为未知,用平均值代替;3.算术平均误差算术平均误差的定义为:x——测量值,i=1,2,3, .,n ;d——测量值与算术平均值x 之差的绝对值,d= x x i . ;4.标准误差均方误差对有限测量次数,标准误差表示为:标准误差是目前最常用的一种表示精确度的方法,它不但与一系列测量值中的每个数据有关,而且对其中较大的误差或较小的误差敏感性很强,能较好地反映实验数据的精确度,实验愈精确,其标准误差愈小;六、精密度、正确度和准确度1、精密度精密度是指对同一被测量作多次重复测量时,各次测量值之间彼此接近或分散的程度;它是对随机误差的描述,它反映随机误差对测量的影响程度;随机误差小,测量的精密度就高;如果实验的相对误差为%且误差由随机误差引起,则可以认为精密度为10-4;2、正确度正确度是指被测量的总体平均值与其真值接近或偏离的程度;它是对系统误差的描述,它反映系统误差对测量的影响程度;系统误差小,测量的正确度就高;如果实验的相对误差为%且误差由系统误差引起,则可以认为正确度为10-4;3、准确度准确度是指各测量值之间的接近程度和其总体平均值对真值的接近程度;它包括了精密度和正确度两方面的含义;它反映随机误差和系统误差对测量的综合影响程度;只有随机误差和系统误差都非常小,才能说测量的准确度高;若实验的相对误差为%且误差由系统误差和随机误差共同引起,则可以认为精确度为10-4;七、实验数据的有效数与记数法任何测量结果或计算的量,总是表现为数字,而这些数字就代表了欲测量的近似值;究竟对这些近似值应该取多少位数合适呢应根据测量仪表的精度来确定,一般应记录到仪表最小刻度的十分之一位;例如:某液面计标尺的最小分度为1mm,则读数可以到;如在测定时液位高在刻度524mm 与525mm 的中间,则应记液面高为,其中前三位是直接读出的,是准确的,最后一位是估计的,是欠准的,该数据为4 位有效数;如液位恰在524mm刻度上,该数据应记为,若记为524mm,则失去一位末位欠准数字;总之,有效数中应有而且只能有一位末位欠准数字;由上可见,当液位高度为时,最大误差为±,也就是说误差为末位的一半;在科学与工程中,为了清楚地表达有效数或数据的精度,通常将有效数写出并在第一位数后加小数点,而数值的数量级由10 的整数幂来确定,这种以10 的整数幂来记数的方法称科学记数法;例如:应记为×10-3,88000有效数3 位记为×104;应注意科学记数法中,在10 的整数幂之前的数字应全部为有效数;有效数字进行运算时,运算结果仍为有效数字;总的规则是:可靠数字与可靠数字运算后仍为可靠数字,可疑数字与可疑数字运算后仍为可疑数字,可靠数字与可疑数字运算后为可疑数字,进位数可视为可靠数字;对于已经给出了不确定度的有效数字,在运算时应先计算出运算结果的不确定度,然后根据它决定结果的有效数字位数;加减运算规则:A.如果已知参与加减运算的各有效数字的不确定度,则先算出计算结果的不确定度,并保留1-2位,然后确定计算结果的有效位数;B.如果没给出参与加减运算的各有效数字的不确定度,则先找出可疑位最高的那个有效数字,计算结果的可疑位应与该有效数字的可疑位对齐;乘除运算规则若干个有效数字相乘除时,计算结果积或商的有效数字位数在大多数情况下与参与运算的有效数字位数最少的那个分量的有效位数相同; 乘方、开方运算规则有效数字在乘方或开方时,若乘方或开方的次数不太高,其结果的有效数字位数与原底数的有效数字位数相同; 对数运算规则有效数字在取对数时,其有效数字的位数与真数的有效数字位数相同或多取1位;第二节 实验数据处理基本方法数据处理是指从获得数据开始到得出最后结论的整个加工过程,包括数据记录、整理、计算、分析和绘制图表等;数据处理是实验工作的重要内容,涉及的内容很多,这里仅介绍一些基本的数据处理方法; 一、列表法对一个物理量进行多次测量或研究几个量之间的关系时,往往借助于列表法把实验数据列成表格;其优点是,使大量数据表达清晰醒目,条理化,易于检查数据和发现问题,避免差错,同时有助于反映出物理量之间的对应关系;所以,设计一个简明醒目、合理美观的数据表格,是每一个同学都要掌握的基本技能;列表没有统一的格式,但所设计的表格要能充分反映上述优点,应注意以下几点: 1.各栏目均应注明所记录的物理量的名称符号和单位;2.栏目的顺序应充分注意数据间的联系和计算顺序,力求简明、齐全、有条理;3.表中的原始测量数据应正确反映有效数字,数据不应随便涂改,确实要修改数据时,应将原来数据画条杠以备随时查验;4.对于函数关系的数据表格,应按自变量由小到大或由大到小的顺序排列,以便于判断和处理; 二、图解法图线能够直观地表示实验数据间的关系,找出物理规律,因此图解法是数据处理的重要方法之一;图解法处理数据,首先要画出合乎规范的图线,其要点如下:1.选择图纸 作图纸有直角坐标纸即毫米方格纸、对数坐标纸和极坐标纸等,根据作图需要选择;在物理实验中比较常用的是毫米方格纸,其规格多为cm 2517⨯;2.曲线改直 由于直线最易描绘,且直线方程的两个参数斜率和截距也较易算得;所以对于两个变量之间的函数关系是非线性的情形,在用图解法时应尽可能通过变量代换将非线性的函数曲线转变为线性函数的直线;下面为几种常用的变换方法;1c xy =c 为常数;令xz 1=,则cz y =,即y 与z 为线性关系; 2y c x =c 为常数;令2x z =,则z cy 21=,即y 与z 为线性关系;3b ax y =a 和b 为常数;等式两边取对数得,x b a y lg lg lg +=;于是,y lg 与x lg 为线性关系,b 为斜率,a lg 为截距;4bx ae y =a 和b 为常数;等式两边取自然对数得,bx a y +=ln ln ;于是,y ln 与x 为线性关系,b 为斜率,a ln 为截距;3.确定坐标比例与标度 合理选择坐标比例是作图法的关键所在;作图时通常以自变量作横坐标x 轴,因变量作纵坐标y 轴;坐标轴确定后,用粗实线在坐标纸上描出坐标轴,并注明坐标轴所代表物理量的符号和单位;坐标比例是指坐标轴上单位长度通常为cm 1所代表的物理量大小;坐标比例的选取应注意以下几点:1原则上做到数据中的可靠数字在图上应是可靠的,即坐标轴上的最小分度m m 1对应于实验数据的最后一位准确数字;坐标比例选得过大会损害数据的准确度;2坐标比例的选取应以便于读数为原则,常用的比例为“1∶1”、“1∶2”、“1∶5”包括“1∶”、“1∶10”…,即每厘米代表“1、2、5”倍率单位的物理量;切勿采用复杂的比例关系,如“1∶3”、“1∶7”、“1∶9”等;这样不但不易绘图,而且读数困难;坐标比例确定后,应对坐标轴进行标度,即在坐标轴上均匀地一般每隔cm 2标出所代表物理量的整齐数值,标记所用的有效数字位数应与实验数据的有效数字位数相同;标度不一定从零开始,一般用小于实验数据最小值的某一数作为坐标轴的起始点,用大于实验数据最大值的某一数作为终点,这样图纸可以被充分利用;4.数据点的标出 实验数据点在图纸上用“+”符号标出,符号的交叉点正是数据点的位置;若在同一张图上作几条实验曲线,各条曲线的实验数据点应该用不同符号如×、⊙等标出,以示区别;5.曲线的描绘 由实验数据点描绘出平滑的实验曲线,连线要用透明直尺或三角板、曲线板等拟合;根据随机误差理论,实验数据应均匀分布在曲线两侧,与曲线的距离尽可能小;个别偏离曲线较远的点,应检查标点是否错误,若无误表明该点可能是错误数据,在连线时不予考虑;对于仪器仪表的校准曲线和定标曲线,连接时应将相邻的两点连成直线,整个曲线呈折线形状;6.注解与说明 在图纸上要写明图线的名称、坐标比例及必要的说明主要指实验条件,并在恰当地方注明作者姓名、日期等;7.直线图解法求待定常数 直线图解法首先是求出斜率和截距,进而得出完整的线性方程;其步骤如下:1选点;在直线上紧靠实验数据两个端点内侧取两点),(11y x A 、22,(y x B ,并用不同于实验数据的符号标明,在符号旁边注明其坐标值注意有效数字;若选取的两点距离较近,计算斜率时会减少有效数字的位数;这两点既不能在实验数据范围以外取点,因为它已无实验根据,也不能直接使用原始测量数据点计算斜率;2求斜率;设直线方程为bx a y +=,则斜率为1212x x y y b --=1-5-13求截距;截距的计算公式为11bx y a -= 1-5-2三、逐差法当两个变量之间存在线性关系,且自变量为等差级数变化的情况下,用逐差法处理数据,既能充分利用实验数据,又具有减小误差的效果;具体做法是将测量得到的偶数组数据分成前后两组,将对应项分别相减,然后再求平均值;例如,在弹性限度内,弹簧的伸长量x 与所受的载荷拉力F 满足线性关系kx F =实验时等差地改变载荷,测得一组实验数据如下表:求每增加1Kg 砝码弹簧的平均伸长量x ∆;若不加思考进行逐项相减,很自然会采用下列公式计算[])(71)()()(7118782312x x x x x x x x x -=-++-+-=∆ 结果发现除1x 和8x 外,其它中间测量值都未用上,它与一次增加7个砝码的单次测量等价;若用多项间隔逐差,即将上述数据分成前后两组,前一组),,,(4321x x x x ,后一组),,,(8765x x x x ,然后对应项相减求平均,即[])()()()(44148372615x x x x x x x x x -+-+-+-⨯=∆ 这样全部测量数据都用上,保持了多次测量的优点,减少了随机误差,计算结果比前面的要准确些;逐差法计算简便,特别是在检查具有线性关系的数据时,可随时“逐差验证”,及时发现数据规律或错误数据; 四、最小二乘法由一组实验数据拟合出一条最佳直线,常用的方法是最小二乘法;设物理量y 和x 之间的满足线性关系,则函数形式为bx a y +=最小二乘法就是要用实验数据来确定方程中的待定常数a 和b ,即直线的斜率和截距;我们讨论最简单的情况,即每个测量值都是等精度的,且假定x 和y 值中只有y 有明显的测量随机误差;如果x 和y 均有误差,只要把误差相对较小的变量作为x 即可;由实验测量得到一组数据为),2,1;,(n i y x i i =,其中i x x =时对应的i y y =;由于测量总是有误差的,我们将这些误差归结为i y 的测量偏差,并记为1ε,2ε,…,n ε,见图1-5-2;这样,将实验数据),(i i y x 代入方程bx a y +=后,得到⎪⎪⎭⎪⎪⎬⎫=+-=+-=+-n n n bx a y bx a y bx a y εεε)()()(222111我们要利用上述的方程组来确定a 和b ,那么a 和b 要满足什么要求呢 显然,比较合理的a 和b 是使1ε,2ε,…,n ε数值上都比较小;但是,每次测量的误差不会相同,反映在1ε,2ε,…,n ε大小不一,而且符号也不尽相同;所以只能要求总的偏差最小,即min 21→∑=i ni ε 令 2121)(i in i i ni bx a yS --==∑∑==ε使S 为最小的条件是0=∂∂a S ,0=∂∂bS ,022>∂∂a S ,022>∂∂b S由一阶微商为零得y⎪⎪⎭⎪⎪⎬⎫=--∑-=∂∂=--∑-=∂∂==0)(20)(211i i i n i i i n i x bx a y b Sbx a y aS 解得 212112111)(i ni i ni ini i ni i i n i i n i x n x y x y x x a ======∑-⎪⎭⎫ ⎝⎛∑∑∑-∑∑=1-5-32121111)(ini i ni i i ni i ni i ni x n x y x n y x b =====∑-⎪⎭⎫ ⎝⎛∑∑-∑∑=1-5-4令111x n x n i =∑=,i n i y n y 11=∑=,21121⎪⎭⎫⎝⎛∑==x n x n i ,2121i n i x n x =∑=,)(111i n i y x n xy =∑=,则x b y a -= 1-5-5 22xx xyy x b --⋅=1-5-6如果实验是在已知y 和x 满足线性关系下进行的,那么用上述最小二乘法线性拟合又称一元线性回归可解得斜率a 和截距b ,从而得出回归方程bx a y +=;如果实验是要通过对x 、y 的测量来寻找经验公式,则还应判断由上述一元线性拟合所确定的线性回归方程是否恰当;这可用下列相关系数r 来判别))((2222y y x x yx xy r --⋅-= 1-5-7其中21121⎪⎭⎫ ⎝⎛∑==y n y n i ,2121i n i y n y =∑=;可以证明,||r 值总是在0和1之间;||r 值越接近1,说明实验数据点密集地分布在所拟合的直线的近旁,用线性函数进行回归是合适的;1||=r 表示变量x 、y 完全线性相关,拟合直线通过全部实验数据点;||r 值越小线性越差,一般9.0||≥r 时可认为两个物理量之间存在较密切的线性关系,此时用最小二乘法直线拟合才有实际意义;。
实验数据的误差与结果处理

实验数据的误差与结果处理实验数据的误差与结果处理一、误差的种类及减免方法:1、误差的种类:系统误差、随机误差偶然误差误差是不可避免的,是客观存在的。
2、系统误差的减免方法: ?.减免方法误差:选择合适的实验方法.减免仪器误差:仪器校准.减免试剂误差:空白实验 ?.对照实验 ?.校正测定结果3、随机误差的减免方法:增加平行测定次数取平均值二、准确度和精密度:1、准确度:分析结果与真实值接近的程度,说明分析结果的可靠性。
用误差来衡量。
主要由系统误差决定。
2、精密度:平行测定结果相互接近程度。
用偏差来衡量。
主要由偶然误差决定。
3、二者关系:精密度是保证准确度的前提,但精密度高并不一定准确度高。
只有精密度高、准确度高的测定数据才是可信的。
三、准确度的量度?误差:1、绝对误差Ei: Ei=xi ?T 有单位2、相对误差Er: Er=在定量实验中,用相对误差来表示测定结果的准确度更为确切。
四、数据分散程度的表示:1、极差:R=RRmin2、偏差(精密度的量度):测量值与平均值之间的差值绝对偏差: 相对偏差: 平均偏差相对平均偏差平均偏差和相对平均偏差表示精密度时的缺点:大偏差得不到应有反映。
3、标准偏差s:,f=n?1为自由度。
标准偏差比平均偏差更能反映出较大偏差的存在,充分运用了全部的数据,更好地反映了结果的精密度。
相对标准偏差变异系数 :4、平均值的标准偏差五、置信度和置信区间:1、置信区间μ:s为有限次测定的标准偏差,n为测定次数,t为某一置信度下的概率系数,查表求得。
2、置信度p:测定结果的可靠程度、真实值落在置信区间内的概率。
置信度越大,置信区间的范围越大。
六、显著性检验:Ⅰ、t 检验法??准确度的显著性检验:主要检验有无系统误差将计算的t值与查到的t值比较。
若t计算<t表,则不存在显著性差异,表明测量仪器或分析方法准确可靠;若t计算≥t表,则存在显著性差异,说明测量仪器或分析方法存在问题,存在系统误差。
物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。
准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。
本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。
一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。
计算平均值可以减小测量误差的影响,提高结果的准确性。
求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。
2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。
当存在多个物理量的测量误差时,需要对误差进行传递计算。
常见的误差传递公式有乘法、除法和幂函数的误差传递公式。
3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。
直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。
而斜率的计算可以通过拟合得到的直线参数来得出。
二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。
随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。
系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。
在误差分析中,需要分别考虑和处理这两种误差。
2.误差的类型与来源误差可以分为绝对误差和相对误差。
绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。
误差的来源主要有仪器误差、人为误差和环境误差等。
3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。
通常可以采用标准差、百分误差和置信区间等方法来评估误差。
同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。
三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。
物理实验中的测量数据处理与误差分析

物理实验中的测量数据处理与误差分析在进行物理实验时,测量数据的处理和误差分析起着至关重要的作用。
正确的数据处理可以帮助我们获得准确的实验结果,而误差分析则能帮助我们评估测量结果的可靠性和精确度。
本文将介绍物理实验中常用的测量数据处理方法和误差分析技巧。
一、测量数据处理方法1. 平均值的计算在物理实验中,重复测量同一物理量可以帮助我们减小随机误差的影响。
求得多次测量结果的平均值可以减小个别测量数据的偶然误差,得到更加可靠的实验结果。
计算平均值的方法为将多次测量结果相加后除以总次数。
例如,我们对某物体的长度进行了5次测量,分别得到测量结果为10.2cm、10.0cm、10.1cm、9.9cm、10.3cm,那么这5次测量结果的平均值为:(10.2 + 10.0 + 10.1 + 9.9 + 10.3)/ 5 = 10.1cm2. 不确定度的计算在测量过程中,我们无法完全排除系统误差和随机误差的影响,因此需要通过计算不确定度来反映测量结果的精确度。
常见的不确定度计算方法有标准偏差法和最小二乘法。
标准偏差法是通过计算多次测量数据与其平均值之差的平方根来得到不确定度。
公式为:s = √[(Σ(xi- x)²) / (n-1)]其中,s代表标准偏差,xi代表第i次测量结果,x代表平均值,n代表测量次数。
最小二乘法则适用于实验数据存在线性关系的情况。
通过拟合直线,可以得到与测量数据最接近的直线方程,并据此计算不确定度。
最小二乘法的详细公式和方法超出本文范围,可在相关物理教材或专业书籍中深入学习。
3. 数据的图表展示将实验数据以图表形式展示可以更加直观地观察数据的分布和规律。
常见的图表有折线图、散点图和柱状图等。
选择合适的图表形式能够更好地表达测量结果和实验过程中的变化趋势。
二、误差分析技巧1. 系统误差的评估与修正系统误差是由于实验设备、环境和实验操作等因素引起的,会对测量结果产生恒定的偏差。
评估系统误差的方法常用的有零点校正和仪器校准等。
实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理第一节实验数据的误差分析由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。
人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。
为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。
由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。
一、误差的基本概念测量是人类认识事物本质所不可缺少的手段。
通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。
科学上很多新的发现和突破都是以实验测量为基础的。
测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。
1.真值与平均值真值是待测物理量客观存在的确定值,也称理论值或定义值。
通常真值是无法测得的。
若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。
再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。
但是实际上实验测量的次数总是有限的。
用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:(1) 算术平均值 算术平均值是最常见的一种平均值。
设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为nx n x x x x ni in ∑==+⋅⋅⋅++=121(2-1)(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。
即n nx x x x ⋅⋅⋅⋅=21几(2-2)(3)均方根平均值 nxnxx x x ni in∑==+⋅⋅⋅++=1222221均(2-3)(4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。
设两个量1x 、2x ,其对数平均值21212121lnln ln x x x x x x x x x -=--=对(2-4)应指出,变量的对数平均值总小于算术平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
× √ ×
正态分布的特点: 1. 大误差出现的几率小 2. 小误差出现的几率大 3. 大小相等的正负误差 出现的几率均等
2018年11月11日2时40分
2.1
2.1.2
实验误差及其表示方法
误差的表示方法
1. 准确度 ──分析结果与真实值的接近程度 准确度——由误差的大小来衡量——系统误差引起 误差——绝对误差和相对误差 E Er 100 % E=X -T
系统误差 固定因素
试剂误差 主观误差
误差
偶然误差 ——偶然因素 非固定因素 过失误差 过失而非主观因素
特点:
( 1 )不固定 : 时大时小、时正时负,
难以校正;
(2)影响结果的精密度; (3)服从一般的统计规律——正态分 布
2
2018年11月11日2时40分
2.1 实验误差及其表示方法 2.1.1 产生原因及误差的种类
2.2 实验数据处理及结果评价
如前面的例子:
甲di: +0.3,-0.2,-0.4,+0.2,+0.1,+0.4,0.0,-0.3,+0.2,-0.3 乙di: 0.0,+0.1,-0.7,+0.2,-0.1,-0.2,+0.5,-0.2,+0.3,+0.1 可以得到
1.甲: n=10 2.乙: n=10 d甲=d乙 s甲 < s乙 d甲=0.24 d乙=0.24 s甲=0.28 s乙=0.33
2.1 实验误差及其表示方法
2.1.1 误差的种类及产生原因
2.1.2 误差的表示方法
2.1.3 提高试验结果准确度的方法
2018年11月11日2时40分
2.1 实验误差及其表示方法
2.1.1 误差的种类及产生的原因
客观存在的
Hale Waihona Puke 方法误差仪器误差特点:
1)对分析结果的影响比较恒定 2)单向性,重复测定,重复出现 3)影响结果的准确度,不影响重现性 4)可以消除
2.1.3 提高试验结果准确度的方法——误差的减免
种类 产生原因 举例 减免方法
分析方法不 重量分析中沉淀的溶解损失,滴 改变方法或做对 方法误差 够完善 照实验 定分析中指示剂选择不当 仪器本身的 天平两臂不等,砝码未校正,滴 仪器误差 校准仪器 系 缺陷 定管、容量瓶未校正 统 试剂纯度不 去离子水不合格 空白实验或使用 误 试剂误差 够,有杂质 高纯度试剂 差 操作人员主 对指示剂颜色辨别偏深或偏浅, 对实验人员加强 观原因 训练 滴定管读数不准
1 1 X X ( 1.001 1.002 1.005 1.002 1.000 1.002 1.002 1.002 ) i n 4
=0.002
2018年11月11日2时40分
dr
d 0.002 100% 100% 0.2% 1.002 x
8
2 x i
n
μ ——无限多次测定 的平均值(总体平均值); 即
lim x ——反映数据的集中趋势
n
当消除系统误差时,μ——真值 (2)有限测定次数——样本的标准偏差 2 标准偏差 : x x d2
s
x
i
n 1
i
n 1
10
相对标准偏差 : CV s 100% 2018年11月11日2时40分
1 d甲 d i 0.24 n
1 d乙 d i 0.24 n
精密度:甲比乙好 ,但二者平均偏差相同 可见:大偏差得不到应有反映
2018年11月11日2时40分 9
2.2 实验数据处理及结果评价
2. 标准偏差
标准偏差又称均方根偏差,是统计学中的重要参数 标准偏差的计算分两种情况: (1)当测定次数趋于无穷大时——总体标准偏差
2.2 实验数据处理及结果评价
平均偏差和相对平均偏差表示精密度: 越小越好 特点:简单 缺点:大偏差得不到应有反映
例:甲di 乙di +0.3,-0.2,-0.4,+0.2,+0.1,+0.4,0.0,-0.3,+0.2,-0.3 0.0,+0.1,-0.7,+0.2,-0.1,-0.2,+0.5,-0.2,+0.3,+0.1
T
2. 精密度 ──几次平行测定结果相互接近程度 精密度——用偏差来衡量——偶然误差引起 偏差——个别测定值与平均值之间的差值: d i xi x 误差及偏差都有正负 3. 两者的关系
X
• 精密度高不一定准确度高
• 精密度是保证准确度的先决条件
2018年11月11日2时40分
2.1 实验误差及其表示方法
5. 样本平均值
1 x xi n
6. 极差: 表示数据的分散程度
2018年11月11日2时40分
R xmax xmin
7
2.2 实验数据处理及结果评价
2.2.2 少量数据的统计处理 1. 平均偏差
平均偏差又称算术平均偏差,用来表示一组数据的精密度 平均偏差: 相对平均偏差:
1 1 d xi x d i n n
比较不出结果 甲的精密度好于乙的精密度
用标准偏差比用平均偏差更科学更准确
主观误差
偶然误差
2018年11月11日2时40分
随机(不确 气温、气压、湿度等变化引起 定)因素
增加平行测定的 次数
5
2.2 实验数据处理及结果评价
2.2.1 数理统计的几个基本概念
2.2.2 少量数据的统计处理
2.2.3 置信度和置信区间
2.2.4 显著性检验 2.2.5 可疑值的取舍
2018年11月11日2时40分
d d r 100% x
例: 测定某HCl与NaOH溶液的体积比。4次测定结果分别为:1.001,1.005, 1.000,1.002。计算平均偏差和相对平均偏差。
解:
d
1 1 x xi (1.001 1.005 1.000 1.002 ) 1.002 n 4
6
2.2 实验数据处理及结果评价 2.2.1 数理统计的几个基本概念
1. 总体(universe)(或母体)——分析研究的对象 的全体 2. 样本(swatch)(或子样)——从总体中随机抽取 一部分样品进行测定所得到的一组测定值 3. 个体(individual)——样本中的每个测定值xi 4. 样本容量(capacity of sample)(或样本大小)— 样本中所含个体的数目,用n表示