误差理论与数据处理 实验报告
误差理论实验报告

《误差理论与数据处理》实验报告实验名称:线性函数的最小二乘法处理一、实验目的线性函数的最小二乘法是解决有关组合测量最佳估计问题的典型的数据处理方法。
本实验要求学生编写最小二乘数据处理程序并对组合测量数据进行处理,求出最佳估计值并进行精度分析。
二、实验原理1.最小二乘法原理指出,最可信赖值应在是残差误差平方和的条件下求得。
2.最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程组的数目正好等于未知数的个数),从而可求解出这些未知参数。
这个有确定解的代数方程组称为最小二乘法的正规方程。
3.线性参数的最小二乘法处理程序为:首先根据具体问题列出误差方程式;再按最小二乘原理,利用求极值的方法将误差方程转化为正规方程;然后求解正规方程,得到代求的估计量;最后给出精度估计。
4.正规方程又转化为残差方程,残差方程可用矩阵方法求出方程的解。
因此可用Matlab求解最小二乘法参数。
5.求出最小二乘法的参数后,还要对参数进行精度估计。
相应的标准差为ttxtxxddd222111,其中ttddd..2211称为不定乘数。
三、实验内容和结果1.程序及流程在MATLAB环境下建立一个命令M-文件,编写解答以下组合测量问题数据处理的程序:现要检定刻线A,B,C,D间的距离x1,x2,x3,采用组合测量方法,直接测量刻线间的各种组合量,得到数据如下测量数据:l1=1.051mm; l2=0.985; l3=1.020mm; l4=2.016mm; l5=1.981mm; l6=3.032mm1.编程求x1,x2和x3的最小二乘估计值;2.对直接测量数据进行精度估计3.对x1,x2和x3的最小二乘估计值进行精读估计。
程序:>> A=[1 0 0;0 1 0;0 0 1;1 1 0;0 1 1;1 1 1]>> A'*A>> C=A'*A>> inv(C)>> l=[1.015;0.985;1.020;2.016;1.981;3.032];>> X=inv(C)*A'*l>> V=l-A*X>> V'*V>> STD1=sqrt(V'*V/3)>> inv(C)>> STDX1=sqrt(0.5)*STD12.实验结果(数据或图表)3.结果分析四、心得体会通过本次实验,我掌握等精度测量线性参数最小二乘法的处理,并能够应用Matlab用矩阵的方法求出拟合方程的参数,及能够对各个参数进行精度估计。
误差理论与大数据处理实验报告材料

标准文档误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1nii v =∑≤0.52n A ⎛⎫- ⎪⎝⎭ 式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
误差理论及实验数据处理

可以设法减小或排除掉的,如对试验机和应变仪等定期校准和检验。又如单向拉伸时由于夹
具装置等原因而引起的偏心问题,可以用试样安装双表或者两对面贴电阻应变片来减少这种
误差。系统误差越小,表明测量的准确度越高,也就是接近真值的程度越好。
偶然误差是由一些偶然因素所引起的,它的出现常常包含很多未知因素在内。无论怎样
差出现的可能性小。
3)随着测量次数的增加,偶然误差的平均值趋向于零。
4)偶然误差的平均值不超过某一限度。
根据以上特性,可以假定偶然误差Δ 遵循母体平均值为零
的高斯正态分布,如图Ⅰ-1 所示。
f (Δ) =
1
− Δ2
e 2σ 2
σ 2π
图Ⅰ-1 偶然误差的正态频率曲线
·97·
材料力学实验指导与实验基本训练
Δ ≤ Δ1 + Δ2 [注]:上述法则对于两个相差甚大的数在相减时是正确的。但是对两个相互十分接近的 数,在相减时有效位数大大减少,上述结论就不适用。在建立运算步骤时要尽量避免两个接 近相等的数进行相减。 2)如果经过多次连乘除后要达到 n 个有效位数,则参加运算的数字的有效位数至少要 有 (n + 1) 个或 (n + 2) 个。例如,两个 4 位有效数的数字经过两次相乘或相除后,一般只能 保证 3 位有效数。 3)如果被测的量 N 是许多独立的可以直接测量的量 x1, x2,", xn 的函数,则一个普遍的 误差公式可表示为下列形式,即
控制实验条件的一致,也不可避免偶然误差的产生,如对同一试样的尺寸多次量测其结果的
分散性即起源于偶然误差。偶然误差小,表明测量的精度高,也就是数据再现性好。
实验表明,在反复多次的观测中,偶然误差具有以下特性:
实验报告 误差分析

实验报告误差分析实验报告:误差分析引言:实验是科学研究中不可或缺的一部分,通过实验可以验证理论的正确性,探索未知的领域。
然而,实验中难免会出现误差,这些误差可能会对实验结果产生一定的影响。
因此,我们需要进行误差分析,以了解误差的来源、大小以及对实验结果的影响程度,从而更准确地解读实验结果。
一、误差的分类误差可以分为系统误差和随机误差两种类型。
1. 系统误差系统误差是由于实验设备、测量仪器、操作方法等方面的固有缺陷或不准确性引起的误差。
它具有一定的可预测性和一致性,会对实验结果产生持续性的偏差。
例如,如果实验仪器的刻度不准确,或者实验操作中存在固定的偏差,那么实验结果就会受到系统误差的影响。
2. 随机误差随机误差是由于实验过程中的各种偶然因素引起的误差,它具有不可预测性和不规律性。
随机误差会导致实验结果的波动和不确定性增加。
例如,实验中的环境条件、人为操作的不稳定性、测量仪器的灵敏度等都可能引起随机误差。
二、误差的来源误差的来源多种多样,下面列举几个常见的来源。
1. 人为误差人为误差是由于实验操作者的技术水平、主观判断等因素引起的误差。
例如,实验操作者对实验步骤的理解不准确、操作不规范、读数不准确等都可能导致人为误差的出现。
2. 仪器误差仪器误差是由于测量仪器的精度、灵敏度等方面的限制引起的误差。
例如,实验仪器的刻度不准确、仪器的响应时间较长等都可能导致仪器误差。
3. 环境误差环境误差是由于实验环境的变化、干扰等因素引起的误差。
例如,实验室温度的波动、噪音的干扰等都可能对实验结果产生影响。
三、误差的影响与控制误差对实验结果的影响程度取决于误差的大小和实验的目的。
在一些实验中,误差的影响可能会被忽略,而在一些对结果要求较高的实验中,误差的控制则显得尤为重要。
1. 影响程度误差的影响程度可以通过误差分析和数据处理来评估。
例如,可以通过计算误差的标准差、置信区间等指标来评估误差的大小,并根据实验目的和要求判断误差对结果的影响程度。
误差理论与数据处理

③ 差动法 被测量对传感器起差动作用 干扰因素起相同作用 --- 被测量的作用相加 --- 干扰的作用相减 作用:抑制干扰 提高灵敏度和线性度 ④ 比值补偿法 利用比值补偿原理 --- 影响因素在输出计算式的分子、分母上同时出现 --- 约消 例:比色高温计 --- 消除辐射率变化的影响 ⑤ 半周期偶数观测法 --- 系统误差随某因素成周期性变化 测量 --- ½变化周期 两次测量所得的周期系统误差 --- 数值相等、正负相反 --- 取平均值 自动检测 --- 检测的时间间隔为½周期(克服随时间周期变化因素的影响) 综合:传感器信号转换 --- 选频放大器、滤波器、滤色片 --- 截断/删除无用 频带(只让有用信号频带通过) --- 减轻校正、补偿难度 有影响的因素 --- 定值/较窄范围 --- 系差稳定 --- 修正值 措施 --- 恒温、稳压或稳频
如:米 --- 公制长度基准
光在真空中1s时间内传播距离的1/299792485 1m = 1650763.73
--- 氪-86的2p10-5d5能级间跃迁在真空中的辐射波长
② 理论真值:设计时给定或用数学、物理公式计算出的给定值 ③ 相对真值:标准仪器的测得值或用来作为测量标准用的标准器的值
⑧ 检测方法误差 检测方法、采样方法、测量重复次数、取样时间
⑨ 检测人员造成的误差 人员视觉、读数误差、经验、熟练程度、精神方面原因(疲劳)
4 、误差分类
按误差来源:装置误差、环境误差、方法误差、人员误差
按掌握程度:已知误差、未知误差 按变化速度:静态误差、动态误差 按特性规律:系统误差、随机误差、粗大误差
h
1 2
-K K
总体期望:无限次测量(不可能实现) --- 有限次测量代替 估计(Estimation ) --- 有限次样本推测总体参数 --- 估计值(^) 同一被测量 n 次测量 算术平均(Mean value) x 估计 真值x0
大学物理实验报告数据处理及误差分析

大学物理实验报告数据处理及误差分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑力学习题误差及数据处理一、指出下列原因引起的误差属于哪种类型的误差?1.M尺的刻度有误差。
2.利用螺旋测微计测量时,未做初读数校正。
3.两个实验者对同一安培计所指示的值读数不同。
4.天平测量质量时,多次测量结果略有不同。
5.天平的两臂不完全相等。
6.用伏特表多次测量某一稳定电压时,各次读数略有不同。
7.在单摆法测量重力加速度实验中,摆角过大。
二、区分下列概念1.直接测量与间接测量。
2.系统误差与偶然误差。
3.绝对误差与相对误差。
4.真值与算术平均值。
5.测量列的标准误差与算术平均值的标准误差。
三、理解精密度、准确度和精确度这三个不同的概念;说明它们与系统误差和偶然误差的关系。
四、试说明在多次等精度测量中,把结果表示为 <单位)的物理意义。
五、推导下列函数表达式的误差传递公式和标准误差传递公式。
1.2.3.六、按有效数字要求,指出下列数据中,哪些有错误。
1.用M尺<最小分度为1mm)测量物体长度。
3.2cm50cm78.86cm6.00cm16.175cm2.用温度计<最小分度为0.5℃)测温度。
68.50℃31.4℃100℃14.73℃七、按有效数字运算规则计算下列各式的值。
1.99.3÷2.0003=?2.=?3.4.八、用最小分度为毫M的M尺测得某物体的长度为=12.10cm<单次测量),若估计M尺的极限误差为1mm,试把结果表示成的形式。
b5E2RGbCAP九、有n组测量值,的变化范围为2.13 ~ 3.25,的变化范围为0.1325 ~0.2105,采用毫M方格纸绘图,试问采用多大面积的方格纸合适;原点取在何处,比例取多少?p1EanqFDPw十、并排挂起一弹簧和M尺,测出弹簧下的负载和弹簧下端在M尺上的读数如下表:据处理。
长度测量1、游标卡尺测量长度是如何读数?游标本身有没有估读数?2、千分尺以毫M为单位可估读到哪一位?初读数的正、负如何判断?待测长度如何确定?3、被测量分别为1mm,10mm,10cm时,欲使单次测量的百分误差小于0.5%,各应选取什么长度测量仪器最恰当?为什么?DXDiTa9E3d物理天平侧质量与密度1、在使用天平测量前应进行哪些调节?如何消除天平的不等臂误差?2、测定不规则固体的密度时,若被测物体进入水中时表面吸有气泡,则实验所得的密度是偏大还是偏小?为什么?RTCrpUDGiT用拉伸法测量金属丝的杨氏模量1、本实验的各个长度量为什么要用不同的测量仪器测量 ?2、料相同,但粗细、长度不同的两根金属丝,它们的杨氏模量是否相同?3、本实验为什么要求格外小心、防止有任何碰动现象?5PCzVD7HxA精密称衡—分析天平的使用1、如果被测物体的密度与砝码的密度不同,即使它们的质量相等,但体积不同,因而受到空气浮力也不同,便产生浮力误差。
对实验数值误差理论和数据处理

9 平均值的有效数字位数,通常和测量值相同。 当样本容量较大,在运算过程中,为减少舍 入误差,平均值可比单次测量值多保留一位 数。
3.3实验数据的初步整理
3.3.1实验数据的列表整理
1.数据的归类整理 2.数据的分组整理
3.3.2 分布规律判断的基本方法— —统计直方图
1.统计直方图 为了对某个随机变量的分布规律作出判断,
如0.0121×25.64×1.05782,其0.0121为三 位有效数字,故计算结果宜记0.328
5 在所有计算式中,常数π ,e的数值,以及,1/2等 系数的有效数字位数,可以认为无限制,需要几位 就可以取几位。
6 在对数计算中,所取对数位数,应与真数的有效数 字位数相等。例如,pH12.25 和 [H+]=5.6×10-13M;
3.误差与数据处理
3.1 误差及其表示方法
误差来源
设备误差 环境误差 人员误差 方法误差
误差分类
系统误差、 随机误差、 过失误差
(1)系统误差
系统误差是由某种确定的因素造成的,使测定 结果系统偏高或偏低;当造成误差的因素不存 在时,系统误差自然会消失。
当进行重复测量时,它会重复出现。系统误差 的大小,正负是可以测定的,至少在理论上说 是可以测定的,系统误差的最重要特性是它具 有‘‘单向性” 。
对于舍去的数据,在试验报告中应注明舍去的原因或所 选用的统计方法。
1).4d 法检验
根据测量值的正态分布可知,偏差大于3σ的测量 值出现的概率约为0.3%,此为小概率事件,而 小概率事件在有限次实验中是不可能发生的,如 果发生了则是不正常的。
即偏差大于3σ的测量值在有限次检验中是不可能 的,如果出现则为异常值,为过失所致应舍弃。 (概率不超过5%的事件称为小概率事件)。
误差理论与数据处理实验报告.

误差理论与数据处理实验报告姓名:黄大洲学号:3111002350班级:11级计测1班指导老师:陈益民实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法二、实验原理(1)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。
1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。
设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值121...nin i l l l l x n n=++==∑算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。
i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。
残余误差代数和为:11n niii i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1nii v==∑01)残余误差代数和应符合:当1n ii l =∑=nx ,求得的x 为非凑整的准确数时,1nii v =∑为零;当1nii l =∑>nx ,求得的x 为凑整的非准确数时,1nii v =∑为正;其大小为求x 时的余数。
当1n ii l =∑<nx ,求得的x 为凑整的非准确数时,1nii v =∑为负;其大小为求x 时的亏数。
2)残余误差代数和绝对值应符合: 当n 为偶数时,1ni i v =∑≤2n A; 当n 为奇数时,1ni i v =∑≤0.52n A ⎛⎫- ⎪⎝⎭式中A 为实际求得的算术平均值x 末位数的一个单位。
(2)测量的标准差测量的标准偏差称为标准差,也可以称之为均方根误差。
1、测量列中单次测量的标准差2222121...nini nnδδδδσ=+++==∑式中 n —测量次数(应充分大)i δ —测得值与被测量值的真值之差211nii vn σ==-∑2、测量列算术平均值的标准差:x nσσ=三、实验内容:1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《误差理论与数据处理》实验指导书姓名学号机械工程学院2016年05月实验一误差的基本性质与处理一、实验内容1.对某一轴径等精度测量8次,得到下表数据,求测量结果。
Matlab程序:l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值x1=mean(l);%用mean函数求算数平均值disp(['1.算术平均值为:',num2str(x1)]);v=l-x1;%求解残余误差disp(['2.残余误差为:',num2str(v)]);a=sum(v);%求残差和ah=abs(a);%用abs函数求解残差和绝对值bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确if bh<0disp('3.经校核算术平均值及计算正确');elsedisp('算术平均值及误差计算有误');endxt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差)if xt<0.1disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']);elsedisp('存在系统误差');endbz=sqrt((sum(v.^2)/7));%单次测量的标准差disp(['5.单次测量的标准差',num2str(bz)]);p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列g0=2.03;%查表g(8,0.05)的值g1=(x1-p(1))/bz;g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1<g0&&g8<g0disp('6.用格罗布斯准则判断,不存在粗大误差');endsc=bz/(sqrt(8));%算数平均值的标准差disp(['7.算术平均值的标准差为:',num2str(sc)]);t=2.36;%查表t(7,0.05)值jx=t*sc;%算术平均值的极限误差disp(['8.算术平均值的极限误差为:',num2str(jx)]);% l1=x1+jx;%写出最后测量结果% l2=x1-jx;%写出最后测量结果disp(['9.测量结果为:(',num2str(x1),'±',num2str(jx),')']);实验二测量不确定度二、实验内容1D/mm 8.075 8.085 8.095 8.085 8.080 8.060 ih/mm 8.105 8.115 8.115 8.110 8.115 8.110i请按测量不确定度的一般计算步骤,用自己熟悉的语言编程完成不确定度分析。
MATLAB程序及分析如下:A=[8.075 8.085 8.095 8.085 8.080 8.060];B=[8.105 8.115 8.115 8.110 8.115 8.110];D=mean(A);%直径平均值disp(['1.直径平均值为:',num2str(D)]);h=mean(B);%高度平均值disp(['2.高度平均值为:',num2str(h)]);V=pi*D*D*h/4;%体积测量结果估计值disp(['3.体积测量结果估计值为:',num2str(V)]);s1=std(A);%直径标准差disp(['4.直径标准差为:',num2str(s1)]);u1=pi*D*h*s1/2;%直径测量重复性引起的不确定度分量disp(['5.直径测量重复性引起的不确定度分量为:',num2str(u1)]);v1=5;%自由度s2=std(B);%高度标准差disp(['6.高度标准差为:',num2str(s2)]);u2=pi*D*D*s2/4;%高度测量重复性引起的不确定度分量disp(['7.高度测量重复性引起的不确定度分量为:',num2str(u2)]);v2=5;%自由度ue=0.01/(3^0.5);%均匀分布得到的测微仪示值标准不确定度u3=(((pi*D*h/2)^2+(pi*D*D/4)^2)^0.5)*ue;%示值引起的体积测量不确定度disp(['8.示值引起的体积测量不确定度为:',num2str(u3)]);v3=1/(2*0.35^2);%取相对标准差为0.35时对应自由度uc=(u1^2+u2^2+u3^2)^0.5; %合成不确定度disp(['9.合成不确定度为:',num2str(uc)]);v=uc^4/(u1^4/v1+u2^4/v2+u3^4/v3);%v=7.9352取为7.94k=2.31;%取置信概率P=0.95,v=8查t分布表得2.31U=k*uc;disp(['10.运算结果为:',num2str(U)]);实验三三坐标测量机测量三、实验内容1、手动测量平面,确保处于手动模式,使用手操作驱动测头逼近平面第一点,然后接触平面并记录该点,确定平面的最少点数为3,重复以上过程,保留测点或删除坏点。
2、手动测量直线,确保处于手动模式,使用手操作将测头移动到指定位置,驱动测头沿着逼近方向在平面上的采集点,采点的顺序非常重要,起始点到终止点决定了直线的方向。
确定直线的最少点数为2.3、手动测量圆,确保处于手动模式,测量模式?测量的到的点坐标如下表所示,分析结果,并写出实验报告。
程序:x=[-19.58 19.63 -17.20 -11.73 -19.58 -19.60 -18.03 -19.68 -19.60]; y=[13.17 -2.39 10.47 10.47 24.82 7.66 15.86 -4.83 7.66];z=[-133.32 -134.00 -134.49 -132.65 -138.16 -137.21 -132.40 -136.00 -137.21];x=x';y=y';z=z';csize=min([length(x),length(y),length(z)]);pow_xyz=-x(1:csize).*x(1:csize);pow_xyz=pow_xyz-y(1:csize).*y(1:csize);pow_xyz=pow_xyz-z(1:csize).*z(1:csize);A=[x(1:csize),y(1:csize),z(1:csize),ones(csize,1)];xans=((A'*A)^-1)*(A'*pow_xyz);a=xans(1);b=xans(2);c=xans(3);r=(a*a+b*b+c*c)/4-xans(4);r=sqrt(r);a=a/2;b=b/2;c=c/2;disp(['球心坐标为:(',num2str(a),' ',num2str(b),' ',num2str( c),')']);disp(['半径为:',num2str(r)]);实验四回归分析四、实验内容采用回归分析算法用matlab编程实现下列题目的要求。
正应力26.8 25.4 28.9 23.6 27.7 23.9 24.7 28.1 26.9 27.4 22.6 25.6x/pa抗剪强26.5 27.3 24.2 27.1 23.6 25.9 26.3 22.5 21.7 21.4 25.8 24.9度y/pa假设正应力的数值是精确的,求①减抗强度与正应力之间的线性回归方程。
②当正应力为24.5pa时,抗剪强度的估计值是多少?2、用x光机检查镁合金铸件内部缺陷时,为了获得最佳的灵敏度,透视电压y应随透视件的厚度x而改变,经实验获得下表所示一组数据,假设透视件的厚度x无误差,试求透视电压y随厚度x变化的经验公式。
x/mm 12 13 14 15 16 18 20 22 24 26y/kv 52.0 55.0 58.0 61.0 65.0 70.0 75.0 80.0 85.0 91.01、程序x=[26.8 25.4 28.9 23.6 27.7 23.9 24.7 28.1 26.9 27.4 22.6 25.6]';y=[26.5 27.3 24.2 27.1 23.6 25.9 26.3 22.5 21.7 21.4 25.8 24.9]';X=[ones(length(x),1),x];%构造自变量观测值矩阵[b]=regress(y,X);%线性回归建模与评价disp(['回归方程为:y=',num2str(b(1)),'x',num2str(b(2))]);x1=24.5;y1=b(1)+b(2)*x1;fprintf('当正应力x=24.5pa时,抗剪估计值y=%.3f\n',y1)2、程序:x=[150 200 250 300]';y1=[77.4 76.7 78.2;84.1 84.5 83.7;88.9 89.2 89.7;94.8 94.7 95.9;];y=[0 0 0 0]';for i=1:4y(i,1)=(y1(i,1)+y1(i,2)+y1(i,3))/3;endA=[ones(size(x)),x];[ab,tm1,r,rint,stat] = regress(y,A);a=ab(1);b=ab(2);r2=stat(1);alpha=[0.05,0.01];yhat=a+b*x;disp(['y对x的线性回归方程为:y=',num2str(a),'+',num2str(b),'x'])SSR=(yhat-mean(y))'*(yhat-mean(y));SSE=(yhat-y)'*(yhat-y);SST=(y-mean(y))'*(y-mean(y));n=length(x);Fb=SSR/SSE*(n-2);Falpha=finv(1-alpha,1,n-2);table=cell(4,7);table(1,:)={'方差来源','偏差平方和','自由度','方差','F比','Fα','显著性'};table(2,1:6)={'回归',SSR,1,SSR,Fb,min(Falpha)};table(3,1:6)={'剩余',SSE,n-2,SSE/(n-2),[],max(Falpha)};table(4,1:3)={'总和',SST,n-1};if Fb>=max(Falpha)table{2,7}='高度显著';elseif (Fb<max(Falpha))&(Fb>=min(Falpha))table{2,7}='显著';elsetable{2,7}='不显著';endtable3、程序x=[12 13 14 15 16 18 20 22 24 26];y=[52.0 55.0 58.0 61.0 65.0 70.0 75.0 80.0 85.0 91.0];plot(x,y,'*k')title('散点图');X=[ones(size(x')), x'];b= regress(y',X,0.05);disp(['y随x变化的经验公式为:y=',num2str(b(1)),'+',num2str(b(2)),'x'])。