北师大版九年级数学上册《1.3 正方形的性质与判定》 同步练习试题

合集下载

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定》同步练习题(附答案)一.选择题1.正方形具有而矩形不一定具有的性质是()A.对角线相等B.四个角都是直角C.对角线互相垂直D.两组对边分别平行2.下列说法正确的是()A.正方形既是矩形,又是菱形B.有一个内角是直角的四边形是矩形C.两条对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形3.如图,已知四边形ABCD是平行四边形,下列结论正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是矩形C.当AC⊥BD时,四边形ABCD是菱形D.当∠ABC=90°时,四边形ABCD是正方形4.在正方形ABCD中,BF平分∠DBC交CD于F点,则∠DBF的度数是()A.15°B.22.5°C.30°D.45°5.如图,点E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE相交于点G,下列结论不正确的是()A.AF=BE B.AF⊥BEC.AG=GE D.S△ABG=S四边形CEGF6.如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半7.如图1是由一根细铁丝围成的正方形,其边长为1.现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.0B.2.5C.2.0D.1.58.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.49.如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4B.3C.2.5D.210.如图四块同样大小的正方形纸片,围出一个菱形ABCD,一个小孩顺次在这四块纸片上轮流走动,每一步都踩在一块纸片的中心,则这个小孩走的路线所围成的图形是()A.平行四边形B.矩形C.菱形D.正方形二.填空题11.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为.12.添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)14.边长为4的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如图,正方形ABCD内部有一个等边△ABE,则∠DAE=°.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,点D的坐标是(2,3),则点B的坐标是.17.如图,点D,E,F分别是△ABC三边的中点,连接AD,DE,DF,有下列结论:①四边形AEDF一定是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.其中正确的有.(填序号)三.解答题18.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且AB=4,CF=1.(1)求AE,EF,AF的长;(2)求证:∠AEF=90°.19.如图,在正方形ABCD中,PD=QC,求证:PB=AQ,BP⊥AQ.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长.参考答案一.选择题1.解:∵正方形的性质为:对边平行且相等,四条边相等,四个角为直角,对角线互相垂直平分,相等,且每条对角线平分一组对角,矩形的性质为:对边平行且相等,四个角为直角,对角线互相平分,相等,∴正方形具有而矩形不一定具有的性质是:对角线互相垂直,故选:C.2.解:A.正方形既是矩形,又是菱形,正确,符合题意;B.有一个内角是直角的四边形是矩形,错误,不符合题意;C.两条对角线互相垂直平分的四边形是正方形,错误,不符合题意;D.对角线互相垂直的四边形是菱形,错误,不符合题意.故选:A.3.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.4.解:∵BD是正方形ABCD的对角线,∴∠DBC=45°.∵BF平分∠DBC,∴∠DBF=∠DBC=22.5°.故选:B.5.解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵BF=CE,∴△ABF≌△BCE(SAS),∴AF=BE,∠BAG=∠CBE,∴选项A不符合题意;∵∠ABG+∠CBE=∠ABC=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,∴AF⊥BE,∴选项B不符合题意;∵△ABF≌△BCE,∴S△ABF=S△BCE,∴S△ABF﹣S△BFG=S△BCE﹣S△BFG,∴S△ABG=S四边形CEGF,∴选项D不符合题意;∵无法证明AG=GE,∴选项C符合题意;故选:C.6.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AF=BP=CQ=DE,∴DF=CE=BQ=AP,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;∵EF=FP=PQ=QE,∴四边形EFPQ是菱形,∴EF∥PQ,故B选项正确,不符合题意;∵△APF≌△BQP,∴∠AFP=∠BPQ,∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.故C选项正确,不符合题意;∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,若四边形PQEF的面积是四边形ABCD面积的一半,则EF2=AB2,即EF=AB.若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,故D选项不一定正确,符合题意.故选:D.7.解:∵由一根细铁丝围成的正方形,其边长为1,∴该细铁丝的长度为4.∴AC+BC+AB=4,∴AC+BC=4﹣AB.∵AC+BC>AB,∴4﹣AB>AB,∴AB<2.∴AB的长可能为1.5,故选:D.8.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.9.解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.10.解:如图,根据题意,顺次连接四个正方形的中心,所构成的图形是正方形,所以这个小孩走的路线所围成的图形是正方形.故选:D.二.填空题11.解:∵阴影部分是一个正方形,∴∠ACB=90°,∵∠B=45°,∴△ABC是等腰直角三角形,∴AC===2,∴正方形的面积为(2)2=8,故答案为:8.12.解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(或AC⊥BD答案不唯一).13.解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.14.解:过C作CD⊥AB交AB延长线与D,如图:∵∠CBD=180﹣90°﹣60°=30°,∠D=90°,∴CD=BC=×4=2,∴△ABC的面积为AB•CD=×4×2=4,故答案为:4.15.解:∵四边形ABCD是正方形,∴∠DAB=90°,∵△ABE是等边三角形,∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,故答案为:30.16.解:∵四边形ABCD为正方形,∴AD=CD=BC=AB,∵点D的坐标是(2,3),∴AD=CD=BC=3,OC=2,∴OB=1,∴点B的坐标是(﹣1,0).故答案为:(﹣1,0).17.解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠BAC=90°,则平行四边形AEDF是矩形,故正确;③若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.三.解答题18.(1)解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵E为AB的中点,∴BE=CE=2,∴AE===2,EF===,AF===5;(2)证明:∵AE2+EF2=20+5=25,AF2=52=25,∴AE2+EF2=AF2,∴∠AEF=90°.19.证明:由题意可得:AD=AB=BC=DC,∠BAD=∠ADC=∠ABC=∠C=90°,∵PD=QC,∴AP=DQ,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴BP=AQ,∠APB=∠AQD,∵∠DAQ+∠AQD=90°,∴∠DAQ+∠APB=90°,∴BP⊥AQ,∴BP=AQ,BP⊥AQ.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2,在Rt△ABC中,AB=2,∴AC=AB=4,∵CE=2,∴AE=4﹣2=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴CG=CE=2.。

1.3+正方形的性质与判定++++暑假预习++++2024-2025学年北师大版数学九年级上册

1.3+正方形的性质与判定++++暑假预习++++2024-2025学年北师大版数学九年级上册

1.3 正方形的性质与判定暑假预习一、选择题1.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为S1,把圆周经过的所有小方格的圆外部分的面积之和记为S2,则S1S2的整数部分是().A.0 B.1 C.2 D.32.如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,连接AC,分别交EF,GH于点M,N.已知AH=3DH,正方形ABCD的面积为24,则图中阴影部分的面积之和为()A.4B.4.5C.4.8D.53. 用4张全等的直角三角形纸片拼接成如图所示的图案,得到两个大小不同的正方形ABCD和正方形EFGH,每个直角三角形纸片的两条直角边长之比为1:2,若正方形EFGH的面积为5,则正方形ABCD的面积为( )A.2√3+4B. 12C. 4√5D. 94.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)5.四边形当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD 的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是()A.1 B.C.D.6.如图,正方形ABCD的边长为10,E为AD的中点,连接CE,过点B作BF⊥CE 交CD于点F,垂足为G,连接AG、DG,下列结论:①BF=CE;②AG=CD;③∠CDG=∠AGE;④EG=2;⑤DG=CG.其中正确结论有()A.①②④B.②③⑤C.①②⑤D.①④⑤7.如图,正方形ABCD的边长为8,将正方形折叠,使顶点D落在BC边上的点E 处,折痕为GH.若BE=EC,则线段CH的长是()A .3B .4C .5D .68.如图,矩形ABOC 的边BO 、CO 分别在x 轴、y 轴上,点A 的坐标是6,4,点D 、E 分别为AC 、OC 的中点,点P 为OB 上一动点,当PD PE +最小时,点P 的坐标为( )A .()1,0-B .()2,0-C .()3,0-D .()4,0-9.如图,两个正方形的边长都为2.其中一个正方形的一顶点在另一个正方形的中心,则两个正方形重叠部分的面积是( )A .0.5B .1C .2D .无法确定10.如图,正方形ABCD 中,6AB =,将ADE 沿AE 对折至AEF △,延长EF 交BC 于点G ,G 刚好是BC 边的中点,则ED 的长是( )A .2B .3C .4D .5二、填空题 1.矩形ABCD 的对角线,AC BD 相交于点O ,4BD =.要使得矩形ABCD 是正方形,则AB 的长为 .2.如图,正方形ABCD中,对角线BD长为15cm.P是线段AB上任意一点,则点P到AC,BD的距离之和等于cm.3.如图,直线l过正方形ABCD的顶点D,过A、C分别作直线l的垂线,垂足分别为E、F.若AE=4a,CF=a,则正方形ABCD的面积为.4.如图,E、F、G、H分别是四边形ABCD各边的中点,若对角线AC BD、的长都是20cm,则四边形EFGH的周长是cm.5.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是.6.如图,面积为3的正方形ABCD的顶点C在数轴上,且表示的数为3,以点C为圆心,CD长为半径画弧交数轴上点C左侧于P点,则P点表示的数为.三、解答题1.小明同学从一张面积为5的正方形Ⅰ中剪出一个面积为2的小正方形Ⅱ,并按如图所示摆放,其中A,B,C三点共线,求线段AD的长.2.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.求证:AF⊥DE.3.已知:在平行四边形ABCD中,分别延长BA,DC到点E,H,使得BE=2AB,DH =2CD.连接EH,分别交AD,BC于点F,G.(1)求证:AF=CG;(2)连接BD交EH于点O,若EH⊥BD,则当线段AB与线段AD满足什么数量关系时,四边形BEDH是正方形?4.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求证:∠EDG=45°.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.(3)当BE:EC=时,DE=DG.5.如图,正方形ABCD中,对角线AC、BD交于点O,点P在线段BC上(不含点B),2ACB BPE∠=∠,PE交OB于E, 过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE= ;并结合图2证明你的猜想.。

北师大版九级数学上正方形的性质与判定正方形的判定专题练习题及答案

北师大版九级数学上正方形的性质与判定正方形的判定专题练习题及答案

北师大版九年级数学上册第一章特殊平行四边形3.正方形的性质与判定正方形的判定专题练习题1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC3. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.如图,只要把一张矩形纸片的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是____________________________.5.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四位同学的答案都正确,则黑板上画的图形是__________.7.对角线________的菱形是正方形,对角线________的矩形是正方形,对角线________________的平行四边形是正方形,对角线的四边形是正方形.8.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F.求证:四边形DEBF是正方形.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.10.四边形ABCD的对角线AC=BD,AC⊥BD,分别过点A,B,C,D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF12.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成________度角.13.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为________;所作的第n 个四边形的周长为________.14.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 的边AB,CD,DA上,且AH=2,连接CF.若DG=2,求证:菱形EFGH为正方形.15.如图,正方形CEFG的边GC在正方形ABCD的边CD上,延长CD到H,使DH=CE,K在BC边上,且BK=CE,求证:四边形AKFH为正方形.答案:1---3 DCB4. 有一组邻边相等的矩形是正方形5. AC=BD6. 正方形7. 相等互相垂直互相垂直且相等互相垂直平分且相等8.证明:∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°.又∵∠ABC=90°,∴四边形BEDF为矩形.∵BD是∠ABC的平分线,且DE⊥AB,DF⊥BC,∴DE=DF,∴矩形BEDF为正方形.9. (1)证明:∵△CFE是由△ADE绕点E旋转180°得到的,∴A,E,C三点共线,D,E,F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形;(2)解:当∠ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵AC=BC,AD=BD,∴CD⊥AB,即∠ADC=90°.由(1)知,四边形ADCF是平行四边形,∴四边形ADCF是矩形.又∵∠ACB=90°,∴CD=12AB=AD,故四边形ADCF是正方形10. A11. D12. 4513. 2 4(2 2)n14.证明:∵四边形ABCD是正方形,∴∠D=∠A=90°.∵四边形EFGH是菱形,∴HG =HE.∵DG=AH=2,∴Rt△HDG≌Rt△EAH,∴∠DHG=∠AEH.又∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.15.证明:∵四边形ABCD和四边形CEFG是正方形,∴AB=BC=CD=AD,∠BAD=∠DCB=∠B=∠ADC=90°,∠GCE=∠E=∠GFE=∠CGF=90°,∴∠ADH=∠HGF=∠E=∠B=90°.又∵DH=CE,BK=CE,∴BK=GF=DH=EF,KE=GH=AB=AD,∴△ABK ≌△KEF≌△HGF≌△ADH,∴AK=KF=HF=AH,∠BAK=∠DAH.∵∠BAD=90°,∴∠HAK=∠HAD+∠DAK=∠BAK+∠DAK=∠BAD=90°,∴四边形AKFH为正方形.。

北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习

北师大版九年级数学上册第一章特殊平行四边形《正方形的性质与判定》同步练习

正方形的性质与判定(典型题)第1课时正方形及其性质1.如图1,已知P是正方形ABCD的对角线BD上一点,且BP=BC,则∠ACP的度数是()图1A.45°B.22.5°C.67.5°D.75°2.正方形的一条对角线的长为4,则这个正方形的面积是()A.8 B.4 2C.8 2D.163.如图2,四边形ABCD是正方形,E,F分别是AB,AD上的一点,且BF⊥CE,垂足为G.求证:AF=BE.图24.如图,在正方形ABCD的外侧作等边三角形ADE,AC,BE交于点F,则∠BFC的度数为()A.45°B.55°C.60°D.75°5.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,Rt△FEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.23a2B.14a2C.59a2D.49a26.如图5,正方形ABCD的边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为________.图57.如图6,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC相交于点G,连接AE,CF.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.图68.如图7,正方形ABCD绕点A逆时针旋转45°与正方形AEFG重合,EF与CD交于点M,得四边形AEMD,正方形ABCD的边长为2,则两正方形重合部分(阴影部分)的面积为()图7A.4 2-4 B.4 2+4 C.8-4 2 D.2+19.如图8,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG 绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()图8A.2+6B.3+1C.3+2D.3+610.如图9,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.图911.如图10所示,在正方形ABCD中,点E,F分别在边AD,CD上,且∠EBF=45°.(1)求证:EF=FC+AE;(2)若AB=2,求△DEF的周长.图1012.如图11,在正方形ABCD中,点E,F分别在BC,CD上移动,但点A到EF的距离AH始终保持与AB的长相等,则在点E,F移动的过程中:(1)∠EAF的大小是否发生变化?请说明理由;(2)△ECF的周长是否发生变化?请说明理由.图1113.如图12,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1,A2,A3,A4,…在射线ON上,点B1,B2,B3,B4,…在射线OM上……依此类推,则第n个正方形的周长C n=________.图1214.如图13①,在正方形ABCD中,E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图②,若E,F分别是边CB,BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请做出判断并给予证明;(3)如图③,若E,F分别是边BC,AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案1.B2.A3.证明:∵四边形ABCD是正方形,∴AB=BC,∠A=∠CBE=90°.∵BF⊥CE,∴∠BCE+∠CBG=90°.∵∠ABF+∠CBG=90°,∴∠BCE=∠ABF.在△BCE和△ABF中,∠BCE=∠ABF,BC=AB,∠CBE=∠A,∴△BCE≌△ABF(ASA),∴AF=BE.4.C5.D6.6 2[解析]7.解:(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,∴∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°.∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠GBE+∠BEF=80°.8.A9.A10.3211.解:(1)证明:将△ABE绕点B顺时针旋转90°得到△CBM,则BA=BC,AE=CM,BE=BM,∠ABE=∠CBM,∠A=∠BCM.∵四边形ABCD是正方形,∴∠A=∠ABC=∠BCD=90°,∴F,C,M三点共线,∠EBM=90°.∵∠EBF=45°,∴∠FBM=45°.在△BEF与△BMF中,BE=BM,∠EBF=∠MBF,BF=BF,∴△BEF≌△BMF,∴EF=FM=FC+CM=FC+AE.(2)由(1)知EF=FC+AE,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=2AB=4. 12.解:(1)∠EAF的大小不发生变化.理由如下:根据题意,知AB=AH,∠B=∠AHE=90°.又∵AE=AE,∴Rt△BAE≌Rt△HAE,∴∠BAE=∠HAE.同理,Rt△HAF≌Rt△DAF,∴∠HAF=∠DAF,∴∠EAF=12∠BAH+12∠HAD=12(∠BAH+∠HAD)=12∠BAD.又∵∠BAD=90°,∴∠EAF=45°,∴∠EAF的大小不发生变化.(2)△ECF的周长不发生变化.理由如下:C△ECF=EF+EC+FC.由(1),得Rt△BAE≌Rt△HAE,∴EB=HE.同理,HF=DF.∴C△ECF=EF+EC+FC=EB+DF+EC+FC=2BC,∴△ECF的周长不发生变化.13.2n+114.解:(1)相等互相平行(2)成立.证明:如图,过点G作GH⊥CB交其延长线于点H.∵EG⊥DE,∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE.在△HGE与△CED中,∠GHE=∠DCE=90°,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED,∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.又∵GH∥BF且∠GHE=90°,∴四边形GHBF是矩形,∴FG=BH,FG∥CH,∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=CE,∴FG=CE.(3)成立.FG=CE,FG∥CE.第2课时正方形的判定(典型题)1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是________.3.如图14,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA 的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.图14A.30°B.45°C.60°D.90°4.已知四边形ABCD各边的中点分别是E,F,G,H,如果四边形ABCD满足____________________,那么四边形EFGH是正方形.5.如图15,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.图156.如图16,在Rt△ABC中,∠BAC=90°,AD=CD,E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF,CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.图167.⑥如图17,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是()图17A.7 B.8 C.7 2D.7 38.2017·宜昌如图18,正方形ABCD的边长为1,O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,请直接填空:ON________(填“可能”或“不可能”)过点D;(图①仅供分析)(2)如图②,在ON上截取OE=OA,过点E作EF垂直于直线BC,垂足为F,作EH⊥CD 于点H,求证:四边形EFCH为正方形.图189.如图19,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求出四边形EDFG面积的最小值.图1910.矩形的四个内角平分线围成的四边形是()A.正方形B.矩形C.菱形D.一般平行四边形11.如图0,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P.若四边形ABCD的面积是18,则DP的长是________.图012.如图1,E是矩形ABCD的边BC的中点,P是边AD上的一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?并证明;(2)在(1)的条件下,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?图113.如图2,AC,BD是正方形ABCD的对角线,将△DCB绕点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.(1)求证:△AED≌△GED;(2)求证:四边形AEGF是菱形;(3)若AC=1,求BC+FG的值.图214.如图3①,△ABC中,AD平分∠BAC交BC于点D,在线段AB上截取AE=AC,过点E作EF∥BC交AD于点F.连接DE,DF.(1)试判断四边形CDEF是何种特殊的四边形.(2)当AB>AC,∠ABC=20°时,四边形CDEF能是正方形吗?如果能,求出此时∠BAC 的度数;如果不能,请说明理由.(3)若AD平分∠BAC的外角交直线BC于点D,在直线AB上截取AE=AC,过点E作EF∥BC交直线AD于点F,如图②”,设∠ABC=x,其他条件不变,四边形CDEF能是正方形吗?如果能,求出此时∠BAC关于x的关系式;如果不能,试说明理由.图3参考答案1.D2.①③④3.D.4.对角线互相垂直且相等5.解:(1)证明:∵AF∥BC,∴∠EAF=∠EDB.∵E是AD的中点,∴AE=DE.在△AEF和△DEB中,∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,∴△AEF≌△DEB(ASA),∴AF=BD.∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=12BC,∴AD=AF.(2)四边形ADCF是正方形.证明:∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形.∵AB=AC,AD是中线,∴AD⊥BC.又∵AD=AF,∴四边形ADCF是正方形.6.证明:(1)∵AD=CD,E是边AC的中点,∴DE⊥AC,∴DE是线段AC的垂直平分线,∴AF=CF,∴∠F AC=∠ACB.在Rt△ABC中,由∠BAC=90°,得∠B+∠ACB=90°,∠F AC+∠BAF=90°,∴∠B=∠BAF,∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵E是边AC的中点,∴AE=CE.在△AEG和△CEF中,∠AGE=∠CFE,∠AEG=∠CEF,AE=CE,∴△AEG≌△CEF(AAS),∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.又∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF,即F是边BC的中点.又∵AB=AC,∴AF⊥BC,即∠AFC=90°,∴四边形AFCG是正方形.7.C8.解:(1)不可能.理由如下:若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过点D,故答案为:不可能.(2)证明:∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°.又∠HCF=90°,∴四边形EFCH为矩形.∵∠MON=90°,∴∠EOF=90°-∠AOB.在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO.在△OFE和△ABO中,∠EOF=∠BAO,∠EFO=∠B,OE=AO,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB.又OF=CF+OC,AB=BC=BO+OC,∴CF=BO=EF,∴四边形EFCH为正方形.9.解:(1)证明:连接CD,如图①所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,AE=CF,∠A=∠DCF,AD=CD,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形.(2)过点D作DE′⊥AC于点E′,如图②所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′=12BC=2,AB=42,点E′为AC的中点,∴2≤DE<22(点E与点E′重合时取等号),∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.10.A11.3212.解:(1)当矩形ABCD的长是宽的2倍时,四边形PHEF是矩形.证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD.∵E是BC的中点,∴AB=BE=EC=CD,则△ABE,△DCE均是等腰直角三角形,∴∠AEB=∠DEC=45°,∴∠AED=90°.在四边形PHEF中,∵∠PFE=∠FEH=∠EHP=90°,∴四边形PHEF是矩形.(2)当点P是AD的中点时,矩形PHEF变为正方形.理由如下:由(1)可得∠BAE=∠CDE=45°,∴∠F AP=∠HDP=45°.又∵∠AFP=∠DHP=90°,AP=DP,∴Rt△AFP≌Rt△DHP,∴PF=PH,∴矩形PHEF是正方形.13.解:(1)证明:由旋转可知DG=DC,∠DGH=∠DCB=90°. ∵AD=CD,∴AD=DG.又∵ED=ED,∴Rt△AED≌Rt△GED(HL).(2)证明:由(1)知△AED≌△GED,∴AE=EG,∠ADE=∠GDE=12∠BDA=22.5°,∴∠CDF=67.5°,∠CFD=67.5°,∴∠CDF=∠CFD,∴CF=CD.又∵AC=BD,CD=DG,∴AF=BG=EG.由旋转知∠H=∠DBC=45°.又∵∠DAC=45°,∴AF∥EG,∴四边形AEGF是平行四边形.又∵AE=EG,∴▱AEGF是菱形.(3)由(2)知四边形AEGF是菱形,∴AF=FG.由(2)知CF=CD,∴BC=CF,∴BC+FG=CF+AF=AC=1.。

九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定作业设计 (新版)北师大版-(新版

九年级数学上册 第一章 特殊平行四边形 1.3 正方形的性质与判定作业设计 (新版)北师大版-(新版

一、选择题(本题包括11个小题.每小题只有1个选项符合题意)(2)如果a≥0,那么=a;(1)若直角三角形的两条边长为5和12,则第三边长是13;1. 下列五个命题:(3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等.其中不正确命题的个数是()A. 2个B. 3个C. 4个D. 5个2. 下列命题,真命题是()A. 两条对角线相等的四边形是平行四边形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平分的四边边是菱形D. 两条对角线平分且相等的四边形是正方形3. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确的结论是()A. ①②③B. ①④⑤C.①③④D. ③④⑤4. 如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形5. 已知四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()A. ∠D=90°B. AB=CDC. AD=BCD. BC=CD6. 如图,将一X长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成()A. 22.5°角B. 30°角C. 45°角D. 60°角7. 在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A. AC=BD,AB∥CD,AB=CDB. AD∥BC,∠A=∠CC. AO=BO=CO=DO,AC⊥BDD. AO=CO,BO=DO,AB=BC8. 用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A. (1)(2)(5)B. (2)(3)(5)C. (1)(4)(5)D. (1)(2)(3)9. 四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A. ①④⇒⑥B. ①③⇒⑤C. ①②⇒⑥D. ②③⇒④10. 下列说法中错误的是()A. 四个角相等的四边形是矩形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 四条边相等的四边形是正方形11. 矩形的四个内角平分线围成的四边形()A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形二、填空题(本题包括2个小题)12. 如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是.13. 把“直角三角形,等腰三角形,等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的拼合而成;(2)菱形可以由两个能够完全重合的拼合而成;(3)矩形可以由两个能够完全重合的拼合而成.三、解答题(本题包括6个小题)14. 如图,点D是线段AB的中点,点C是线段AB的垂直平分线上的任意一点,DE⊥AC于点E,DF⊥BC于点F.(1)求证:CE=CF;(2)点C运动到什么位置时,四边形CEDF成为正方形?请说明理由.15. 已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.(1)求证:△ABC是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.16. 如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.17. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△AB C满足什么条件时,四边形ADCE是一个正方形?并给出证明.18. 如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)若∠A=90°,求证:四边形DFAE是正方形.19. 如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)(2)证明:四边形AHBG是菱形;(3)若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)答案一、选择题1. 【答案】B【解析】(1)由于直角三角形的两条边长为5和12,这两条边没有确定是否是直角边,所以第三边长不唯一,故命题错误;(2)符合二次根式的意义,命题正确;(3)∵点P(a,b)在第三象限,∴a<0、b<0,∴﹣a>0,﹣b+1>0,∴点P(﹣a,﹣b+1).在第一象限,故命题正确;(4)正方形是对角线互相垂直平分且相等的四边形,故命题错误;(5)两边及第三边上的中线对应相等的两个三角形全等是正确的.故选A.考点:直角三角形,二次根式,平面直角坐标系,正方形,三角形全等2. 【答案】C【解析】A、两条对角线互相平分的四边形是平行四边形,故A错误;B、两条对角线平分且相等的四边形是矩形,故B错误;C、两条对角线互相垂直平分的四边边是菱形,故C正确;D、两条对角线平分、垂直且相等的四边形是正方形,故D错误;故选C.3. 【答案】B【解析】解此题的关键在于判断△DEF是否为等腰直角三角形,作常规辅助线连接CF,由SAS定理可证△CFE 和△ADF全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形.可证①正确,②错误,再由割补法可知④是正确的;判断③,⑤比较麻烦,因为△DEF是等腰直角三角形DE=DF,当DF与BC垂直,即DF最小时,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的.故只有①④⑤正确.连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF(SAS);∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形(故①正确).当D、E分别为AC、BC中点时,四边形CDFE是正方形(故②错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CEFD=S△AFC,(故④正确).由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=BC=4.∴DE=DF=4(故③错误).当△CDE面积最大时,由④知,此时△DEF的面积最小.此时S△CDE=S﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8(故⑤正确).故选:B.四边形CEFD考点:正方形的判定;全等三角形的判定与性质;等腰直角三角形.4. 【答案】D【解析】A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点睛】本题主要考查特殊平行四边形的判定,解答本题的关键是:根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.5.【答案】D【解析】由∠A=∠B=∠C=90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D.6. 【答案】C【解析】一X长方形纸片对折两次后,剪下一个角,是菱形,而出现的四边形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕成45°角,菱形就变成了正方形.故选C.7. 【答案】C【解析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.A,不能,只能判定为矩形;B,不能,只能判定为平行四边形;C,能;D,不能,只能判定为菱形.故选C.8. 【答案】A【解析】拿两个“90°、60°、30°的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故选A.9. 【答案】C【解析】A.符合邻边相等的矩形是正方形;B.可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D.可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选C.考点:1.正方形的判定;2.菱形的判定;3.矩形的判定.10. 【答案】D【解析】A正确,符合矩形的定义;B正确,符合正方形的判定;C正确,符合正方形的判定;D不正确,也可能是菱形;故选D.11. 【答案】A【解析】矩形的四个角平分线将举行的四个角分成8个45°的角,因此形成的四边形每个角是90°.又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选A.点睛:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.考点:命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.二、填空题12. 【答案】AC=BD或AB⊥BC.【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.13.【答案】等腰直角三角形,等腰三角形,直角三角形【解析】∵正方形的四边相等,四角为直角,∴正方形可以由两个能够完全重合的等腰直角三角形拼合而成.∵菱形的四边相等,∴菱形可以由两个能够完全重合的等腰三角形拼合而成,∵矩形的四角为直角,∴矩形可以由两个能够完全重合的直角三角形拼合而成.三、解答题14.【答案】(1)详见解析;(2)详见解析.【解析】(1)由CD垂直平分线AB,可得AC=CB,∴∠ACD=∠BCD,再加∠EDC=∠FDC=90°,可证得△ACD≌△BCD (ASA),∴CE=CF;(2)因为有三个角是直角,且邻边相等的四边形是正方形.所以当CD=AB时,四边形CEDF为正方形.(1)证明:∵CD垂直平分线AB,∴AC=CB.∴△ABC是等腰三角形,∵CD⊥AB,∴∠ACD=∠BCD.∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°∴∠EDC=∠FDC,在△DEC与△DFC中,,∴△DEC≌△DFC(ASA),∴CE=CF.(2)解:当CD=AB时,四边形CEDF为正方形.理由如下:∵CD⊥AB,∴∠CDB=∠CDA=90°,∵CD=AB,∴CD=BD=AD,∴∠B=∠DCB=∠ACD=45°,∴∠ACB=90°,∴四边形ECFD是矩形,∵CE=CF,∴四边形ECFD是正方形.考点: 1.线段垂直平分线的性质;2.正方形的判定.15. 【答案】(1)详见解析;(2)详见解析.【解析】(1)先利用HL判定Rt△BDF≌Rt△CDE,从而得到∠B=∠C,即△ABC是等腰三角形;(2)由已知可证明它是矩形,因为有一组邻边相等即可得到四边形AFDE是正方形.(1)证明:∵DE⊥AC,DF⊥AB,∴∠BFD=∠CED=90°,又∵BD=CD,BF=CE,∴Rt△BDF≌Rt△CDE,∴∠B=∠C.故△ABC是等腰三角形;(2)解:四边形AFDE是正方形.证明:∵∠A=90°,DE⊥AC,DF⊥AB,∴四边形AFDE是矩形,又∵Rt△BDF≌Rt△CDE,∴DF=DE,∴四边形AFDE是正方形.16. 【答案】(1)详见解析;(2)详见解析.【解析】解:(1)∵四边形ABCD是平行四边形, AO="CO "又∵△ACE是等边三角形,∴EO⊥AC,即DB⊥AC∴平行四边形ABCD是菱形.(2)∵△ACE是等边三角形,∴∠AEC=60°∵EO⊥AC ∴∠AEO=∠AEC=30°∵∠AED=2∠EAD∴∠EAD=15°∴∠ADO=∠EAD+∠AED=45°∵四边形ABCD是菱形∴∠ADC=2∠ADO=90°∴四边形ABCD是正方形17. 【答案】(1)详见解析;(2)详见解析.【解析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.解:(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=×180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.点睛:本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.18. 【答案】(1)详见解析;(2)详见解析.【解析】 (1)、根据AB=AC可得∠B=∠C,根据DE⊥AB,DF⊥AC可得∠BED=∠CFD=90°,根据D为中点可得BD=CD,根据AAS可以判定三角形全等;(2)、根据三个角为直角的四边形是矩形,首先得出矩形,然后根据(1)的结论说明有一组邻边相等.解:(1)、∵AB=AC ,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵D为BC的中点,∴BD=CD,∴△BED≌△CFD(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.又∵∠A=90°,∴四边形DFAE为矩形.∵△BED≌△CFD,∴DE=DF ,∴四边形DFAE为正方形.考点:(1)、三角形全等的证明;(2)、正方形的判定19.【答案】(1)详见解析;(2)详见解析;(3)需要添加的条件是AB=BC.【解析】(1)可根据已知条件,或者图形的对称性合理选择全等三角形,如△ABC≌△BAD,利用SAS可证明.(2)由已知可得四边形AHBG是平行四边形,由(1)可知∠ABD=∠BAC,得到△GAB为等腰三角形,▱AHBG 的两邻边相等,从而得到平行四边形AHBG是菱形.(1)解:△ABC≌△BAD.证明:∵AD=BC,∠ABC=∠BAD=90°,AB=BA,∴△ABC≌△BAD(SAS).(2)证明:∵AH∥GB,BH∥GA,∴四边形AHBG是平行四边形.∵△ABC≌△BAD,∴∠ABD=∠BAC.∴GA=GB.∴平行四边形AHBG是菱形.(3)需要添加的条件是AB=BC.点睛:本题考查全等三角形,四边形等几何知识,考查几何论证和思维能力,第(3)小题是开放题,答案不唯一.。

《 正方形的性质与判定》同步能力提升训练(附答案) 2021-2022学年北师大版九年级数学上册

《 正方形的性质与判定》同步能力提升训练(附答案) 2021-2022学年北师大版九年级数学上册

2021-2022学年北师大版九年级数学上册《1.3正方形的性质与判定》同步能力提升训练(附答案)1.如图,E为正方形ABCD的对角线上一点,四边形EFCG为矩形,若正方形ABCD的边长为4,则EG+GC的长为()A.4B.8C.16D.322.如图是一个正方形和直角三角形的组合图形,直角三角形的斜边和一条直角边的长分别为10cm,8cm,则该正方形的面积为()A.6cm2B.36cm2C.18cm2D.2cm23.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角线互相垂直D.对角线互相平分4.如图,正方形ABCD中,点E是对角线BD上的一点,且BE=AB,连接CE,AE,则∠DAE的度数为()A.22.5°B.25°C.30°D.32.5°5.如图,将平行四边形ABCD的∠ABC变成直角,则平行四边形ABCD变成()A.平行四边形B.矩形C.菱形D.正方形6.正方形、菱形、矩形、平行四边形共同具有的性质是()A.对角线相等B.对角线相互平分C.对角线相互垂直D.对角线相互垂直平分7.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AC,CF,那么AF的长是()A.B.2C.3D.28.下列说法错误的是()A.对角线垂直且互相平分的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线相等且垂直的四边形是正方形D.一组对边平行且相等的四边形是平行四边形9.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE PF的最小值为()A.3 B.2C.2 D.110.如图,正方形ABCD的边长为4,点E在CD的边上,且DE=1,△AFE与△ADE关于AE 所在的直线对称,将△ADE按顺时针方向绕点A旋转90°得到△ABG,连接FG,则线段FG 的长为()A.4 B.42C.5 D.611.如图,已知四边形ABCD是平行四边形,下列结论中正确的是()A.当AC=BD时,它是正方形B.当AC⊥BD时,它是矩形C.当∠ABC=90°时,它是菱形D.当AB=BC时,它是菱形12.下列条件中能判断一个四边形是正方形的是()A.对角线互相垂直且相等B.一组对边平行,另一组对边相等且有一个内角为90度C.对角线平分每一组对角D.四边相等且有一个角是直角13.如图,将正方形OACD放在平面直角坐标系中,O是坐标原点,点D的坐标为(3,4),则点A的坐标为.14.菱形ABCD中,AD=4,∠DAB=60°,E、F、G、H分别是AD、AB、BC、CD上的点,且DH=FB,DE=BG,当四边形EFGH为正方形时,DH=.15.如图,正方形ABCD的边长为12,对角线AC、BD相交于点O,E是AC上一点,连接BE并延长交正方形ABCD的边于点F,若OE=3,则CF=.16.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,5),点C在第一象限,则点C的坐标是.17.如图,正方形ABCD中,点P在边AD上,PE⊥AC于点E,PF⊥BD于点F,AC=m,PE+PF=n,则m,n满足的数量关系是.18.已知:如图,在矩形ABCD中,E、F分别是边CD、AD上的点,AE⊥BF,且AE=BF.(1)求证:矩形ABCD是正方形;(2)联结BE、EF,当线段DF是线段AF与AD的比例中项时,求证:∠DEF=∠ABE.19.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.20.如图,在正方形ABCD中,E、F、G、H分别是各边上的点,且AE=BF=CG=DH.求证:(1)△AHE≌△BEF;(2)四边形EFGH是正方形.21.如图,在四边形ABDE中,AD与BE相交于点O,OA=OB=OE=OD,AB=BD.(1)求证:四边形ABDE是正方形;(2)若∠ACB=90°,连接OC,OC=6,AC=5,求BC的长.22.如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,过点D分别作DE⊥BC,DF ⊥AC,垂足分别为E,F.(1)证明:四边形DECF为正方形;(2)若AC=6cm,BC=8cm,求四边形DECF的面积.参考答案1.解:∵四边形ABCD是正方形,∴∠BDC=45°,∴EG=DG,∵四边形EFCG为矩形,∴EF=GC,∴EF+EG=GC+DG=DC=4,故选:A.2.解:如图所示:∵△ABE是直角三角形,AE=8cm,BE=10cm,∴AB=(cm),∵四边形ABCD是正方形,∴正方形ABCD的面积=AB2=36(cm2),故选:B.3.解:菱形和矩形的性质合在一起得到了正方形.正方形具有而菱形不具有的性质即为矩形的特性,由矩形对角线相等满足条件.故选:B.4.解:∵四边形ABCD为正方形,∴∠ABD=45°,∠BAD=90°,∵BE=AB,∴∠BAE=∠BEA=×(180°﹣45°)=67.5°,∴∠DAE=∠BAD﹣∠BAE=90°﹣67.5°=22.5°.故选:A.5.解:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是正方形,故选:B.6.解:平行四边形的对角线互相平分,而对角线相等、对角线相互垂直、对角线相互垂直平分不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选:B.7.解:∵四边形ABCD和四边形CEFG为正方形,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠B=∠E=90°,∴AC==,CF==,∵AC、CF分别是正方形ABCD和正方形CEFG的对角线,∴∠ACG=∠GCF=45°,∴∠ACF=90°,在Rt△ACF中,AF===2.故选:D.8.解:A.对角线垂直且互相平分的四边形是菱形,正确,不合题意;B.对角线相等的平行四边形是矩形,正确,不合题意;C.对角线相等且垂直的平行四边形是正方形,原说法错误,符合题意;D.一组对边平行且相等的四边形是平行四边形,正确,不合题意.故选:C.MN AD交AB于点M,交CD于点N,如图所示:9.解:过点P作//四边形ABCD为正方形,∴⊥,MN AB⊥时取等号),∴(当PE ABPM PE⊥时取等号),PN PF(当PF BC∴==++,MN AD PM PN PE PF正方形ABCD的面积是2,2∴AD∴+2B.PE PF10.解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD,∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠EAF+∠BAF,∴∠GAF=∠EAB,∴△GAF≅△EAB(SAS),∴FG=EB,∵四边形ABCD是正方形,∴BC=CD=AB=4,∵DE=1,∴CE=3,∴在Rt△BCE中,22+,345∴FG=5故选C11.解:∵四边形ABCD是平行四边形,∴当AC=BD时,它是矩形,故选项A不符合题意;当AC⊥BD时,它是菱形,故选项B不符合题意;当∠ABC=90°时,它是矩形,故选项C不符合题意;当AB=BC时,它是菱形,故选项D符合题意;故选:D.12.解:对角线互相垂直、平分且相等的四边形是正方形,但是对角线互相垂直且相等的四边形不一定是正方形,如等腰梯形中的对角线就有可能垂直且相等,故选项A不符合题意;一组对边平行,另一组对边相等且有一个内角为90度的四边形不一定是正方形,如直角梯形,故选项B不符合题意;对角线平分每一组对角的四边形不一定是正方形,如菱形,故选项C不符合题意;四边相等且有一个角是直角的四边形是正方形,故选项D符合题意;故选:D.13.解:如图,过点A作AB⊥x轴于B,过点D作DE⊥x轴于E,∵四边形OACD是正方形,∴OA=OD,∠AOD=90°,∴∠DOE+∠AOB=90°,又∵∠OAB+∠AOB=90°,∴∠OAB=∠DOE,在△AOD和△OCE中,,∴△AOB≌△ODE(AAS),∴AB=OE,OB=DE,∵点D的坐标为(3,4),点C在第二象限,∴点C的坐标为(﹣4,3).故答案为:(﹣4,3).14.解:过点E作AB的垂线分别交AB于N、交CD延长线于M,∵四边形EFGH为正方形,∴EH=EF,∠HEF=90°,∴∠MEH+∠NEF=90°,∵∠NEF+∠EFN=90°,∴∠MEH=∠EFN,在△EMH与△FNE中,,∴△EMH≌△FNE(AAS),∴EM=NF,EN=MH,设MD=x,在菱形ABCD中,AD=4,∠DAB=60°,∴∠ADM=30°,∴MD=DE,∴DE=2x,EM==x,∴AE=4﹣2x,AN==2﹣x,∴EN==(2﹣x),∴NF=x,HM=(2﹣x),DH=MH﹣MD=2﹣x﹣x,∴AF=2﹣x+x,∵AB=CD,BF=DH,∴AF=CH=2﹣x+x,∵DH+CH=4,∴2﹣x+x+2﹣x﹣x=4,解得:x=﹣1,∴DH=2﹣2.故答案为:2﹣2.15.解:∵正方形ABCD的边长为12,∴AC=12,∴OA=OC=6,∵OE=3,∴E点是OA或OC的中点,如图1,当E点是OA的中点时,过点E作NE⊥AB交AB于N,∴AE=3,∴AN=NE=3,∵NE∥AF,∴AF=4,∴DF=8,∴CF=4;如图2,当E为CO的中点时,过点E作EM⊥BC交BC于M,则EC=3,∴EM=MC=3,∴BM=9,∵EM∥FC,∴FC=4;综上所述:FC的长为4或4.16.解:∵四边形OBCD是正方形,∴OB=BC=CD=OD,∠CDO=∠CBO=90°,∵O,D两点的坐标分别是(0,0),(0,5),∴OD=5,∴OB=BC=CD=5,∴C的坐标为(5,5).故答案为:(5,5).17.解:∵四边形ABCD是正方形,∴∠CAD=45°,AC⊥BD,AC=2OA,∵PE⊥AC,PF⊥BD,∴△APE是等腰直角三角形,四边形PEOF是矩形,∴PE=AE,PF=OE,∴OA=AE+OE=PE+PF,∵AC=m,PE+PF=n,AC=2OA,∴m=2n.故答案为:m=2n.18.证明:(1)∵四边形ABCD是矩形,∴∠BAD=∠ADE=90°,∴∠ABF+∠AFB=90°,∵AE⊥BF,∴∠DAE+∠AFB=90°,∴∠ABF=∠DAE,在△ABF和△DAE中,,∴△ABF≌△DAE(AAS),∴AB=AD,∴矩形ABCD是正方形;(2)由(1)可知,△ABF≌△DAE,∴AF=DE,∴DF=CE,∵∠FDE=∠BCE=90°,∴△FDE∽△BCE,∴∠DEF=∠CEB,∵AB∥CD,∴∠ABE=∠CEB,∴∠ABE=∠DEF.19.解:∵四边形ABCD是正方形,∴∠FDC=∠DCF=45°,∵∠E=90°,ED=EC,∴∠EDC=∠ECD=45°,∴∠FCE=∠FDE=∠E=90°,∴四边形DFCE是矩形,∵DE=CE,∴四边形DFCE是正方形.20.证明:(1)∵四边形ABCD为正方形,∴AB=BC=CD=DA,∠A=∠B=90°,又∵AE=BF=DH=CG,∴AH=BE=CF=DG,∴△AHE≌△BEF(SAS);(2)在正方形ABCD中,AB=BC=CD=AD,∵AE=BF=CG=DH,∴AH=DG=CF=BE,∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EF=EH=HG=GF,∠EHA=∠HGD,∴四边形EFGH是菱形,∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°,∴∠EHG=90°,∴四边形EFGH是正方形.21.解:(1)∵OA=OB=OE=OD,∴四边形ABCD是平行四边形,AD=BE,∴四边形ABDE是矩形,又∵AB=BD,∴四边形ABDE是正方形.(2)如图所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=AM=CF,∴△OCF为等腰直角三角形,∵OC=6,根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,∴BC=CF+BF=6+1=7.22.(1)证明:∵DE⊥BC,DF⊥AC,∠ACB=90°,∴∠DFC=∠FCE=∠DEC=90°,∴四边形DECF是矩形,∴DF∥EC,∴∠FDC=∠ECD,∵CD平分∠ACB,∴∠FCD=∠ECD,∴∠FDC=∠FCD,∴DF=CF,∴四边形DECF是正方形;(2)解:∵四边形DECF是正方形,∴DF=FC=CE=DE,设DF=FC=CE=DE=x,∵DF∥BC,∴x=,即DF=FC=CE=DE=,∴四边形DECF的面积是×=.。

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定形》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1-3正方形的性质与判定形》同步练习题(附答案)

2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定形》同步练习题(附答案)一.选择题1.下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直且相等的平行四边形是正方形D.有一个角是直角的平行四边形是正方形2.如图,四边形ABCD是平行四边形,下列结论中正确的是()A.当平行四边形ABCD是矩形时,∠BAC=90°B.当平行四边形ABCD是菱形时,AB⊥BCC.当平行四边形ABCD是正方形时,AC=BDD.当平行四边形ABCD是菱形时,AB=AC3.如图,在正方形ABCD中,点E在对角线BD上,连接AE,EF⊥AE于点E,交DC于点F,连接AF,已知BC=4,DE=3,则△AEF的面积为()A.4B.5C.10D.54.如图,正方形ABCD中,点F为AB上一点,CF与BD交于点E,连接AE,若∠BCF =20°,则∠AEF的度数()A.35°B.40°C.45°D.50°5.如图,正方形ABCD的边长为7,在各边上顺次截取AE=BF=CG=DH=4,则四边形EFGH的面积为()A.20B.25C.30D.356.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,则线段GH的长为()A.B.C.D.7.如图,在边长为4的正方形ABCD中,点E、点F分别是BC、AB上的点,连接DE、DF、EF,满足∠DEF=∠DEC.若AF=1,则EF的长为()A.2.4B.3.4C.D.8.如图,在正方形ABCD中,点P在对角线BD上,PE⊥BC,PF⊥CD,E,F分别为垂足,连结AP,EF,则下列命题:①若AP=5,则EF=5;②若AP⊥BD,则EF∥BD;③若正方形边长为4,则EF的最小值为2,其中正确的命题是()A.①②B.①③C.②③D.①②③9.如图,正方形ABCD的边长为2,E为AB边的中点,点F在BC边上,点B关于直线EF的对称点记为B',连接B'D,B'E,B'F.当点F在BC边上移动使得四边形BEB'F成为正方形时,B'D的长为()A.B.C.2D.310.如图边长为2的正方形EFGH在边长为6的正方形ABCD所在平面上平移,在平移过程中,始终保持EF∥AB.线段CF的中点为M,DH的中点为N,则线段MN的长为()A.B.C.D.二.填空题11.如图,在正方形ABCD中,过B作一直线与CD相交于点E,过A作AF垂直BE于点F,过C作CG垂直BE于点G,在F A上截取FH=FB,再过H作HP垂直AF交AB于P.若CG=3.则△CGE与四边形BFHP的面积之和为.12.如图,正方形ABCD和正方形DEFG的边长分别为3和2,点E、G分别为AD、CD 边上的点,H为BF的中点,连接HG,则HG的长为.13.如图,在正方形ABCD中,点E,F分别在边BC、CD上,连接AE,BF.若AB=,BE=DF,则AE+BF的最小值为.14.如图,将正方形OABC放在平面直角坐标系中,O是坐标原点,点C的坐标是(3,2),则点A的坐标是.15.如图,在正方形ABCD中,,E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN.则MN的长为.三.解答题16.如图,正方形ABCD中,AB=6,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED交BC于点F,以DE、EF为邻边作矩形DEFM,连接CM.(1)求证:矩形DEFM是正方形;(2)求CE+CM的值.17.如图,在Rt△ABC中,两锐角的平分线AD,BE相交于O,OF⊥AC于F,OG⊥BC 于G.(1)求证:四边形OGCF是正方形.(2)若∠BAC=60°,AC=4,求正方形OGCF的边长.18.如图,已知点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,连接AF,且EA⊥AF.(1)求证:DE=BF;(2)若AH平分∠F AE交线段BC上一点H,连接EH,请判断线段DE、BH、HE三者存在怎样的数量关系?并加以证明.19.如图,点G在正方形ABCD的边CD上,且四边形CEFG也是正方形,连接BG,DE,AF,取AF的中点M,连接CM.求证:(1)BG=DE;(2)CM=AF.20.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)21.如图,四边形ABCD是菱形,DE∥AC,CE∥BD.(1)求证:四边形OCED是矩形.(2)若∠ABC=60°,AB=2,求矩形OCED周长.(3)当∠ABC=°时,四边形OCED是正方形.参考答案一.选择题1.解:A、对角线互相垂直的矩形是正方形,故选项A不符合题意;B、对角线相等的菱形是正方形,故选项B不符合题意;C、对角线互相垂直且相等的平行四边形是正方形,故选项C不符合题意;D、有一个角是直角的平行四边形是矩形,故选项D符合题意.故选:D.2.解:A、当平行四边形ABCD是矩形时,∠BAC=90°,不符合题意;B、当平行四边形ABCD是菱形时,AB=BC,不符合题意;C、当平行四边形ABCD是正方形时,AC=BD,符合题意;D、当平行四边形ABCD是菱形时,AB=BC,不符合题意;故选:C.3.解:过E作GH∥AD交AB于G,交DC于H,如图:,∵四边形ABCD是正方形,∴∠ABD=∠BDC=45°,AB=CD=BC=4,∴△BGE、△DHE是等腰直角三角形,BD=BC=4,∴EH=DE=×3=3,BE=BD﹣DE=4﹣3=,∴BG=GE=BE=1,∴AG=AB﹣BG=3=EH,∴AE===,∵AE⊥EF,∴∠AEG=90°﹣∠FEH=∠EFH,∴△AGE≌△EHF(AAS),∴AE=EF=,∴△AEF的面积为AE•EF=××=5,故选:B.4.解:∵四边形ABCD是正方形,∴∠ABC=90°,BC=BA,∠ABE=∠CBE=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE=20°,∵∠ABC=90°,∠BCF=20°,∴∠BFC=180°﹣∠ABC﹣∠BCF,=180°﹣90°﹣20°=70°,∵∠BFC=∠BAE+∠AEF,∴∠AEF=∠BFC﹣∠BAE=70°﹣20°=50°,故选:D.5.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=7,AE=BF=CG=DH=4,∴AH=BE=DG=CF=3,∴EH=FE=GF=GH==5,∴四边形EFGH的面积是:5×5=25,故选:B.6.解:如图,延长BG交CH于点E,∵AB=CD=10,BG=DH=6,AG=CH=8,∴AG2+BG2=AB2,∴△ABG和△DCH是直角三角形,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在Rt△GHE中,GH===2,故选:A.7.解:如图,在EF上截取EG=EC,连接DG,∵四边形ABCD是正方形,∴∠A=∠C=90°,AB=BC=4,在△DCE和△DGE中,,∴△DCE≌△DGE(SAS),∴∠DGE=∠C=90°,DG=DC,∵∠A=∠C=90°,AB=BC=4,∴∠DGF=∠A=90°,DG=DA,在Rt△DAF和Rt△DGF中,,∴Rt△DAF≌Rt△DGF(HL),∴AF=GF=1,∵EG=EC,∴BE=BC﹣EC=4﹣EG,EF=EG+FG=EG+1,BF=AB﹣AF=4﹣1=3,在Rt△BEF中,根据勾股定理,得BE2+BF2=EF2,∴(4﹣EG)2+32=(EG+1)2,解得EG=2.4,∴EF=EG+FG=2.4+1=3.4.∴EF的长为3.4.故选:B.8.解:延长EP交AD于Q,∵四边形ABCD为正方形,∴AD=CD,∠ADC=∠C=90°,AD∥BC,∠BDC=45°,∵PF⊥CD,∴∠DPF=45°,∴DF=PF,∵PE⊥BC,∴PQ⊥AD,四边形CEPF为矩形,∴∠AQP=90°,EC=PF=DF,∴∠AQP=∠C,AQ=FC,四边形PQDF为正方形,∴DF=QP,∴CE=QP,在△AQP和△FCE中,,∴△AQP≌△FCE(SAS),∴AP=EF,若AP=5,则EF=5,故①正确;若AP⊥BD,则∠P AQ=45°,∵△AQP≌△FCE,∴∠EFC=∠P AQ=45°,∵∠BDC=45°,∴∠EFC=∠BDC,∴EF∥BD,故②正确;当AP⊥BD时,AP有最小值,此时P为BD的中点,∵AB=AD=4,∴BD=,∴AP=BD=,∵EF=AP,∴EF的最小值为,故③错误,故选:A.9.解:如图,连接BB',连接BD,∵四边形ABCD是正方形,∴BD=AB=2,BD平分∠ABC,∵E为AB边的中点,∴AE=BE=1,∵四边形BEB'F是正方形,∴BB'=BE=,BB'平分∠ABC,∴点B,点B',点D三点共线,∴B'D=BD﹣BB'=,故选:A.10.解:将正方形EFGH的位置特殊化,使点H与点A重合,过点M作MO⊥ED与O,则MO是梯形FEDC的中位线,如图:∴EO=OD=4,MO=(EF+CD)=4,∵点N、M分别是AD、FC的中点,∴AN=ND=3,∴ON=OD﹣ND=4﹣3=1.在Rt△MON中,MN2=MO2+ON2,即MN===.故选:C.二.填空题11.解:延长AF交BC于点K,∵正方形ABCD,∴AB=BC,∠ABC=90°,∴∠CBE+∠ABF=90°,∴AF⊥BE,∴∠AFB=90°,∴∠BAF+∠ABF=90°,∴∠CBE=∠BAF,又∠ABC=∠BCE=90°,∴△ABF≌△BEC,∴BF=CG=3(全等三角形对应高相等),∴BF=FH=3,作射线QH,过B作BQ⊥HQ于点Q,∴∠BFH=∠QHF=∠Q=90°,且BF=FH,∴四边形QBFH为正方形,且面积为32=9,∴BQ=BF=CE=3,∵∠PBQ+∠PBE=90°,且∠PBE=∠BEC,且∠BEC+∠GCE=90°,∴∠BPQ=∠ECG,∴△BPQ≌△CEG,∴S△CGE+S四边形BPHF=S△BPQ+S四边形BPHF=S正方形BQHF=9.故答案为:912.解:延长GF交AB于P,过H作MN⊥CD于M,交AB于N,∵四边形ABCD是正方形,∴AB∥CD,BC⊥CD,∴MN⊥AB,∵四边形DEFG是正方形,∴FG⊥CD,∴FG∥HM∥BC,∵H是BF的中点,∴PN=BN=CM=GM=CG=×(3﹣2)=,∴HN是△BFP的中位线,∴HN=FP=,∴MH=3﹣=,Rt△GHM中,由勾股定理得:GH===,故答案为:.13.解:如图,连接AF,∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴AE=AF,∴AE+BF=AF+BF,作点A关于DC的对称点H,连接FH,BH,∴AF=FH=AE,∴AE+BF=FH+BF,∴点F,点B,点H三点共线时,AE+BF的最小值为BH,∴BH===5,故答案为:5.14.解:如图,作AD⊥y轴于点D,CE⊥x轴于点E,则∠ADO=∠CEO=90°,∵四边形OABC是正方形,∴∠AOC=∠DOE=90°,OA=OC,∴∠AOD=∠COE=90°﹣∠COD,在△AOD和△COE中,,△AOD≌△COE(AAS),∵C(3,2),∴OD=OE=3,AD=CE=2,∵点A在第二象限,∴A(﹣2,3),故答案为:(﹣2,3).15.解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC=2,AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,,∴△AEM≌△GDM(AAS),∴AM=MG,AE=DG=AB=CD,∴CG=CD=,∵点N为AF的中点,∴MN=FG,∵F为BC的中点,∴CF=BC=,∴FG==2,∴MN=1,故答案为:1.三.解答题16.解:(1)如图,作EG⊥CD于G,EH⊥BC于H,∵四边形ABCD是正方形,∴∠ACB=∠ACD.∵EG⊥CD,EH⊥BC,∴EG=EH,∵∠EGC=∠EHC=∠BCD=90°,∴四边形EGCH是矩形,∴∠GEH=90°.∵四边形DEFM是矩形,∴∠DEF=90°.∴∠DEG=∠FEH.∵∠EGD=∠EHF=90°,∴△EGD≌△EHF(ASA),∴ED=EF.∴矩形DEFM是正方形;(2)∵四边形DEFM是正方形,四边形ABCD是正方形,∴DE=DM,AD=CD,∠ADC=∠EDM=90°.∴∠ADE=∠CDM.∴△ADE≌△CDM(SAS),∴AE=CM.∴CE+CM=CE+AE=AC===6.17.(1)证明:过O作OH⊥AB于H点,∵OF⊥AC于点F,OG⊥BC于点G,∴∠OGC=∠OFC=90°.∵∠C=90°,∴四边形OGCF是矩形.∵AD,BE分别是∠BAC,∠ABC的角平分线,OF⊥AC,OG⊥BC,∴OG=OH=OF,又四边形OGCF是矩形,∴四边形OGCF是正方形;(2)解:在Rt△ABC中,∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=90°﹣60°=30°,∴AC=AB,∵AC=4,∴AB=2AC=2×4=8,∵AC2+BC2=AB2,∴BC==4,在Rt△AOH和Rt△AOF中,,∴Rt△AOH≌Rt△AOF(HL),∴AH=AF,设正方形OGCF的边长为x,则AH=AF=4﹣x,BH=BG=4﹣x,∴4﹣x+4﹣x=8,∴x=2﹣2,即正方形OGCF的边长为2﹣2.18.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∵EA⊥AF,∴∠EAF=90°,∴∠F AB+∠BAE=90°,∠DAE+∠BAE=90°,∴∠F AB=∠DAE,在△BAF和△DAE中,,∴△BAF≌△DAE(ASA),∴DE=BF;(2)解:DE+BH=HE,理由如下:由(1)知△BAF≌△DAE,∴AF=AE,∵AH平分∠F AE,∴∠F AH=∠EAH,在△F AH与△EAH中,,∴△F AH≌△EAH(SAS),∴FH=EH,∴DE+BH=HE.19.(1)证明∵四边形ABCD,四边形CEFG都是正方形,∴BC=CD,CG=CE,在Rt△BGC和Rt△DEC中,∴Rt△BGC≌Rt△DEC(HL),∴BG=DE,(2)连接AC,FC,∴∠ACD=∠FCD=45°,∠ACF=90°,∴△ACF为直角三角形,又∵M是AF的中点,∴CM=AF.20.(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由:∵∠ACB=90°,∴∠ABC=45°,由(2)可知,四边形BECD是菱形,∴∠ABC=∠CBE=45°,∴∠DBE=90°,∴四边形BECD是正方形.21.(1)证明:∵DE∥AC,CE∥BD,即DE∥OC,CE∥OD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∠ABO=ABC,∵∠ABC=60°,∴∠ABO=30°,∵AB=2,∴AO=AB=1,OB=AB=,∵OD=OB=,OC=OA=1,∴矩形OCED周长=2(OD+OC)=2+2;(3)当∠ABC=90°时,四边形OCED是正方形,∵∠ABC=90°,四边形ABCD是菱形,∴四边形ABCD是正方形,∴AC=BD,∴OD=OC,∵四边形OCED是矩形,∴四边形OCED是正方形,故答案为:90.。

《1.3正方形的性质与判定》同步优生辅导训练(附答案)2020-2021学年九年级数学北师大版上册

《1.3正方形的性质与判定》同步优生辅导训练(附答案)2020-2021学年九年级数学北师大版上册

2021学年北师大版九年级数学上册《1.3正方形的性质与判定》同步优生辅导训练(附答案)1.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为点E,F,连接AP,EF,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.其中正确的结论有()A.①②④B.①②③C.②③④D.①②③④2.如图所示,在正方形ABCD中,E为CD边中点,连接AE,对角线BD交AE于点F,已知EF=1,则线段AE的长度为()A.2B.3C.4D.53.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1B.C.2D.无法确定4.如图,在正方形ABCD中,AB=4.E,F分别为边AB,BC的中点,连接AF,DE,点N,M分别为AF,DE的中点,连接MN,则MN的长为()A.B.2C.D.25.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm26.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°7.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.8.在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是()A.①②B.①②④C.③④D.①②③④9.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE =CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.710.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是()A.45°B.22.5°C.67.5°D.75°11.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为()A.10B.12C.14D.1612.如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,若点A的坐标为(1,),则点C的坐标为()A.(,1)B.(﹣1,)C.(﹣,1)D.(﹣,﹣1)13.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.14.如图,在正方形ABCD中,AB=3,点EF分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为()A.7B.3+C.8D.3+15.如图,已知正方形ABCD的对角线交于O,过O点作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的值是()A.7B.5C.4D.316.如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.17.如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.18.点C是线段AB上的动点,分别以AC,BC为边向上方作正方形ACDE,正方形CBGF,连接AD,AD,BF的中点M,N,若AB=4,则MN的最小值为.19.如图,在边长为1的正方形ABCD中,对角线AC,BD相交于O点,H为边BC上的点,过点H作EH⊥BC,交线段OB于点E,连接DH交CE于点F,交OC于点G.若OE=OG,则HC的长为.20.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.21.如图,已知平行四边形ABCD,若M,N是BD上两点,且BM=DN,AC=2OM.(1)求证:四边形AMCN是矩形;(2)△ABC满足什么条件,四边形AMCN是正方形,请说明理由.22.如图所示,正方形ABCD的对角线AC、BD相交于点O,点E是OC上一点,连接BE,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:BE=AF.23.如图,四边形ABCD是正方形,G是BC上任意一点,DE⊥AG于点E,BF∥DE,且交AG于点F.(1)求证:△ADE≌△BAF;(2)求证:DE﹣BF=EF;(3)若AB=2,BG=1,求线段EF的长.24.如图1,△ABC是以∠ACB为直角的直角三角形,分别以AB,BC为边向外作正方形ABFG,BCED,连接AD,CF,AD与CF交于点M,AB与CF交于点N.(1)求证:△ABD≌△FBC;(2)如图2,在图1基础上连接AF和FD,若AD=6,求四边形ACDF的面积.25.如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为8,E为OM的中点,求MN的长.参考答案1.解:延长PF交AB于点G,∵PF⊥CD,AB∥CD,∴PG⊥AB,即∠PGB=90°.∵PE⊥BC,PF⊥CD,∴四边形GBEP为矩形,又∵∠PBE=∠BPE=45°,∴BE=PE,∴四边形GBEP为正方形,四边形PFCE为矩形.∴GB=BE=EP=GP,∴GP=PE,AG=CE=PF,又∠AGP=∠C=90°,∴△AGP≌△FPE(SAS).∴AP=EF,∠PFE=∠BAP,故①、②正确;在Rt△PDF中,由勾股定理得PD=,故③正确;∵P在BD上,∴当AP=DP、AP=AD、PD=DA时,△APD才是等腰三角形,∴△APD是等腰三角形共有3种情况,故④错误.∴正确答案有①②③,故选:B.2.解:∵正方形ABCD,∴AB=CD,AB∥CD,∴∠ABF=∠FDE,∠BAF=∠DEF,∵E为CD边中点,∴DE=CD=,∵EF=1,∴AF=2,∴AE=EF+AF=3,故选:B.3.解:过C点作CG⊥BD于G.∵CF是∠DCE的平分线.∴∠FCE=45°.∵∠DBC=45°.∴CF∥BD.∴CG等于△PBD的高.∵BD=2.∴CG=1.∴△PBD的面积等于.故选:A.4.解:连接AM,延长AM交CD于G,连接FG,∵四边形ABCD是正方形,∴AB=CD=BC=4,AB∥CD,∠C=90°,∴∠AEM=∠GDM,∠EAM=∠DGM,∵M为DE的中点,∴ME=MD,在△AEM和GDM中,,∴△AEM≌△GDM(AAS),∴AM=MG,AE=DG=AB=CD,∴CG=CD=2,∵点N为AF的中点,∴MN=FG,∵F为BC的中点,∴CF=BC=2,∴FG==2,∴MN=,故选:C.5.解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠F AN=∠F AN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.6.解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选:B.7.解:连接BP,过C作CM⊥BD,∵S△BCE=S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.故选:D.8.解:①∵点B′与点B关于AE对称,∴△ABF与△AB′F关于AE对称,∴AB=AB′,∵AB=AD,∴AB′=AD.故①正确;②如图,连接EB′.则BE=B′E=EC,∠FBE=∠FB′E,∠EB′C=∠ECB′.则∠FB′E+∠EB′C=∠FBE+∠ECB′=90°,即△BB′C为直角三角形.∵FE为△BCB′的中位线,∴B′C=2FE,∴FB′=2FE.∴B′C=FB′.∴△FCB′为等腰直角三角形.故②正确.④设∠ABB′=∠AB′B=x度,∠AB′D=∠ADB′=y度,则在四边形ABB′D中,2x+2y+90°=360°,即x+y=135度.又∵∠FB′C=90°,∴∠DB′C=360°﹣135°﹣90°=135°.故④正确.③假设∠ADB′=75°成立,则∠AB′D=75°,∠ABB′=∠AB′B=360°﹣135°﹣75°﹣90°=60°,∴△ABB′为等边三角形,故B′B=AB=BC,与B′B<BC矛盾,故③错误.故选:B.9.解:如图所示:∵四边形ABCD是正方形,∴∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∴∠BAE+∠DAG=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(SSS),∴∠ABE=∠CDF,∵∠AEB=∠CFD=90°,∴∠ABE+∠BAE=90°,∴∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∴∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在△ABE和△ADG中,,∴△ABE≌△ADG(AAS),∴AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∴EG=GF=FH=EF=12﹣5=7,∵∠GEH=180°﹣90°=90°,∴四边形EGFH是正方形,∴EF=EG=7;故选:C.10.解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选:B.11.解:如图,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE=S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE,=S△GEB+S△GEF,=S正方形GBEF,=4×4=16故选:D.12.解:作AD⊥轴于D,作CE⊥x轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠2=90°,∵点A的坐标为(1,),∴OD=1,AD=,∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠2,在△OCE和△AOD中,,∴△OCE≌△AOD(AAS),∴OE=AD=,CE=OD=1,∴点C的坐标为(﹣,1);故选:C.13.解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.14.解:∵阴影部分的面积与正方形ABCD的面积之比为2:3,∴阴影部分的面积为×9=6,∴空白部分的面积为9﹣6=3,由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,∴△BCG的面积与四边形DEGF的面积相等,均为×3=,∠CBE=∠DCF,∵∠DCF+∠BCG=90°,∴∠CBG+∠BCG=90°,即∠BGC=90°,设BG=a,CG=b,则ab=,又∵a2+b2=32,∴a2+2ab+b2=9+6=15,即(a+b)2=15,∴a+b=,即BG+CG=,∴△BCG的周长=+3,故选:D.15.解:∵OB=OC,∵OE⊥OF∴∠EOB+∠FOB=90°∵四边形ABCD是正方形∴∠COF+∠BOF=90°∴∠EOB=∠FOC而∠OBE=∠OCF=45°在△OFC和△OEB中,∴△OFC≌△OEB(ASA),∴OE=OF,CF=BE=3cm,则AE=BF=4,根据勾股定理得到EF==5cm.故选:B.16.解:△CBD绕点C顺时针旋转90°得到的图形如上图所示.∵D的坐标为(3,1),∴OA=3,AD=1∵在正方形OABC中,OA=AB,∴AB=3,∴BD=AB﹣AD=2,∴OD'=BD=2,∴D'的坐标为(﹣2,0),故答案为(﹣2,0).17.解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.18.解:当点C为线段AB中点时,MN有最小值,如图,∵AB=4,∴AC=CB=2,∵四边形ACDE和四边形CBGF是正方形,∴∠ACD=∠BCF=90°,∵M是AD中点,N是BF中点,∴MN是△ABD的中位线,∴MN=AB=2,故答案为:2.19.解:设CH=x,∵四边形ABCD是正方形,AB=1,∴BH=1﹣x,∠DBC=∠BDC=∠ACB=45°,∵EH⊥BC,∴∠BEH=∠EBH=45°,∴EH=BH=1﹣x,∵∠OGD=∠CGF,∵∠DOG=∠GFC=90°,∴∠ODG=∠OCE,∴∠BDC﹣∠ODG=∠ACB﹣∠OCE,∴∠HDC=∠ECH,∵EH⊥BC,∴∠EHC=∠HCD=90°,∴HC=,故答案为:.20.解:∵四边形ABCD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.21.证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵AC=2OM,∴MN=AC,∴四边形AMCN是矩形;(2)由(1)可知,四边形AMCN为矩形,∴只需AM=MC,则矩形AMCN为正方形,∵O为AC中点,M在BO上,∴BO⊥AC,时,AM=MC,在△BOA与△BOC中,,∴△BOA≌△BOC(SAS),∴AB=BC,∴△ABC是等腰三角形,故△ABC为等腰三角形时,四边形AMCN是正方形.22.证明:∵正方形ABCD的对角线AC、BD相交于点O,∴∠AOF=∠BOE=90°,OA=OB,∵AM⊥BE,∴∠BMF=90°,∴∠AOF=∠BMF,又∵∠BFM=AFO,∴∠F AO=∠EBO,∴在△F AO和△EBO中,,∴△F AO≌△EBO(ASA).∴BE=AF.23.证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠BAD=90°,∵DE⊥AG,∴∠AED=∠DEF=90°,∵BF∥DE,∴∠AFB=∠DEF=∠DEA=90°,∴∠BAF+∠DAE=∠ADE+∠DAE=90°,∴∠BAF=∠ADE,在△ABF和△DAE中,,∴△DAE≌△ABF(AAS);(2)∵△DAE≌△ABF,∴AE=BF,DE=AF,∵AF﹣AE=EF,∴DE﹣BF=EF;(3)∵∠ABC=90°,∴AG2=AB2+BG2=12+22=5,∴AG=,∵S△ABG=AG•BF,∴BF=,在Rt△ABF中,AF2=AB2﹣BF2=22﹣=,∴DE=AF=,∴EF=DE﹣BF=.24.(1)证明:∵四边形ABFG和四边形BCED是正方形,∴BC=BD,AB=BF,∠CBD=∠ABF=90°,∴∠CBD+∠ABC=∠ABF+∠ABC,∴∠ABD=∠CBF,在△ABD和△FBC中,∴△ABD≌△FBC(SAS);(2)解:∵△ABD≌△FBC,∴∠BAD=∠BFC,AD=FC=6,∴∠AMF=180°﹣(∠BAD+∠ANM)=180°﹣(∠BFC+∠BNF)=180°﹣(180°﹣∠ABF)=180°﹣(180°﹣90°)=90°,即AD⊥CF,∴四边形ACDF的面积S=S△ACD+S△ADF=+===18.25.解:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,在△OAM和△OBN中,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为8,∴OH=HA=4,∵E为OM的中点,∴HM=8,则OM==4,∴MN=OM=4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 正方形的性质与判定一.选择题1.下列说法错误的是()A.对角线互相垂直的平行四边形是矩形B.矩形的对角线相等C.对角线相等的菱形是正方形D.两组对边分别相等的四边形是平行四边形2.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=25°,则∠AED=()A.60°B.65°C.70°D.75°3.如图,两把完全一样的直尺叠放在﹣起,重合的部分构成一个四边形,给出以下四个论断:①这个四边形可能是正方形②这个四边形一定是菱形③这个四边形不可能是矩形④这个四边形一定是轴对称图形,其中正确的论断是()A.①②B.③④C.①②④D.①②③④4.如图,以△ABC的各边为边,在边BC的同侧分别作三个正方形ABDI,BCFE,ACHG,对于四边形ADEG的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.若△ABC为任意三角形,则四边形ADEG是平行四边形B.若∠BAC=90°,则四边形ADEG是矩形C.若AC=AB,则四边形ADEG是菱形D.若∠BAC=135°且AC=AB,则四边形ADEG是正方形5.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题6.如图,平面内直线l1∥l2∥l3∥l4,且相邻两条平行线间隔均为1,正方形ABCD四个顶点分别在四条平行线上,则正方形的面积为.7.如图,正方形ABCD的边长为5,AG=CH=4,BG=DH=3,连接GH,则线段GH的长为.8.如图,在边长为2的正方形ABCD中,点E、F分别是边AB,BC的中点,连接EC,FD,点G、H分别是EC,FD的中点,连接GH,则GH的长度为.9.如图,已知正方形ABCD的边长为7,点E,F分别在AD、DC上,AE=DF=3,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.10.如图,四边形ABCD为正方形,AB为边向正方形外作等边三角形ABE、CE与DB相交于点F,则∠AFD=度.11.如图,在正方形ABCD的外侧,作等边三角形ABE,则∠DEB的度数为度.12.如图,若四边形ABCD是正方形,△CDE是等边三角形,则∠EAB的度数为.13.如图,四边形ABCD是一个正方形,E是BC延长线上的一点,且AC=EC,则∠DAE =.14.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,则DE=.15.已知:正方形ABCD中,对角线AC、BD相交于点O,∠DBC的平分线BF交CD于点E,交AC于点F,OF=1,则AB=.三.解答题16.如图,在△ABC中,AC=BC=6,∠ACB>90°,∠ABC的平分线交AC于点D,E是AB上点,且BE=BC,CF∥ED交BD于点F,连接EF,ED.(1)求证:四边形CDEF是菱形;(2)当∠ACB=度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长.17.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.18.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.19.如图,已知四边形ABCD为正方形,AB=3,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.20.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.21.以△ABC的各边,在边BC的同侧分别作三个正方形.他们分别是正方形ABDI,BCFE,ACHG,试探究:(1)如图中四边形ADEG是什么四边形?并说明理由.(2)当△ABC满足什么条件时,四边形ADEG是矩形?(3)当△ABC满足什么条件时,四边形ADEG是正方形?参考答案一.选择题1.解:对角线互相垂直的平行四边形是菱形,故选项A错误;矩形的对角线相等,故选项B正确;对角线相等的菱形是正方形,故选项C正确;两组对边分别相等的四边形是平行四边形,故选项D正确;故选:A.2.解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.3.解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形直尺的宽度相等,∴DE=DF,又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.当∠DAB=90°时,这个四边形是正方形,∴这个四边形一定是轴对称图形,故选:C.4.解:A、∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC,∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°,∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等),正确,故本选项不符合题意;B、∵四边形ABDI和四边形ACHG是正方形,∴∠DAI=45°,∠GAC=90°,∵∠BAC=90°,∴∠DAG=360°﹣45°﹣90°﹣90°=135°,∵四边形ADEG是平行四边形,∴四边形ADEG不是矩形,错误,故本选项符合题意;C、∵四边形ADEG是平行四边形,∴若要四边形ADEG是菱形,则需AD=AG,即AD=AC.∵AD=AB,∴当AB=AD,即AB=AC时,四边形ADEG是菱形,正确,故本选项不符合题意;D、∵当∠BAC=135°时,∠DAG=360°﹣45°﹣90°﹣135°=90°,即平行四边形ADEG是平行四边形,∵当AB=AD,即AB=AC时,四边形ADEG是菱形,∴四边形ADEG是正方形,即当∠BAC=135°且AC=AB时,四边形ADEG是正方形,正确,故本选项不符合题意;故选:B.5.解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题6.解:过C点作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠CED=∠BFC=90°.∵ABCD为正方形,∴∠BCD=90°.∴∠DCE+∠BCF=90°.又∵∠DCE+∠CDE=90°,∴∠CDE=∠BCF.在△CDE和△BCF中,∴△CDE≌△BCF(AAS),∴BF=CE=2.∵CF=1,∴BC2=12+22=5,即正方形ABCD的面积为5.故答案为:5.7.解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∵AG=CH=4,BG=DH=3,AB=5,∴AG2+BG2=AB2,∴∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE﹣BG=4﹣3=1,同理可得HE=1,在Rt△GHE中,GH===,故答案为:.8.解:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=1,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∴△PDH≌△CFH(AAS),∴PD=CF=1,∴AP=AD﹣PD=1,∴PE==,∵点G,H分别是EC,FD的中点,∴GH=EP=.9.解:∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠ADF=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=90°,∴∠BGF=90°,∵点H为BF的中点,∴GH=BF,又∵BC=CD=7,DF=3,∠C=90°,∴CF=4,∴BF===,∴GH=,故答案为:.10.解:∵∠CBA=90°,∠ABE=60°,∴∠CBE=150°,∵四边形ABCD为正方形,三角形ABE为等边三角形∴∠BEC=15°,∵∠FBE=∠DBA+∠ABE=105°,∴∠BFE=60°,在△CBF和△ABF中,,∴△CBF≌△ABF(SAS),∴∠BAF=∠BCE=15°,又∠ABF=45°,且∠AFD为△AFB的外角,∴∠AFD=∠ABF+∠F AB=15°+45°=60°.故答案为60.11.解:∵四边形ABCD是正方形∴AB=AD,∠BAD=90°∵△ABE是等边三角形∴AE=AB,∠BAE=∠BEA=60°∴AD=AE,∠DAE=150°∴∠AED=∠ADE=(180°﹣∠DAE)=15°∴∠DEB=∠BEA﹣∠AED=60°﹣15°=45°故答案为:45.12.解:∵∠ADE=∠BCE=90°+60°=150°,AD=BC,DE=CE,∴△ADE≌△BCE,∴AE=BE,∴∠EAB=∠EBA.∵正方形中AD=DC,等边三角形中DC=DE,∴AD=DE,∵∠ADE=90°+60°=150°,∴∠DEA==15°,同理∠CEB=15°,∴∠AEB=60°﹣15°﹣15°=30°,∴∠EAB==75°.故答案为75°.13.解:∵四边形ABCD是正方形,∴∠ACB=45°,AD∥BC,∵AC=EC,∴∠E=∠CAE,∵∠ACB=∠E+∠CAE=2∠E,∴∠E=∠ACB=22.5°,∵AD∥BC,∴∠DAE=∠E=22.5°.故答案为:22.5°.14.解:过E作EF⊥DC于F,∵四边形ABCD是正方形,∴AC⊥BD,∵CE平分∠ACD交BD于点E,∴EO=EF,在Rt△COE和Rt△CFE中,∴Rt△COE≌Rt△CFE(HL),∴CO=FC,∵正方形ABCD的边长为1,∴AC=,∴CO=AC=,∴CF=CO=,∴EF=DF=DC﹣CF=1﹣,∴DE==﹣1,另法:因为四边形ABCD是正方形,∴∠ACB=45°=∠DBC=∠DAC,∵CE平分∠ACD交BD于点E,∴∠ACE=∠DCE=22.5°,∴∠BCE=45°+22.5°=67.5°,∵∠CBE=45°,∴∠BEC=67.5°,∴BE=BC,∵正方形ABCD的边长为1,∴BC=1,∴BE=1,∵正方形ABCD的边长为1,∴AC=,∴DE=﹣1,故答案为:﹣1.15.解:如图作FH∥BC交BD于点H.∵四边形ABCD是正方形,∴∠OBC=∠OCB=45°,OB=OC,∠BOC=90°∵FH∥BC,∴∠OHF=∠OBC,∠OFH=∠OCB,∴∠OHF=∠OFH,∴OH=OF=1,FH==,∵BF平分∠OBC,∴∠HBF=∠FBC=∠BFH,∴BH=FH=,∴OB=OC=1+,∴BC=OB=2+.故答案为2+.三.解答题16.证明:(1)如图,连接EC,交BD于点O∵BE=BC,BD平分∠ABC∴EO=CO,BD⊥CE∴EF=FC,DE=CD,∵CF∥DE∴∠DFC=∠FDE,且EO=CO,∠FOC=∠DOE ∴△DOE≌△FOC(AAS)∴DE=CF∴EF=FC=CD=DE∴四边形EFCD是菱形(2)当∠ACB=120度时,四边形CDEF是正方形,理由如下:∵∠ACB=120°,BC=AC∴∠ABC=∠BAC=30°∵BD平分∠ABC∴∠DBC=15°,且BD⊥EC∴∠BCO=75°∴∠ACE=45°,∵四边形EFCD是菱形∴∠FCD=2∠ACE=90°∴四边形CDEF是正方形,∴∠ADE=90°如图,过点C作CP⊥AB于点P,∵BC=AC=6,∠ABC=30°,CP⊥AB∴CP=3,BP=CP=3,AB=2BP=6,∴AE=AB﹣BE=6﹣6∵∠A=30°,∠ADE=90°∴DE=AE=3﹣317.(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BD,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.18.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.19.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为6,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在∴△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴CE+CG=CE+AE=AC=AB=×3=6是定值.20.证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.∵△ACE是等边三角形,∴AE=CE.∴BE⊥AC.∴四边形ABCD是菱形.(2)从上易得:△AOE是直角三角形,∴∠AEB+∠EAO=90°∵△ACE是等边三角形,∴∠EAO=60°,∴∠AEB=30°∵∠AEB=2∠EAB,∴∠EAB=15°,∴∠BAO=∠EAO﹣∠EAB=60°﹣15°=45°.又∵四边形ABCD是菱形.∴∠BAD=2∠BAO=90°∴四边形ABCD是正方形.21.解:(1)图中四边形ADEG是平行四边形.理由如下:∵四边形ABDI、四边形BCFE、四边形ACHG都是正方形,∴AC=AG,AB=BD,BC=BE,∠GAC=∠EBC=∠DBA=90°.∴∠ABC=∠EBD(同为∠EBA的余角).在△BDE和△BAC中,,∴△BDE≌△BAC(SAS),∴DE=AC=AG,∠BAC=∠BDE.∵AD是正方形ABDI的对角线,∴∠BDA=∠BAD=45°.∵∠EDA=∠BDE﹣∠BDA=∠BDE﹣45°,∠DAG=360°﹣∠GAC﹣∠BAC﹣∠BAD=360°﹣90°﹣∠BAC﹣45°=225°﹣∠BAC∴∠EDA+∠DAG=∠BDE﹣45°+225°﹣∠BAC=180°∴DE∥AG,∴四边形ADEG是平行四边形(一组对边平行且相等).(2)当四边形ADEG是矩形时,∠DAG=90°.则∠BAC=360°﹣∠BAD﹣∠DAG﹣∠GAC=360°﹣45°﹣90°﹣90°=135°,即当∠BAC=135°时,平行四边形ADEG是矩形;(3)当四边形ADEG是正方形时,∠DAG=90°,且AG=AD.由(2)知,当∠DAG=90°时,∠BAC=135°.∵四边形ABDI是正方形,∴AD=AB.又∵四边形ACHG是正方形,∴AC=AG,∴AC=AB.∴当∠BAC=135°且AC=AB时,四边形ADEG是正方形.。

相关文档
最新文档