管式加热炉温度控制系统设计胜

合集下载

管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计

过程控制系统课程设计题目:管式加热炉温度-流量串级控制系统的设计摘要当今世界,随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。

为了能将课程中所学理论知识初步尝试应用于实践,本次设计将采用过程控制系统原理来实现工业生产控制问题的解决,通过设计一个温度-流量串级控制系统来实现对管式炉加热原料油的温度控制。

管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。

加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。

本此设计内容包括总体方案设计,系统原理阐述,系统框图与结构的搭建,变量检测环节,变量变送环节,控制器,调节阀,联锁保护等环节的具体选择与设计,最终形成一个可行可靠的完整串级过程控制系统方案,力图通过具体应用获得理论知识的进一步提升,并为工业生产提出可行性建议。

关键字:流量温度串级控制目录1.管式加热炉温度控制系统的设计意义 01.1管式加热炉简介 01.2温度控制系统设计意义 02.管式加热炉温度控制系统工艺流程及控制要求 (1)3.总体方案设计 (2)3.1传统简单控制系统 (2)3.2串级控制系统 (3)3.3管式加热炉温度-流量串级控制系统控制原理及调节过程 (4)4.系统的设计与参数整定 (6)4.1主回路设计 (6)4.2副回路设计 (6)4.3主副调节器调节规律的选择 (6)4.4主副调节器正反作用方式的确定 (7)4.5控制系统的参数整定 (7)5.所需检测元件、执行元件及调节仪表技术参数 (8)5.1温度变送器 (8)5.2温度检测元件 (9)5.3流量检测及变送 (9)5.4调节阀 (10)5.5联锁保护 (10)6. 组态软件设计 (11)6.1 新建工程 (11)6.2 连接设备及设备测试 (12)6.3 数据词典 (12)6.4 建立画面 (13)6.5 调试,执行 (13)6.6PID控制算法设计 (14)心得体会 (16)参考文献 (17)附录A 系统脚本程序 (18)1.管式加热炉温度控制系统的设计意义1.1管式加热炉简介管式加热炉是一种直接受热式加热设备,主要用于加热液体或气体化工原料,所用燃料通常有燃料油和燃料气。

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计

管式加热炉温度控制系统仿真设计摘要:随着科学技术的飞速发展,消费者对民用生产和工业生产对产品的性能有了更新的要求,其中,对产品的温度控制的要求也越来越高,所以研究设计管式加热炉的温度控制器具有很大的现实意义和使用价值。

本文是基于PID 控制算法的管式加热炉智能温度控制器为研究对象,首先阐述本文的研究背景和温度自动控制器的需求,然后对分析了传统控制方法的弊端,对模糊控制方法进行了介绍。

随后利用模糊PID计算方法计算对系统功能的实现情况,并从硬件和软件两个方面进行系统运行调试,得出较好的结果。

关键词:温度控制器;SSR 固态继电器;STM32 单片机ABSTRACT:With the rapid development of science and technology, consumer and industrial production to civilian production requirements for product update performance, which, on product temperature control requirements have bee more sophisticated, so designing resistance furnace temperature controller is of great practical significance and usefulness. This article is a resistance furnace temperature controller based on PID control algorithm for the study, first of all explains the background of this study and temperature control needs, then design the overall system-wide programme, including in particular the hardware system design, system design and software design of the control circuit of temperature. Then take advantage offuzzy PID calculation system of implementation, and run from the two systems in terms of hardware and software debugging, produce better results and conclusion full text. KEY WORDS:Temperature controller; SSR-solid state relays; STM32 microcontroller目录1 引言12.管式加热炉温度系统12.1管式加热炉的一般结构22.2管式加热炉传热方式53 管式加热炉温度系统的模糊控制73.1 常规控制方法的局限性73.2 智能控制思想83.3 管式加热炉温度系统的智能模糊控制93.3.1 模糊控制概述93.3.2 模糊控制原理93.3.3 模糊控制器结构102.2.4 建立模糊规则表144.控制系统仿真164.1 PID原理164.2 PID参数的选择174.3 Smith模糊PID控制算法204.4 模糊PID控制器的设计及仿真结果21结论25参考文献 (25)1 引言随着现代科技的快速发展,科学技术的应用,大大改善了人类的生产、生活方式。

管式加热炉温度前馈-反馈控制系统设计解析

管式加热炉温度前馈-反馈控制系统设计解析

过程控制课程设计报告管式加热炉温度前馈-反馈控制系统设计学生:专业:自动化班级:重庆大学自动化学院2012年10目录前言 (1)1 管式加热炉系统描述 (1)1.1 管式加热炉的一般结构 (1)1.2 管式加热炉传热方式 (2)1.3 管式加热炉工艺流程 (2)1.4 主要控制参数、操作参数及影响因素 (2)2 方案设计 (3)2.1 方案一 (3)2.2 方案二 (4)3 管式加热炉温度控制系统模型的建立 (4)3.1 前馈-反馈控制系统传递函数 (4)3.2 过程响应分析 (6)3.3 PID控制算法 (7)3.4 PID 控制各参数的作用 (8)4 MATLAB/Simulink仿真 (8)4.1 用ITAE 方法设计控制器 (8)4.2 用Ziegler-Nichols方法设计控制器 (10)5 基于MATLAB/Simulink的仿真 (12)5.1 前馈-反馈控制与单回路控制模型的比较 (12)5.2 基于ITAE方法的仿真模型 (13)5.2.1 ITAE的PI控制模型仿真 (13)5.2.2 ITAE的PID控制模型仿真 (14)5.3基于Ziegler-Nichols方法的仿真模型 (14)5.3.1 Ziegler-Nichols的PI控制仿真模型 (14)5.3.2 Ziegler-Nichols的PID控制仿真模型 (15)6 报告总结 (15)参考文献 (16)前言管式加热炉是石油炼制、化纤工业、石油化工和化学行业主要的工艺设备之一,作用是将物料加热至工艺所要求的温度,具有操作方便, 自动化水平高, 加工成本低, 传热效率高等优点。

1967年4月,世界上第一台步进梁式加热炉由美国米兰德公司设计而成,之后,日本中外炉公司设计的世界上第二座步进梁式加热炉于1967年5月投产。

70年代末,发达工业国家己经进入大型连续加热炉计算机控制的实用阶段,但控制策略还主要局限于燃烧控制。

管式加热炉出口温度串级控制系统设计报告

管式加热炉出口温度串级控制系统设计报告

设计任务书目录1 管式加热炉概述 (1)1.1管式加热炉在石油工业中的重要性 (1)1.2管式加热炉的基本构成与组成 (1)1.3管式加热炉出口温度控制系统设计目的及意义 (1)2 管式加热炉温度控制系统工作原理及控制要求 (2)2.1 管式加热炉出口温度控制系统工作原理..................... ........ . (2)2.2 管式加热炉出口温度控制系统控制要求 (2)3 管式加热炉出口温度控系统工艺流程设计 (2)3.1 管式加热炉出口温度影响因素的扰动分析 (2)3.2 管式加热炉出口温度控制系统的工艺流程设计 (2)4 管式加热炉出口温度控系统现场仪表的选型与连线图 (3)4.1 控制系统中温度检测元件的选型 (3)4.2 控制系统中变送器的选型 (4)4.3 控制系统中执行器(调节阀)的选型 (4)4.4 控制系统中调节器的选型 (5)4.5 控制系统中的连锁保护与接线图 (6)5管式加热炉出口温度串级控制系统分析 (8)5.1 控制系统方框图与工作过程 (7)5.2 主、副调节器规律选择 (7)5.3 主、副调节器正反作用方式确定 (7)5.4 控制器参数工程整定 (8)6 管式加热炉出口温度串级控制系统的MATLAB SIMULINK仿真与分析 (11)6.1传递函数的选择 (9)6.2系统的参数的选择 (9)6.3系统的仿真分析 (10)7 感受与体会..................................................................错误!未定义书签。

8参考文献....................................................................错误!未定义书签。

1 管式加热炉概述1.1管式加热炉在石油工业中的重要性⑴加热温度高(火焰温度1000℃以上),传热速率快。

管式加热炉出口温度及炉膛温度串行控制系统设计

管式加热炉出口温度及炉膛温度串行控制系统设计

第1章绪论1.1 设计要求综合运用过程控制系统及自动控制原理课中所学到的理论知识,联系工程实际,选择合理的主变量、副变量,选择合理的控制方式,设计一个符合要求的串级控制系统。

1.1.1 设计题目和设计指标设计题目:管式加热炉出口温度与炉膛温度串级控制系统技术指标:1. 选择控制器与调节阀的作用方式;2.画出控制系统框图;3.采用两步整定法整定主、副控制器PID的参数。

求出比例度与衰减振荡周期;4.按照经验公式且适当修正分别求得主、副控制器的最佳参数值;5.求出系统的阶跃响应曲线;6.求出设定值位0时,施加幅值为30%的一次阶跃扰动信号,系统的输出曲线;7.分析系统特点。

8.撰写设计说明书及注意事项。

1.1.2 设计功能主要功能:选择加热炉出口温度为主变量,炉膛温度为副变量,设计串级控制系统。

第2章系统总体设计方案2.1工艺流程图管式加热炉是工业生产中的常用设备之一,其工艺流程图如图2-1所示:图2-1 管式加热炉工艺流程图2.2方框图和工艺流程的介绍此次管式加热炉出口温度与炉膛温度串级控制系统的设计采用主副回路的串级控制方案,即选取炉口温度为主被控参数,选取炉膛温度为副被控参数,把炉口温度调节器的输出作为炉膛温度调节器的给定值。

其系统框图如图2-2所示:图2-2 管式加热炉出口温度串级控制系统框图管式加热炉简介:管式加热炉一般由四个主要部分组成:烟囱、对流室、辐射室及燃烧器管式加热炉示意图如图2-3所示:图2-3 管式加热炉 通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。

主调节器 管壁 调节阀 副测量变送器物料主测量变送器炉膛 副调节器对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。

辐射室:通过火焰或高温烟气进行辐射传热的部分。

这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。

燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。

管式加热炉温度温度串级控制系统的设计说明

管式加热炉温度温度串级控制系统的设计说明

管式加热炉温度温度串级控制系统的设计说明一、引言二、系统结构温度串级控制系统主要由上位机、温度传感器、控制器、执行机构等组成。

1.上位机:负责启动和监控系统运行,提供温度设定值和参考模型,按照系统控制算法生成控制指令发送给下位控制器。

2.温度传感器:负责实时采集管式加热炉内的温度数据,并将其传输给控制器进行处理。

3.控制器:根据上位机提供的设定值和参考模型,根据传感器采集到的温度数据进行处理,生成控制指令并发送给执行机构。

4.执行机构:根据控制器发送的控制指令,调节管式加热炉内的加热功率或其他参数,以实现温度控制。

三、温度控制策略1.温度设定值的调整:上位机会根据需要设定管式加热炉内的目标温度,并将其发送给控制器。

控制器会根据设定值和参考模型,生成合适的控制指令来调节温度。

2.温度比例控制:控制器会根据当前温度和设定值之间的差异,生成一个控制量来调节加热功率,使加热炉内的温度趋近于设定值。

3.温度积分控制:为了消除静态误差,控制器会根据温度偏差的积分值生成一定的控制量,以提高系统的稳定性。

4.温度微分控制:为了快速响应温度变化,控制器还会根据温度变化的速率生成相应的控制量。

四、系统性能指标1.温度响应时间:系统需要具备较快的响应时间,即加热炉内的温度能够尽快达到设定值。

2.温度稳定度:系统应当保持较好的温度稳定度,即经过一定时间后,温度偏差应尽可能小。

3.抗干扰能力:系统需要具备较好的抗干扰能力,对于外界干扰因素的影响应尽可能小。

五、系统设计优化1.选择合适的温度传感器:合适的温度传感器能够提供准确的温度数据,为控制系统提供可靠的输入信号。

2.高性能控制器的选择:通过选用性能较好的控制器,能够提高控制系统的稳定性和响应速度。

3.优化控制策略:通过合理选择温度比例、积分和微分参数,能够提高控制系统的性能。

4.加入滤波器和抗干扰装置:通过加入合适的滤波器和抗干扰装置,能够降低系统对外界干扰的敏感度,提高系统的抗干扰能力。

管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计1方案选定管式加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。

因此,常选原料油出口温度1t?()为被控参数、燃料流量为控制变量,构成如图1-1所示的温度控制系统,控制系统框图如图1-2所示。

影响原料油出口温度1t?()的干扰有原料油流量1()ft、原料油入口温度2()ft、燃料压力3()ft、燃料压力4()ft等。

该系统根据原料油出口温度1t?()变化来控制燃料阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,是一个简单控制系统。

图1-1 管式加热炉出口单回路温度控制系统图1-2 管式加热炉出口温度单回路控制系统框图由图1-1可知,当燃料压力或燃料热值变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。

从燃料流量变化经过三个容量后,才引起原料油出口温度变化,这个通道时间常数很大,约有15min,反应缓慢。

而温度调节器1TC是根据原料油的出口温度1()t?与设定值的偏差进行控制。

当燃料部分出现干扰后,图1-1所示的控制系统并不能及时产生控制作用,克服干扰对被控参数1()t?的影响,控制质量差。

当生产工艺对原料油出口温度1()t?要求严格时,上述简单控制系统很难满足要求。

燃料在炉膛燃烧后,首先引起炉膛温度2()t?变化,再通过炉膛与原料油的温差将热量传给原料油,中间还要经过原料油管道管壁。

显然,燃料量变化或燃料热值变化,首先使炉膛温度发生改变。

如果以炉膛温度作为被控参数组成单回路控制系统,会使控制通道容量滞后减少,时间常数约为3min,对来自燃料的干扰3()ft、4()ft的控制作用比较及时,对应的控制系统如图1-3所示。

系统框图如图1-4。

但问题是炉膛温度2()t?毕竟不能真正代表原料油出口温度1()t?,即使炉膛温度恒定,原料油本身的流量或入口温度变化仍会影响原料油出口温度,图1-3 管式加热炉炉膛温度控制系统这是因为来自原料油的干扰1()ft、2()ft并没有包含在图1-4所示的控制系统(反馈回路)之内,控制系统不能克服1()ft、2()ft对原料油出口温度的影响,控制效果仍达不到生产工艺要求。

管式加热炉温度-流量串级控制系统的设计解析

管式加热炉温度-流量串级控制系统的设计解析

过程控制系统课程设计题目:管式加热炉温度-流量串级控制系统的设计摘要当今世界,随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。

为了能将课程中所学理论知识初步尝试应用于实践,本次设计将采用过程控制系统原理来实现工业生产控制问题的解决,通过设计一个温度-流量串级控制系统来实现对管式炉加热原料油的温度控制。

管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。

加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。

本此设计内容包括总体方案设计,系统原理阐述,系统框图与结构的搭建,变量检测环节,变量变送环节,控制器,调节阀,联锁保护等环节的具体选择与设计,最终形成一个可行可靠的完整串级过程控制系统方案,力图通过具体应用获得理论知识的进一步提升,并为工业生产提出可行性建议。

关键字:流量温度串级控制目录1.管式加热炉温度控制系统的设计意义 (1)1.1管式加热炉简介 (1)1.2温度控制系统设计意义 (1)2.管式加热炉温度控制系统工艺流程及控制要求 (2)3.总体方案设计 (3)3.1传统简单控制系统 (3)3.2串级控制系统 (4)3.3管式加热炉温度-流量串级控制系统控制原理及调节过程 (5)4.系统的设计与参数整定 (7)4.1主回路设计 (7)4.2副回路设计 (7)4.3主副调节器调节规律的选择 (7)4.4主副调节器正反作用方式的确定 (8)4.5控制系统的参数整定 (8)5.所需检测元件、执行元件及调节仪表技术参数 (9)5.1温度变送器 (9)5.2温度检测元件 (10)5.3流量检测及变送 (10)5.4调节阀 (11)5.5联锁保护 (11)6.组态软件设计 (12)6.1 新建工程 (12)6.2 连接设备及设备测试 (13)6.3 数据词典 (13)6.4 建立画面 (14)6.5 调试执行 (14)心得体会 (16)参考文献 (17)1.管式加热炉温度控制系统的设计意义1.1管式加热炉简介管式加热炉是一种直接受热式加热设备,主要用于加热液体或气体化工原料,所用燃料通常有燃料油和燃料气。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录前言 (1)第一章管式加热炉温度控制系统设计的目的意义 (2)1.1管式加热炉简介 (2)1.2目的及意义 (2)第二章管式加热炉温度控制系统工艺流程及控制要求 (3)第三章总体设计方案 (4)3.1方案比较 (4)3.2方案选择 (5)第四章串级控制系统分析 (6)4.1主回路设计 (6)4.2副回路选择 (6)4.3主、副调节器规律选择 (6)4.4主、副调节器正反作用方式确定 (7)4.5控制器参数工程整定 (7)第五章各仪表的选取及元器件清单 (7)5.1温度变送器 (7)5.2温度检测元件 (8)5.3调节阀 (10)5.4联锁保护 (10)第六章M A T L A B仿真实验 (11)6.1副回路的整定 (11)6.2主回路的整定 (12)6.3整体参数整定 (12)第七章问题及解决办法....................................1 5 第八章心得体会 (15)【参考文献】前言——国内外控制系统发展情况1. 国外控制系统的发展情况自 70 年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的控制器及仪器仪表,并在各行业广泛应用。

它们主要具有如下的特点:1、适应于大惯性、大滞后等复杂控制系统的控制。

2、能够适应于受控系统数学模型难以建立的控制系统的控制。

3、能够适应于受控系统过程复杂、参数时变的控制系统的控制。

4、这些控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论,运用先进的算法,适应的范围广泛。

5、控制系统具有控制精度高、抗干扰力强、鲁棒性好的特点。

目前,国外控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展。

2. 国内控制系统的发展概况随着人们物质生活水平的提高以及市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,以及安全生产、保护环境等要求,做为工业自动化重要分支的过程控制的任务也愈来愈繁重。

在现代工业控制中, 过程控制技术是一历史较为久远的分支。

在本世纪30 年代就已有应用。

过程控制技术发展至今天, 在控制方式上经历了从人工控制到自动控制两个发展时期。

在自动控制时期内,过程控制系统又经历了三个发展阶段, 它们是:分散控制阶段, 集中控制阶段和集散控制阶段。

几十年来,工业过程控制取得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起着十分重要的作用。

目前,过程控制正朝高级阶段发展,不论是从过程控制的历史和现状看,还是从过程控制发展的必要性、可能性来看,过程控制是朝综合化、智能化方向发展,即计算机集成制造系统(CIMS):以智能控制理论为基础,以计算机及网络为主要手段,对企业的经营、计划、调度、管理和控制全面综合,实现从原料进库到产品出厂的自动化、整个生产系统信息管理的最优化。

第一章设计的目的意义1.1管式加热炉简介管式加热炉一般由四个主要部分组成:烟囱、对流室、辐射室及燃烧器,示意图如图所示:图1 管式加热炉通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。

对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。

辐射室:通过火焰或高温烟气进行辐射传热的部分。

这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。

燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。

1.2 设计目的及意义管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。

同时,近年来能源的节约、回收和合理利用日益受到关注。

加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。

因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。

另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

第二章管式加热炉温度控系统工艺流程及控制要求管式加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。

加热炉的工艺流程图如图所示。

燃料油经过蒸汽雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管中,就被加热到出口温度θ1。

在燃料油管道上装设一个调节阀,用它来控制燃油量以达到调节温度θ1的目的。

图2管式加热炉工艺流程图引起温度θ1改变的扰动因素很多,主要有:(1)燃料油方面(它的组分和调节阀前的油压)的扰动D2;(2)喷油用的过热蒸汽压力波动D4;(3)被加热油料方面(它的流量和入口温度)的扰动D1;(4)配风、炉膛漏风和大气温度方面的扰动D3;其中燃料油压力和过热蒸汽压力都可以用专门的调节器保持其稳定,以便把扰动因素减小到最低限度。

从调节阀动作到温度θ1改变,这中间需要相继通过炉膛、管壁和被加热油料所代表的热容积,因而反应很缓慢。

工艺上对出口温度θ1要求不高,一般希望波动范围不超过±1~2%。

第三章总体设计方案3.1 方案比较3.1.1简单控制系统温度调节器TC是根据原料油的出口温度θ1与设定值的偏差进行控制。

当燃料部分出现干扰后,控制系统并不能及时产生控制作用,克服干扰对被控参数θ1的影响控制质量差。

当生产工艺对原料油出口温度θ1要求很严格时,简单控制系统很难满足要求。

被控变量:原料油出口温度;操控变量:燃料流量。

当对出口温度控制要求不高时,简单控制系统可以满足要求。

图3管式加热炉温度控制系统图4管式加热炉出口温度单回路控制系统框图3.1.2 串级控制系统串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。

中间被控变量:炉膛温度;操纵变量:燃料流量。

炉膛温度变化时,TC可以及时动作,克服干扰。

图5管式加热炉温度串级控制系统图6管式加热炉出口温度串级控制系统框图3.2 方案选择方案一的简单控制系统有干扰时,TC输出信号改变阀门开度,进而改变燃料流量,在炉膛中燃烧后,炉膛温度改变,改过程时间常数大,可达到15min。

因此等到出口温度改变后,再改变操纵变量,动作不及时,偏差在较长时间内不能被消除。

方案二的串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。

副回路具有先调、初调、快调的特点;主回路具有后调、细调、慢调的特点,对副回路没有完全克服干扰的影响能彻底加以消除。

由于主副回路相互配合,使控制质量显著提高。

与单回路控制系统相比,串级控制系统多用了一个测量变送器与一个控制器(调节器),增加的投资并不多(对计算机控制系统来说,仅增加了一个测量变送器),但控制效果却有显著的提高。

其原因是在串级控制系统中增加了一个包含二次扰动的副回路,使系统①改善了被控过程的动态特性,提高了系统的工作频率;②对二次扰动有很强的克服能力;③提高了对一次扰动的克服能力和对回路参数变化的自适应能力。

综上所述,本设计选择串级控制系统。

第四章串级控制系统分析4.1 主回路设计加热炉温度串级控制系统是以原料油出口温度为主要被控参数的控制系统。

其他被控参数有炉膛温度,膛壁温度,燃料流量,原料油流量。

温度调节器对被控参数θ1精确控制与温度调节器对来自燃料干扰的及时控制相结合,先根据炉膛温度θ2的变化,改变燃料量,快速消除来自燃料的干扰、对炉膛温度的影响;然后再根据原料油出口温度θ1与设定值的偏差,改变炉膛温度调节器的设定值,进一步调节燃料量,使原料油出口温度恒定,达到温度控制的目的。

4.2 副回路选择副回路的选择也就是确定副回路的被控参数。

燃料由于其成分和流量变化,对控制过程产生极大干扰。

所以,我们选择炉膛温度为串级控制系统的辅助被控参数。

串级系统中,通过调整副参数炉膛温度θ2能够有效地影响主参数原料油出口温度θ1,提高了主参数的控制效果。

4.3 主、副调节器规律选择在串级控制系统中,主、副调节器所起的作用不同。

主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。

在加热炉温度串级控制系统中,我们选择原料油出口温度为主要被控参数,原料油温度影响产品生产质量,工艺要求严格,又因为加热炉串级控制系统有较大容量滞后,所以,选择PID调节作为住调节器的调节规律。

控制副参数是为了保证和提高主参数的控制质量,对副参数的要求一般不严格,可以在一定范围内变化,允许有残差,所以我们的负调节器调节规律选择P控制。

4.4 主、副调节器正反作用方式确定由生产工艺安全考虑,燃料调节阀应选气开方式,这样保证系统出现故障时调节阀处于全关状态,防止燃料进入加热炉,确保设备安全,调节阀的Kv﹥0。

主调节器作用方式确定:炉膛温度升高,物料出口温度也升高,主被控过程Ko1﹥0。

为保证主回路为负反馈,各环节放大系数成绩必须为正,所以负调节器的放大系数K1﹥0,主调节器作用方式为反作用。

又为保证副回路是负反馈,各环节放大系数乘积必须为正,所以负调节器大于0,负调节器作用方式为反作用方式。

4.5 控制器参数工程整定串级控制系统主、副控制器的参数整定方法主要有三种:两步整定法、一步整定法和逐步逼近法。

1、按照串级控制系统主、副回路的情况,先整定副控制器,后整定主控制器的方法叫做两步整定法。

2、一步整定法,就是根据经验先将副控制器一次放好,不再变动,然后按照一般单回路孔控制系统的整定方法直接整定主控制器参数。

3、逐步逼近法是一种依次整定主回路、副回路,然后循环进行,逐步接近主、副回路最佳整定的一种方法。

我们选择两步整定法来整定串级控制系统的参数。

第五章各仪表的选取及元器件清单5.1 温度变送器DDZ-III型仪表采用了集成电路和安全火花型防爆结构,提高了仪表精度、仪表可靠性和安全性,适应了大型化工厂、炼油厂的防爆要求。

III型仪表具有以下主要特点:(1)采用国际电工委员会(IEC)推荐的统一信号标准,现场传输信号为DC4~20mA,控制室联络信号为DC1~5V,信号电流与电压的转换电阻为250 。

(2)广泛采用集成电路,仪表的电路简化、精度提高、可靠性提高、维修工作量减少。

(3)整套仪表可构成安全火花型防爆系统。

DDZ-III型仪表室按国家防爆规程进行设计的,而且增加了安全栅,实现了控制室与危险场所之间的能量限制于隔离,使仪表能在危险的场所中使用。

相关文档
最新文档