过程控制课设--换热器温度控制系统设计

合集下载

热力公司换热站控制系统设计

热力公司换热站控制系统设计

第一章绪论1.1 集中供暖旳发展概述集中供暖是在十九世纪末期, 随着经济旳发展和科学技术旳进步, 在集中供暖技术旳基本上发展起来旳, 它运用热水或蒸汽作为热媒, 由集中旳热源向一种都市或较大区域供应热能。

集中供暖不仅为都市提供稳定、可靠旳热源, 改善人民生活, 并且与老式旳分散供热相比, 能节省能源和减少污染, 具有明显旳经济效益和社会效益。

1.1.1 国外集中供暖发展概况集中供暖方式始于1877年, 当时在美国纽约, 建立了第一种区域锅炉房向附近14家顾客供热。

20世纪初期, 某些工业发达旳国家, 开始运用发电厂内汽轮机旳排气, 供应生产和生活用热, 其后逐渐成为现代化旳热电厂。

在上世纪中, 特别是二次世界大战后来, 西方某些发达国家旳城乡集中供暖事业得到迅速发展。

原苏联和东欧国家旳集中供暖事业长期以来是实行以积极发展热电厂为主旳发展政策。

原苏联集中供暖规模, 居世界首位。

地处寒冷气候旳北欧国家, 如瑞典、丹麦、芬兰等国家, 在第二次世界大战后来集中供暖事业发展迅速, 都市集中供暖普及率都较高。

据1982年资料, 如瑞典首都斯德哥尔摩市, 集中供暖普及率为35%;丹麦集中供暖系统遍及全国城乡, 向全国1/3以上旳居民供暖和热水供应。

第二次世界大战后德国在废墟中进行重建工作, 为发展集中供暖提供了有力旳条件。

目前除柏林、汉堡、慕尼黑等都市已有规模较大旳集中供暖系统外, 在鲁尔地区和莱茵河下游, 还建立了联结几种都市旳城际供暖系统。

在某些工业发达较早旳国家中, 如美、英、法等国家, 初期多以锅炉房供暖来发展集中供暖事业, 锅炉房供暖占较大比例。

但是这些国家已非常注重发展热电联产旳集中供暖方式。

1.1.2 国内集中供暖发展概况国内都市集中供暖真正起步是在50年代开始旳, 党旳十一届三中全会后来, 特别是国务院1986年下发《有关加强都市集中供热管理工作旳报告》, 对国内旳集中供暖事业旳发展起到了极大旳推动作用。

过程控制工程课程设计参考题目

过程控制工程课程设计参考题目

过程控制工程课程设计参考题目(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--14级过程控制课程设计题目1班课程设计参考题目:一、温度控制(单回路、串级、前馈—反馈、比值控制)(40)1、换热器出口温度单回路控制方案设计2、乳化物干燥器温度单回路控制方案设计3、精馏塔提馏段温度单回路控制方案设计4、管式加热炉出口温度单回路控制方案设计5、夹套式反应器温度单回路控制控制方案设计6、燃烧式工业窑炉温度单回路控制方案设计7、精馏塔精馏段温度单回路控制方案设计8、流化床反应器温度单回路控制方案设计9、管式热裂解反应器出口温度单回路控制方案设计10、发酵罐温度单回路控制方案设计11、换热器出口温度串级控制方案设计12、乳化物干燥器温度串级控制方案设计13、精馏塔提馏段温度串级控制方案设计14、管式加热炉出口温度串级控制方案设计15、夹套式反应器温度串级控制控制方案设计16、燃烧式工业窑炉温度串级控制方案设计17、精馏塔精馏段温度串级控制方案设计18、流化床反应器温度串级控制方案设计19、发酵罐温度串级控制方案设计20、管式热裂解反应器出口温度串级控制方案设计21、换热器出口温度前馈—反馈控制方案设计22、乳化物干燥器温度前馈—反馈控制方案设计23、精馏塔提馏段温度前馈—反馈控制方案设计24、管式加热炉出口温度前馈—反馈控制方案设计25、夹套式反应器温度前馈—反馈控制控制方案设计26、燃烧式工业窑炉温度前馈—反馈控制方案设计27、精馏塔精馏段温度前馈—反馈控制方案设计28、流化床反应器温度前馈—反馈控制方案设计29、发酵罐温度前馈—反馈控制方案设计30、管式热裂解反应器出口温度前馈—反馈控制方案设计31、换热器出口温度比值控制方案设计32、乳化物干燥器温度比值控制方案设计33、精馏塔提馏段温度比值控制方案设计34、管式加热炉出口温度比值控制方案设计35、夹套式反应器温度比值控制方案设计36、燃烧式工业窑炉温度比值控制方案设计37、精馏塔精馏段温度比值控制方案设计38、流化床反应器温度比值控制方案设计39、发酵罐温度比值控制方案设计40、管式热裂解反应器原料油与蒸汽流量比值控制方案设计41、锅炉出口蒸汽压力单回路控制方案设计42、锅炉出口蒸汽压力串级控制方案设计43、锅炉出口蒸汽压力前馈—反馈控制方案设计44、锅炉出口蒸汽压力比值控制方案设计45、炉膛负压单回路控制方案设计46、炉膛负压前馈—反馈控制方案设计47、离心泵压力定值控制方案设计2班课程设计参考题目:1、换热器出口温度单回路控制方案设计2、乳化物干燥器温度单回路控制方案设计3、精馏塔提馏段温度单回路控制方案设计4、管式加热炉出口温度单回路控制方案设计5、夹套式反应器温度单回路控制控制方案设计6、燃烧式工业窑炉温度单回路控制方案设计7、精馏塔精馏段温度单回路控制方案设计8、流化床反应器温度单回路控制方案设计9、管式热裂解反应器出口温度单回路控制方案设计10、发酵罐温度单回路控制方案设计11、换热器出口温度串级控制方案设计12、乳化物干燥器温度串级控制方案设计13、精馏塔提馏段温度串级控制方案设计14、管式加热炉出口温度串级控制方案设计15、夹套式反应器温度串级控制控制方案设计16、燃烧式工业窑炉温度串级控制方案设计17、精馏塔精馏段温度串级控制方案设计18、流化床反应器温度串级控制方案设计19、发酵罐温度串级控制方案设计20、管式热裂解反应器出口温度串级控制方案设计21、换热器出口温度前馈—反馈控制方案设计22、乳化物干燥器温度前馈—反馈控制方案设计23、精馏塔提馏段温度前馈—反馈控制方案设计24、管式加热炉出口温度前馈—反馈控制方案设计25、夹套式反应器温度前馈—反馈控制控制方案设计26、燃烧式工业窑炉温度前馈—反馈控制方案设计27、精馏塔精馏段温度前馈—反馈控制方案设计28、流化床反应器温度前馈—反馈控制方案设计29、发酵罐温度前馈—反馈控制方案设计30、管式热裂解反应器出口温度前馈—反馈控制方案设计31、换热器出口温度比值控制方案设计32、乳化物干燥器温度比值控制方案设计33、精馏塔提馏段温度比值控制方案设计34、管式加热炉出口温度比值控制方案设计35、夹套式反应器温度比值控制方案设计36、燃烧式工业窑炉温度比值控制方案设计37、精馏塔精馏段温度比值控制方案设计38、流化床反应器温度比值控制方案设计39、发酵罐温度比值控制方案设计40、管式热裂解反应器原料油与蒸汽流量比值控制方案设计41、锅炉出口蒸汽压力单回路控制方案设计42、锅炉出口蒸汽压力串级控制方案设计43、锅炉出口蒸汽压力前馈—反馈控制方案设计44、锅炉出口蒸汽压力比值控制方案设计45、炉膛负压单回路控制方案设计46、炉膛负压前馈—反馈控制方案设计47、离心泵压力定值控制方案设计课程设计教材及主要参考资料:1、戴连奎,《过程控制工程》,化学工业出版社,20122、杜维,《过程检测技术及仪表》,化学工业出版社,20013、姜培正,《过程流体机械》,化学工业出版社,20024、王毅,《过程装备控制技术与应用》,化学工业出版社,20015、厉玉鸣,《化工仪表及自动化》,化学工业出版社,2006一、课程设计教学目的及基本要求:1.课程设计的教学目的培养学生将理论知识应用到解决实际问题的能力,通过该课程的学生,可以很好地训练学生的实际动手能力和解决工程问题的能力,为学生从学校到工厂和技术部门提供前期的训练。

集中供热工程换热站专用控制系统设计及控制方案

集中供热工程换热站专用控制系统设计及控制方案

集中供热工程换热站专用控制系统设计及控制方案技术方案山西科达自控工程技术有限公司2011年1月目录1。

第一章设计方案综述 (3)1.1热网控制系统技术方案 (4)1。

1.1 设计原则 (4)1。

1.2 方案简介 (4)1.1.3 功能特点 (5)1。

2热网控制系统功能 (7)1。

2。

1 网络结构图 (7)1.2。

2 网络结构概述 (7)1。

2.3 监控调度中心软件功能 (8)1.2.4 本地换热站控制器功能 (16)1.2.5 热网平衡模块功能 (17)1. 第一章设计方案综述本系统是集公司多年来供热工程应用经验,专门针对北方集中供热工程项目提供的换热站专用控制系统.该系统采用浙江中控自动化仪表有限公司自主研发的U6-200一体化PLC,监控中心上位机软件采用Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对各个小区换热站热网运行参数的采集存储,外界环境温度的补偿,热网温度流量、动力设备的启停及调节、安全报警以及自动分析、热网系统故障诊断、能源计量分析等功能,并配合现场网络视频监控系统,以达到整个热网系统的供热平衡、安全、经济运行,最终实现无人值守型换热站。

换热站专用控制系统图示在自动化设计上,设置监控中心控制室(调度中心)一个,内含2台调度计算机同时通过通讯的方式对换热站进行监控,2台调度中心计算机为1主1备冗余。

主监控操作站完成控制室内人机交互功能,在计算机上显示各站换热网的工艺管道、参数、控制流程图,包含各类热力参数、阀门等各类执行机构状态的显示和自/手动操作。

监控操作站除完成基本的各换热站运行数据采集、远程调度控制、数据记录报表生成等之外,还具备热网平衡调节、提供热网负荷需求趋势预测、预测负荷与实际负荷对比、互联网web远程浏览、手机wap 浏览、手机短信报警等热网管理功能.换热站采用就地与主控室远程控制协作方式。

各站放置独立U6-200一体化PLC一套,该终端设备配有彩色触摸屏,方便巡检人员进行就地观测,实现小区热网运行参数的采集与监控,如压力、温度、流量、电流等,并集中将运行参数发送至远方控制中心;U6-200一体化PLC可就地存储至少一个采暖期的运行参数,实现根据室外温度值自动控制二次供回水温度,并可同时控制循环变频及补水变频,进行量值的调节;在启用换热平衡模块后,各站控制器接收主控室发送的平衡参数,结合各站过程参数调节二次供回水温度;控制器也可接收主控室下发的各项命令,完成远程控制热网温度、流量、动力设备的启停等。

换热器温度控制系统

换热器温度控制系统

1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。

为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。

1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。

常用的工作指标主要有漏损率、换热效率和温度效率。

它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。

在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。

换热器出口温度设置

换热器出口温度设置

摘要目前,换热器控制中大多数仍采用简单控制系统及传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统。

但是,由于换热系统这种被控对象具有纯滞后、大惯性、参数时变的非线性特点,传统的PID 控制往往不能满足其静态、动态特性的要求。

使换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。

如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义本课题是针对换热器实验设备温度控制改进提出的。

设计中首先通过对现阶段换热器出口温度控制的特点进行分析,从而发现了制约控制效果进一步提高的瓶颈,为下一步改善换热器的控制效果提供了理论依据。

然后根据换热系统组成、控制流程的特点对换热器温度控制系统建立数学模型。

再根据所建立的数学模型,联系换热器温度控制的特点,给出了相应的控制策略,提出了串级控制及前馈控制或串级—反馈,前馈—反馈等复杂控制系统,来满足对于存在大的负荷干扰且和控制品质要求较高的应用场合。

关键字:换热器、数学模型、PID 、出口温度控制、串级控制前言换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。

随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。

换热器因而面临着新的挑战。

换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。

在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。

随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。

从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。

石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大型风力发电场的建设、太阳能光伏发电产业中多晶硅产量的迅速增长、大型环境保护工程的开工建设、海水淡化工程的日益成熟,都将对换热器产业产生巨大的拉动。

《过程控制系统及应用》课程标准

《过程控制系统及应用》课程标准

《过程控制系统及应用》课程标准课程名称:过程控制系统及应用课程类别:专业方向课课程制定依据:《工业自动化仪表及应用专业人才培养方案》建议课时数:96学时适用专业:工业自动化仪表及应用专业(装配与调试方向)一、课程性质与设计思路(一)课程性质本课程是中等职业学校“工业自动化仪表及应用”专业的一门专业方向课程,适用于中等职业学校仪表类专业,是从事过程控制自动化仪表装置应用维护岗位工作的必修课程。

(二)课程任务通过教师的课堂讲授,学生课堂讨论、练习、实训等环节的参与,使学生获得过程控制系统的调试、运行及故障维修的基本知识和基本技能,培养学生分析问题和解决问题的能力,为学生顶岗实习和为胜任过程控制仪表系统的运行与故障维护岗位工作打下良好的基础。

(≡)设计思路本课程的设计思路是以学生将来从事的职业岗位群所需要的相关知识和基本技能为依据确定课程目标,根据目标设计课程内容,内容由浅至深、先易后难、前后呼应,由简单控制系统到复杂的控制系统。

包含“安全常规”、“认识过程控制系统”、“液位单回路控制系统”、“压力单回路控制系统”、“流量单回路控制系统”、“换热器热出口温度和冷水流量串级控制系统”、“JX-30OX控制系统在精储塔控制中的应用”等项目,教学设计中,充分利用先进的教学设备与实训手段,按“认识设备”一“识读控制流程,,f“项目实施”一“项目评估”的流程完成教学活动。

以应用性教学为主,注重培养学生的能力。

二、课程目标本课程是培养学生对过程控制系统应用与维护的能力。

立足这一目的,本课程结合岗位任务内容,按照工业自动化仪器仪表与装置装配工岗位能力要求制定知识目标、能力目标、情感态度目标,通过学习使学生养成自主学习习惯,掌握实际操作技能,培养良好的思维习惯和职业规范,锻炼学生的团队合作精神,为后期学习和就业打好基础。

(一)知识目标1.掌握过程控制的一般概念、组成、分类及主要性能指标。

2.掌握液位、压力、流量、温度过程控制系统的构成。

06 换热器热流出口温度控制

06 换热器热流出口温度控制
修改OP的值,也就是不断改变阀门FV1103开度,观察SP和 PV的值,当其值达到120℃左右时,将控制器投自动。
15
实验步骤
整定控制器参数。
当比例增益Kc取1时,改变热流出口温度TI1104的SP,如从 120℃变为130℃,当TI1104稳定后再将SP从130℃改为 120℃,观察并记录TI1104的响应曲线。
控制器参数 Ti ----
0.85Tk 0.5Tk
Td ------0.13Tk
计算出控制器参数之后,先将K---c放在比计算值稍小一些
(一般小20%)的数值上,再依次放上Ti和Td的值,最后再
将K---c放回到计算值上即可。修改SP的值加入阶跃干扰,观
察1104的响应曲线,看衰减比是否达到4:1。
0.5Ts 0.3Ts
Td ------0.1Ts
计算出控制器参数之后,先将Kc放在比计算值稍小一些(一
般小20%)的数值上,再依次放上Ti和Td的值,最后再将Kc放
回到计算值上即可。施加扰动,观察换热器热流出口温度的
响应情况。
30
PID控制器参数的工程整定法
衰减振荡法
1.将TI1104设定值从120变为130,记录TI1104的响应曲线。 2.待TI1104稳定后,将TI1104设定值从130再变为120,记录 TI1104的响应曲线。 3.待系统稳定之后,手工将FV1105开度设置为40,观察 TI1104曲线的变化趋势。 4.当TI1104稳定后,再将FV1105开度调回到30,等待TI1104 稳定。
根据比例控制器的特点,不断修改Kc的值,每修改一次都要 通过改变SP来加入阶跃扰动,直到热流出口温度曲线出现4:1 衰减。观察并记录TI1104的响应曲线,同时记录下此时Kc的 值。

基于DCS换热器冷水出口温度控制系统

基于DCS换热器冷水出口温度控制系统

重庆化工职业学院课程设计任务书教培中心:自动化教培中心专业班级:学生姓名:设计题目:基于DCS换热器冷水出口温度控制系统起迄日期: 2011年6月2日~ 2011年6月23日摘要集散控制系统(Total Distributed Control System, DCS )是以微处理器为基础的集中分散型控制系统。

自20世纪70年代中期集散控制系统问世以来,已在工业控制领域得到了广泛的应用,越来越多的仪表和控制工程师已认识到集散控制系统并将成为工业自动控制的主流。

它具备分散控制、集中管理;采用局部网路通信技术;完善的功能控制;采用模块化和开放性结构,系统扩展方便;管理能力强;安全可靠性高等特点具有很强的实用价值。

本项目采用的是浙大中控(SUPCON JX-300X)的DCS,运用与之相配的AdvanTrol-Pro系统软件(V2.50)_SP06输出的组态软件。

实现现场数据实时记录和监控,设计了记录查询、报警、实时模拟等具有Windows风格的动态操作画面。

串级控制系统在生产过程中需要自动保持两个或多个参数之间的关系。

所以在工业生产过程中广泛运用,在此项目中运用的是浙大中控的DCS来做换热器冷水出口温度控制系统的比值控制,通过串级控制来保持两液位的稳态。

引言在现代工业生产过程中,主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。

如果控制不稳定就会影响产品的质量,严重的甚至会造成生产事故。

为此在生产过程中需要主、副两个控制器串接工作,这种控制系统就是串级控制系统。

串级控制系统:串级控制系统是由其结构上的特征而得名的。

它是由主、副两个控制器串接工作的。

主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。

串级控制系统的特点,使用场合:串级控制系统的主要特点为:(1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统;(2)系统的目的在于通过设置副变量来提高对主变量的控制质量}(3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响;(4)系统对负荷改变时有一定的自适应能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 系统组成总体结构 .......................................... 3 2.2.1 换热器温度控制系统的组成与特点 ....................... 3 2.2.2 换热器温度控制原理 ................................... 3

6、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在 4000 字以上。
技术参数
测量范围:0~100℃;
控制温度:60±0.5℃;
最大偏差:1℃。
1、布置任务,查阅资料,理解掌握系统的控制要求。(2 天,分散完成)
2、确定系统的控制方案,绘制 P&ID 图、系统框图。(1 天,实验室完成)

绩 总成绩:
指导教师签字:
年月日
注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算
I
本科生课程设计(论文)
摘要
在本次课设换热器温度控制系统设计中,主要作用是实现以冷物料的加热,因此 用单回路闭环系统就可实现对换热器出口温度控制。但同冷物料流量不稳定,是本系 统的最主要扰动,为了克服冷物料流量变化对被控参数的影响,采取 smith 预估补偿 控制,力图使被延迟了 τ 的被调量提前反映到调节器,并使之动作,以此来减小超调 量并加速调节过程,可以大大减少这些扰动因素对于热流体出口温度的影响,取得比 常规 PID 更好的控制效果,控制系统的稳定性好、超调量小、控制精度更高。
可以看出,它是一个纯滞后的一阶惯性环节。一般的温控系统如图2.3所示。
图2.3 一般温控系统方框图
图中 R(s)为参扰。从图 2.3 可以得出换热器一般温控系统闭环传递函数为:
G(s) = ( ) ( )
() ()
(2-2)
由于特征方程里含有 项,这对控制系统稳定性极其不利,若τ足够大,系统 就很难稳定;而且由于系统中含有纯滞后环节,使控制器的设计变得复杂。
2
2.2 系统组成总体构
本科生课程设计(论文)
2.2.1 换热器温度控制系统的组成与特点
(1) 换热器的组成 换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、 涡轮流量传感器、温度传感器等设备。根据控制系统的复杂程度,可以将其分为简单 控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统 和前馈控制系统。 (2) 系统控制过程的特点 换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、 执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验 元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器, 调节器对偏差信号进行运算处理后输出控制作用。 换热器的温度控制系统工艺流程如下::冷流体和热流体分别通过换热器的壳程 和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度, 通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵 流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体 进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调 节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来 控制。 (3) 引起换热器出口温度变化的扰动因素 简要概括起来,引起换热器出口温度变化的扰动因素主要有: 1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度 和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 2)冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速和 阀门的开度等因素的影响。 3)加热炉的启停机的影响。 4)室内温度与管路内气体变化和阀门开度的影响。
3、选择传感器、变送器、控制器、执行器,给出具体型号和参数。(2 天,分散完成)


4、确定控制器的控制规律、控制器正反作用方式以及保证系统无余差。(实验室 1

天)

5、仿真分析或实验测试、答辩。(3 天,实验室完成)
6、撰写、打印设计说明书(1天,分散完成)





语 及
平时:
论文质量:
答辩:
图2.2 换热器出水温度与室外温度关系曲线
4
(2) 换热器一般温控系统
本科生课程设计(论文)
根据换热器的结构及一般热力学原理,可得被控对象传递函数的近似表达式:
( )=
= ()
(2-1)
式中 ( ) ———对象的传递函数; K ———对象的放大系数; ———对象的时间常数; τ ———对象的纯时间滞后; (s) ———对象传递函数中不含纯滞后的部分。
史密斯(Smith)预估补偿器是得到广泛应用的纯滞后系统的控制方法。它针对纯滞 后系统闭环特征方程中含有纯滞后项,在 PID 反馈控制基础上,引入了一个预估补偿 环节,从而使系统闭环特征方程不含纯滞后项,抵消纯滞后特性所造成的影响,明显 地减小超调量和加速调节过程,提高了控制质量。
若特征方程中包含了 ,随着频率ω的增加, 的相角无限减小,使系统 的稳定范围大大缩小,为了保证系统稳定性,只能减小增益,使调节控制作用减弱, 这样使系统响应速度慢,系统适应性较差。
关键词:史密斯预估补偿;纯滞后;换热器;PID
II
本科生课程设计(论文)
目录
第 1 章 绪论 ...................................................... 1 第 2 章 课程设计的方案 ........................................... 2
2.2.2 换热器温度控制原理
(1) 换热器温度控制原理介绍
3
本科生课程设计(论文)
图2-1为蒸汽水换热器的工作原理图。加热介质为蒸汽,冷流体为水,控制目标 是通过调节蒸汽流量来保证换热器出口热水温度稳定,温度控制器由微机控制。
T,T1~T3 温度传感器 M 电动调节阀 图2.1 换热器温度控制原理图
Smith 预估补偿的基本控制策略是:构造一个过程参考模型,将迟延环节 移 出系统闭环,使系统反馈信号不受 的影响,使系统调节品质、稳定性等得到相应 改善。系统响应速度提高,适应性强。
1
本科生课程设计(论文)
2.1 概述
第2章 课程设计的方案
换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、 涡轮流量传感器、温度传感器等设备。根据控制系统的复杂程度,可以将其分为简单 控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统 和前馈控制系统。
辽 宁 工 业大学
过程控制系统 课程设计(论文)
题目:换热器温度控制系统设计
院(系): 专业班级: 学 号: 学生姓名: 指导教师: 起止时间:
(签字)
院(系):电气工程学院
本科生课程设计(论文)
课程设计(论文)任务及评语
教研室:自动化教研室
课程设计(论 文)题目
换热器温度控制系统设计
课题完成的设计任务及功能、要求、技术参数
其工作原理为:温度传感器T测量换热器出水温度,把信号传送至DDC现场控制 器,此为温度控制的主回路。同时,控制器还接受室外温度传感器T3发出的辅助信号, 控制器根据预先设置的工作曲线,调整出水温度的设定值,控制电动调节阀M的开度, 调节换热器入口的高温介质流量,使得换热器出水温度随室外温度变化(见图2.2)。
2.1.2 史密斯预估补偿控制设计
Smith 预估器控制的基本思路是:预先估计过程在基本扰动下的动态特性,然后 由预估器进行补偿控制,力图使被延迟了 τ 的被调量提前反映到调节器,并使之动作, 以此来减小超调量并加速调节过程。对于带长时滞过程而言,Smith 预估器是一种非 常有效的通用的补偿器,其主要优点在于滞后时间能从闭环系统的特征方程中消除。 然而,预估器要求被控对象的数学模型非常准确,这在实际工程中很难办到,特别是 对积分和非稳定系统,其控制更为困难。
III
本科生课程设计(论文)
第1章 绪论
在现代工业过程中,有不少的过程特性具有较大的纯滞后时间,其特点是当控制 作用产生后,在纯滞后时间τ范围内,被控参数完全没有响应。
上述纯滞后过程中,被控参数不能及时地反映系统所承受的扰动,从而产生明显 的超调,似的控制系统的稳定性变差,调节时间延长,对系统的设计和控制增加了很 大的难度。常规 PID 调节,不仅超调量大而且调节时间长,不能满足高控制精度的要 求,因而对此类问题的研究具有重要的理论和实际意义。
2.1 概述 ...................................................... 2 2.1.1 串级控制系统设计 ..................................... 2 2.1.2 史密斯预估补偿控制设计 ............................... 2
第 3 章 换热器温度控制系统设计 ................................. 7
3.1 温度控制系统的硬件设计 .................................... 7 3.1.1 温度变送器的选择 ...................................... 7 3.1.2 流量变送器的选择 ...................................... 7 3.1.3 执行器(调节阀)的选择: ................................ 9 3.1.4 调节器的选择: ........................................ 9
实现功能
在供暖系统中为保证热源工作安全,在热源与用户管网之间通过换热器完成热量的
相关文档
最新文档