直流伺服电机控制系统
-种基于PC104的直流伺服电机控制系统

-种基于PC104的直流伺服电机控制系统作者:张雷来源:《科技创新导报》 2013年第16期张雷(长春理工大学科技处,吉林长春,130022)摘要:本文设计一种基于PC104总线的直流伺服电机控制系统,系统采用嵌入式PC104控制器,提出基于位置回路和速度回路的双闭环数字直流电机伺服系统控制方案,给出了基于频率法的直流伺服系统的校正设计过程和软件设计,最后给出实试验测试结果。
关键词: PC104;直流伺服电机;脉宽调制中图分类号: TN935 文献标识码:A 文章编号:1673-098X(2013)06(a)-0000-001 引言目前使用的直流调速系统存在硬件电路复杂、功耗大等缺点,尤其在测控领域,为了使测控设备能够快速捕获并跟踪运动目标,要求伺服系统具有响应快速、过渡过程短、无超调和实时性高等特点,且能够无抖动、平稳地跟踪低速目标。
为了提高跟踪伺服系统的综合性能,本文设计了一种以嵌入式PC104为核心控制器的基于位置回路和速度回路的双闭环数字直流电机伺服控制系统,具有效率高、响应快、控制简单等优点。
2 系统方案设计2.1 系统总体设计与伺服控制原理电动数字式二维经纬仪由俯仰电机和方位电机组成。
为了实现闭环控制,系统选用PC104作为控制器,采用速度回路加位置回路的双闭环结构,完成电机驱动、速度/位置初始信号以及实时信号的采集与运算,并实时显示速度和位置回路的给定值。
系统设计了两种工作模式:(1)单杆手动模式:由人眼观察经纬仪,并手动操控操纵器对感兴趣区域进行扫描搜索。
(2)数据引导模式:由主控机给出位置/速度量,通过串口传至PC104控制器,引导经纬仪快速达到预期位置/转速。
直流伺服系统闭环结构图如图2所示,有内环(速度环)和外环(位置环)两个闭环,所反馈回来的数据为伺服电机实际的转速和位置。
上位机先给定位置数据使伺服电机完成指向,将位置环反馈回来的数据与该数据做差,即得到位置偏差;该差值送至位置调节器进行运算,得到速度给定值,将该值与速度环反馈回来的数据做差,得到速度偏差;该差值送至速度调节器运算,即得出PWM信号驱动电机。
基于单片机的直流伺服电机脉冲宽度调制控制系统的设计

基于单片机的直流伺服电机脉冲宽度调制控制系统的设计直流伺服电机脉冲宽度调制(PWM)控制系统是一种常见的控制电机速度和位置的方法。
在这篇文章中,我们将详细介绍基于单片机的直流伺服电机PWM控制系统的设计。
1.引言:直流伺服电机是一种常见的用于机器人、工业自动化和航空航天等领域的电机,它具有速度和位置控制的能力。
脉冲宽度调制技术是一种常用的控制直流电机速度和位置的方法,通过在一定周期内改变PWM信号的脉冲宽度,可以控制电机的转速和转向。
2.系统结构:(1)电源模块:用于提供电机驱动需要的直流电源。
(2)运动控制模块:用于控制电机的转速和转向,并生成PWM信号。
(3)PWM发生器:用于生成PWM信号的方波信号。
(4)驱动器:用于将PWM信号转换成电机驱动信号。
(5)电机:用于产生机械运动。
3.PWM信号生成:PWM信号的生成是整个系统的关键步骤,它决定了电机的转速和转向。
(1)选择合适的单片机:选择具有PWM输出功能的单片机作为控制芯片,常用的有AVR、PIC等系列。
(2)设定PWM周期:根据电机的需求,设定合适的PWM周期,通常周期在几十毫秒到几百毫秒之间。
(3)设定PWM占空比:根据转速和转向的需求,设定合适的PWM占空比,通常占空比在0%到100%之间。
(4)编程生成PWM信号:利用单片机的PWM输出功能,编程生成设定好的PWM信号。
4.电机驱动:电机驱动模块负责将PWM信号转换成电机驱动信号。
通常采用H桥驱动器来实现,H桥驱动器可以控制电机的正转和反转。
(1)选择合适的H桥驱动器:根据电机的电流和电压需求,选择合适的H桥驱动器。
(2)连接H桥驱动器:将控制信号连接到H桥驱动器的控制端口,将电机的电源和地线连接到驱动器的电源和地线端口。
(3)编程控制H桥驱动器:利用单片机的IO口,编程产生控制信号,控制H桥驱动器的输出。
5.运动控制:运动控制模块负责接收用户输入的速度和位置指令,并将其转换成合适的PWM信号。
伺服电机控制系统毕业论文设计

调速应用领域最初用得最多的是直流电机,随着交流调速技术特别是电力电子技术和控制技术的发展,交流变频技术获得了广泛应用,变频器和交流电动机迅速渗透到原来直流调速系统的绝大多数应用领域。近几年来,由于直流伺服电动机体积小、重量小和高效节能等一系列优点,中小功率的交流变频系统正逐步被直流伺服电动机系统所取代,特别是在纺织机械、印刷机械等原来应用变频系统较多的领域,而在一些直接由电池供电的直流电机应用领域,则更多的由直流伺服电动机所取代。
This article mainly discusses the designations of three-phase BLDCM velocity modulation system. The master controlled unit is BLDCM special-purpose control chip 80C196MC, assistanceswith the keyboard, the monitor, examines the electric circuit, the power electric circuit, actuates the electric circuit, the protection circuit and so on. The BLDCM with 3 Hall sensors establishing inside, to exam the position of the rotor and decide the phase change of electricalmachinery, the system calculates the rotational speed of the electrical machinery to realize the velocity-feedback control according to the Hall signal.
直流伺服电机控制系统设计

电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
描述直流伺服电机的三环控制系统结构

描述直流伺服电机的三环控制系统结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!直流伺服电机是一种能够精确控制旋转角度和速度的电机,广泛应用于工业生产和自动化设备中。
利用Simulink仿真直流伺服电机的闭环位置控制系统

利用Simulink 仿真直流伺服电机的闭环位置控制系统 一直流伺服电机传递函数及参数选择直流电机的工作转矩等于负载转矩与负载惯性系统加、减速转矩之和,表达式为: 1()()()()L a d t M t M t J J dtω=++。
其中,()M t 为电动机输出转矩,N m ⋅;()L M t 为负载转矩,N m ⋅;()t ω为电动机角速度,1rad s -⋅;a J 为电动机电枢转动惯量,322.210a J kg m -=⨯⋅;1J 为负载的转动惯量,需将移动工作台的惯性转换到电机轴上,取2321()510,2z h J m kg m π-=⋅≈⨯⋅h 为丝杠螺距,z m 为工作台质量。
电机电路处于动态过程时,对线圈施加的电源电压()a u t 和电枢线圈内通过的电流()a i t 的关系为:()()()()()a a a a ab di t u t R i t L e t d t =++。
其中,a R 为电机电枢线圈内阻,a R =20Ω;a L 为电机电枢线圈的电感,a L =2H ;()b e t 为电机电枢线圈在定子磁场中运动时产生的反电动势。
电机输出转矩()M t 应与通过电枢线圈的电流大小成正比,则()()T a M t K i t =。
其中,T K 为电机输出扭矩常数,T K =15N m A -⋅⋅。
电机电枢线圈产生的反电动势()b e t 与电枢的工作角速度()t ω成正比,故有:()()b b e t K t ω=。
其中,b K 为电机电枢反电动势系数,10.0498b K V rad -=⋅。
我们分别将上述的算式进行拉普拉斯变换,并令初始条件为零,则有:1()()()()L a M s M s J J s s =++Ω;()()()()a a a a b U s R sL I s E s =++;()()T a M s K I s =;()()b b E s K s =Ω。
直流伺服系统设计

02 直流伺服系统设计基础
CHAPTER
电机选择
根据系统需求选择合适的电机 类型,如无刷直流电机、有刷 直流电机等。
考虑电机的扭矩、转速、尺寸 和重量等参数,以确保电机能 够满足系统性能要求。
考虑电机的效率和温升,以降 低能耗和提高系统稳定性。
驱动器设计
根据电机类型和系统需求,设计合适的驱动器电路,包括电源、控制信号、保护电 路等。
工作原理
控制器
控制器是直流伺服系统的核心部 分,负责接收指令信号,并与电 机反馈信号进行比较,根据比较
结果输出控制信号。
电机
直流电机是系统的执行元件,根据 控制信号调整电机的输入电流或电 压,从而实现精确的运动控制。
反馈装置
为了实现精确控制,直流伺服系统 ቤተ መጻሕፍቲ ባይዱ常配备位置、速度或力矩传感器 等反馈装置,将实际运动状态反馈 给控制器。
霍尔编码器
霍尔编码器也具有较高的测量精度和可靠性,适用于对测量精度 要求较高的应用。
磁编码器
磁编码器利用磁场变化来测量转速和位置,具有较小的体积和较 高的测量精度。
控制器
1 2
微控制器
微控制器是伺服控制系统的核心,负责接收输入 信号、计算输出信号并控制伺服系统的运行。
数字信号处理器
数字信号处理器具有较高的计算能力和数据处理 能力,适用于对计算能力要求较高的应用。
3
可编程逻辑控制器
可编程逻辑控制器适用于需要自动化控制和逻辑 运算的应用,具有较好的可靠性和稳定性。
驱动器
晶体管驱动器
晶体管驱动器利用晶体管的开关特性 来控制电流的通断,具有较快的响应 速度和较大的输出电流。
继电器驱动器
继电器驱动器利用继电器的触点开关 来控制电流的通断,适用于对输出电 流要求较低的应用。
直流伺服电动机工作原理

直流伺服电动机工作原理直流伺服电动机是一种能够通过控制系统来精确控制转速和位置的电动机。
其工作原理可以概括为以下几个步骤:1. 电源供电:直流伺服电动机首先需要通过电源来提供电能。
电源会提供直流电压,通常是以可调节的方式供应。
2. 电动机转子:直流伺服电动机内部有一个转子,它由一组线圈和永磁体组成。
转子可以自由地旋转。
3. 电机驱动器:为了控制电动机的转速和位置,需要一个电机驱动器。
电机驱动器主要由功率放大器和控制电路组成。
控制电路通常接收来自控制系统的信号,并根据信号来调整电机的转速和位置。
4. 控制信号:控制信号可以来自于传感器或控制程序。
传感器可以测量电动机的转速和位置,并将信息传送给控制系统。
控制程序可以根据需求来将电动机的转速和位置设置为特定的数值。
5. 调整电压:根据控制信号,控制电路会调整电机驱动器的输出电压。
输出电压的改变会导致电动机的转速和位置相应地变化。
6. 转矩产生:当电机驱动器输出电压改变时,通过控制线圈通入不同的电流。
电流通过线圈时会在线圈和永磁体之间产生磁场。
根据电流的方向和大小,磁场的极性和强度也会相应改变。
这个磁场会与永磁体的磁场相互作用,产生力矩,进而驱动转子转动。
7. 反馈回路:为了确保电动机的准确控制,通常会设置一个反馈回路。
反馈回路可以监测电动机的实际转速和位置,并将信息反馈给控制系统。
控制系统通过与期望值进行比较,可以及时调整控制信号,从而保持电动机的精确控制。
通过以上的工作原理,直流伺服电动机可以在控制系统的指导下,实现精确的转速和位置控制,广泛应用于机器人、自动化设备和工业生产线等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电机与拖动》课程设计直流伺服电机控制系统的设计The design of Dc servo motor controlsystem学生姓名张志新学院名称信电工程学院专业名称电气工程及其自动化指导教师韩成春2012年01月04日摘要作为电能传输或信号传输的装置,变压器在电力系统和自动化控制系统中得到了广泛的应用,在国民经济的其他部门,作为特种电源或满足特殊的需要,变压器也发挥着重要的作用。
变压器是通过电磁耦合关系传递电能的设备,用途可综述为:经济的输送电能、合理的分配电能、安全的使用电能。
实际上,它在变压的同时还能改变电流,还可改变阻抗和相数。
它的种类很多,容量小的只有几伏安,大的可达到数十万千伏安;电压低的只有几伏,高的可达几十万伏。
小型变压器指的是容量1000V.A以下的变压器。
最简单的小型单相变压器由一个闭合的铁芯(构成磁路)和绕在铁芯上的两个匝数不同、彼此绝缘的绕组(构成电路)构成。
这类变压器在生活中的应用非常广泛。
关键词电机与拖动;小型;单向;变压器目录1 绪论 (1)1.1 设计总纲 (1)1.1.1设计任务 (1)1.1.2 设计要求 (1)1.1.3设计用设备和器件 (1)2变压器结构 (1)2.1 铁芯 (1)2.2 绕组 (1)2.3 其他结构部件 (2)3 变压器的工作原理 (2)3.1 电压变换 (2)3.2电流变换 (2)4 设计内容及数据的测量 (3)4.1 设计内容 (3)4.2 铁芯尺寸的选定 (4)4.3 绕组的匝数与导线直径 (5)5 实例计算 (8)结论 (10)心得 (11)参考文献 (12)附录 (13)附录1 (13)附录2 (13)1 绪论1.1 设计总纲1.1.1设计任务设计一个直流伺服电机控制系统1.1.2 设计要求1)说明直流伺服电机的基本结构和工作过程2)说明直流伺服电机的控制方法3)设计直流伺服电机控制系统,并分析运行特性4)撰写设计报告、总结以及心得1.1.3设计用设备和器件功率表、万用表.直流电流表、直流电压表2 变压器的结构2.1 铁芯铁芯是变压器磁路部分。
为减少铁芯内磁滞损耗涡流损耗,通常铁芯用含硅量较高的、厚度为0.35或0.5mm、表面涂有绝漆的热轧或冷轧硅钢片叠装而成。
铁芯分为铁柱和铁轭两部分,铁芯中套装绕组的部分是铁芯柱,连接铁芯柱形成闭合磁路的部分称为铁轭。
铁柱上套装有绕组线圈,铁轭则是作为闭合磁路之用,铁柱和铁轭同时作为变压器的机械构件。
铁芯结构有两种基本形式:芯式和壳式。
2.2 绕组变压器一般采用同芯式绕组,即低压绕组和高压绕组同芯地套装在铁芯柱上。
通常低压绕组在里面,高压绕组在外面。
绕组是变压器的电路部分。
一般采用绝缘纸包的铝线或铜线绕成。
为了节省铜材,我国变压器线圈大部分是采用铝线。
图(1)2.3其它结构部件1)储油柜和油表 2)气体继电器 3)安全气通 4)绝缘套管3变压器的工作原理3.1电压变换当一次绕组加上交流电压1u 时,绕组中通过交流电流1i ,在铁芯中将产生既与一次绕组交链,由于二次绕组交链的主磁通Φ,还会产生少量的仅与一次绕组交链的主要经过空气等非磁性物质闭合的一次绕组漏磁通1σΦ。
dtd Ne u Φ=-=111 (3-1) dtd Ne u Φ=-=222 (3-2) k N N E E U U ===212121 (3-3) 说明只要改变原、副绕组的匝数比,就能按要求改变电压。
3.2电流变换变压器在工作时,二次电流2I 的大小主要取决于负载阻抗模1Z 的大小,而一次电流1I 的大小则取决于2I 的大小。
2211U I U I = 又 (3-4)kII U U I 22121==(3-5) 说明变压器在改变电压的同时,亦能改变电流。
小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。
4 设计内容及数据的测量4.1 设计内容计算内容有四部分:额定容量的确定;铁芯尺寸的选定;绕组的匝数与导线直径;绕组(线圈)排列及铁芯尺寸的最后确定。
4.1.1额定容量的确定变压器的容量又称表现功率和视在功率,是指变压器二次侧输出的功率,通常用KVA 表示。
4.1.1.1 二次侧总容量小容量单相变压器二次侧为多绕组时,若不计算各个绕组的等效的阻抗及其负载阻抗的幅角的差别,可认为输出总视在功率为二次侧各绕组输出视在功率之代数和,即I U I U I U S n n +++=......33222 (4-1)式中 S 2——二次侧总容量(V ·A )U 2,U 3,……U n——二次侧各个绕组电压的有效值(V );I 2,I 3,……I n—— 二次侧各个绕组的负载电流有效值(A )。
4.1.1.2 一次绕组的容量对于小容量变压器来说,我们不能就认为一次绕组的容量等于二次绕组的总容量,因为考虑到变压器中有损耗,所以一次绕组的容量应该为(单位为V ·A )(4-2)式中 S 1——变压器的额定容量;η——变压器的效率,约为0.8~0.9,表3-1 所给的数据是生产时间的统计数据,可供计算时初步选用。
表1 小容量变压器计算参考数据4.1.1.3变压器的额定容量由于本次设计为小型单相变压器,所以不考虑在三相变压器中的情况,只考虑在小型单相变压器的情况。
小型单相变压器的额定容量取一、二绕组容量的平均值,S=21*(S 1+S 2)(单位为V·A ) (4-3) 4.1.1.4 一次电流的确定11)2.1~1.1(U SI = (4-4) 式中(1.1~1.2)考虑励磁电流的经验系数,对容量很小的变压器应取大的系数。
4.2 铁芯尺寸的选定4.2.1 计算铁芯截面积A为了减小铁损耗,变压器的铁芯是用彼此绝缘的硅钢片叠成或非晶材料制成。
其中套有绕组的部分称为铁芯柱,连接铁芯柱的部分称为铁轭,为了减少磁路中不必要的气隙,变压器铁芯在叠装时相临两层硅钢片的接缝要相互错开。
小容量变压器铁芯形式多采用壳式,中间芯柱上套放绕组,铁芯的几何尺寸如图(2)所示。
图(2)小容量芯柱截面积A 大小与其视在功率有关,一般用下列经验公式计算单位为(cm 2)。
SA K 0= (4-5)A——铁芯柱的净面积,单位为cm2K0——截面计算系数,与变压器额定容量S n有关,按表3-2选取,当采用优质冷轧K0可取小些截面积计算系数K0硅钢片时K0的估算值表2截面积计算系数计算芯柱截面积A后,就可确定芯柱的宽度和厚度,根据图3可知K c==A'abab(4-6)式中a——芯柱的宽度(mm);b——芯柱的净叠厚(mm);'b——芯柱的实际厚度(mm);K c——叠片系数,是考虑到铁芯叠片间的绝缘所占空间引起铁芯面积的减小K c=0.93;对于0.35mm厚两面所引入的。
对于0.5mm厚,两面涂漆绝缘的热轧硅钢片,K c =0.91;对于0.35mm厚,不涂漆的冷轧钢片,K c=0.95。
涂漆绝缘的热轧硅钢片,按A的值,确定a和b的大小,答案是很多的,一般取b=(1.2~2.0)a,,并尽可能选用通用的硅钢片尺寸。
表3-3列出了通用的小型变压器硅钢片尺寸。
表3小型变压器通用的硅钢片尺寸4.3绕组的匝数与导线直径4.3.1 计算每伏电压应绕的匝数从变压器的电势公式E=4.44fNBmA,若频率f=50Hz,可得出每伏所需的匝数A A f E NB B N m m 380105.444.410⨯=== (4-7)式中0N——对应于每伏电压的匝数,单位:匝/V B m ——铁芯柱内工作磁密最大值,单位:T A ——铁芯柱截面积,单位:cm 2当铁芯材料国热轧硅钢片时,取Bm=1.0~1.2T ;采用冷轧硅钢片时,可取Bm=1.2~1.5T 然后根据N 和各线圈额定电压求出各线圈的匝数U N N 101= (4-8) 202)10.1~05.1(U N N = (4-9)U N N 303)10.1~05.1(= (4-10)式中N1、N 2 ……Nn ——各线圈的匝数。
为补偿负载时漏阻抗压降,副边各线圈的匝数均增加了5%~10%。
4.3.2 计算导线直径d小型变压器的线圈多采用漆包圆铜线(QZ 型或QQ 型)绕制。
为限制铜损耗及发热,按各个绕组的负载电流,选择导线截面,如选的小,则电流密度大,可节省材料,但铜耗增加,温升增高。
小容量变压器是自然冷却的干式变压器,容许电流密度较低,根据实践经验,通过导线的电流密度J 不能过大,对于一般的空气自然冷却工作条件,J=2—3A/mm2。
对于连续工作时可取J=2.5A/mm 2 导线的截面积:A c =I/j.导线的直径: mmj I j I d 13.14==π导线直径可根据工作电流计算 ,式中: d —原、副边各线圈导线直径,单位:mm ;I —原、副边各线圈中的工作电流,单位:A ;根据算出的直径查电工手册或表3-4选取相近的标准线径。
当线圈电流大于10A 时,可采用多根导线并联或选用扁铜线。
表4导线材料的选取4.3.3 绕组(线圈)排列及铁芯尺寸的最后确定。
绕组的匝数和导线的直径确定后,可作绕组排列。
绕组每层匝数为')]4~2([9.0d h N c-=(4-11)式中 d '—绝缘导线外径(mm ); h ——铁芯窗高(mm );0.9——考虑绕组框架两端厚度的系数; (2~4)——考虑裕度系数。
各绕组所需层数为c N m N =(4-12)各绕组厚度为()i i i i t m d δγ'=++ i=1,2,…,n (4-13)式中 σ——层间绝缘厚度(mm ),导线较细(0.2mm 以下),用一层厚度为0.02~0.04mm 白玻璃纸,导线较粗(0.2mm 以上),用一层厚度为0.05~0.07mm 的电缆纸(或牛皮纸),更粗的导线,可用厚度为0.12mm 的青壳纸;γ——绕组间的绝缘厚度(mm ),当电压不超过500V 时,可用2~3层电缆纸夹1~2层黄蜡布等。
绕组总厚度为)2.1~1.1()...(210⨯++++=t t t t n t (4-14) 式中 t 0——绕组框架的厚度(mm );1.1~1.2——考虑裕度的系数。
计算所得的绕组总厚度t 必须略小于铁芯窗口宽度c ,若t>c,可加大铁芯叠装厚度,减小绕组匝数或重选硅钢片的尺寸,按上述步骤重复计算和核算,至合适时为止。
5实例计算图(3)如上图所示,取V U 2201= V U 3002= V U 503= A I 2.02= AI 1.03= 计算变压器的主要参数,并选择可行的材料。
解:1、计算变压器的额定容量S N1)计算副边的容量:S 2=U 2 I 2 + U 3 I 3=300*0.2+50*0.1=65(V·A )2)计算原边的容量:21S S =/η根据表1:小型单相变压器的效率η的估算值可以取η=0.82 因此,21S S =/η=65/0.82=79.3(V·A )3)计算变压器的额定容量N S =1/2(21S S +)=0.5*(65+79.3)=72.2(V·A )考虑到存在着一定的损耗,故可以定变压器的额定容量近似取75V·A2、 铁芯尺寸的选定1)计算铁芯截面积AA =K 0N S根据表2. 截面积计算系数K0的估算值可以取K0=1.40因此,A =K 0N S(cm2)2)铁芯中柱宽度a 与铁芯叠厚b 的计算根据表3.参数a 、b 的选取可以近似取a=28mm 因此,b=110F/a=110*12.1/28=47.5 mm.此时b/a=47.5/28=1.7满足b=(1.2~2)a 的通常要求。