概率与数理统计_习题集(含答案)汇总

合集下载

概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21− (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A)41414121 (B)161814121(C)1631614121 (D)81834121−3. 设延续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=− (B) 21)21(==X P(C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为延续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞−=x x F b d )() (B) X a P <(≤⎰=b ax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞−=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ).(A)⎰ba x x F d )( (B)⎰bax x f d )((C) )()(a f b f − (D) )()(b F a F −6. 下列函数中可以作为延续型随机变量的密度函数的是( ).知识归纳整理7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+−)(x Φ1)(=x (C) Φ=−)(a Φ)(a (D) 2)(=<a x P Φ1)(−a9. 下列数组中,不能作为随机变量分布列的是( ).(A ) 61,61,31,31 (B)104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23−=X Y ( ).(A) )3,2(−N (B) )3,4(−N (C) )3,4(2−N (D) )3,2(2−N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p(C) 1- p (D) p−1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E 求知若饥,虚心若愚。

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

概率与数理统计习题及详解答案

概率与数理统计习题及详解答案

概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话. 解:设A 1={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P (2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P=.27431)311)(311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD 3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12 所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )]=(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分(Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅)= P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅ =)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P )6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P (II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路. (Ⅰ)在如图的电路中,电路不发生故障的概率是多少? (Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由. 解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下:图1中发生故障事件为(A 1+A 2)·A 3∴不发生故障概率为 3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴ 图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分)说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1,(1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率 )12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 解:(1)记甲、乙分别解出此题的事件记为A 、B.设甲独立解出此题的概率为P 1,乙为P 2.(2分)则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E 9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap . 8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分 10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分 (2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.8 8分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.2 10分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096. 12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则 73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76 即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件 其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31. (I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分 2316=⋅=∴ξE ……………………………………………………………9分 34)311(316=-⋅⋅=ξD ……………………………………………………12分 14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P=.27431)311)(311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计习题(答案)大合集

概率论与数理统计习题(答案)大合集

概率与统计试卷(1)1、(9分) 从0,1,2,3,4,5这六个数中任取三个数进行排列,问取得的三个数字能排成三位数且是偶数的概率有多大.2、(9分)用三个机床加工同一种零件,零件由各机床加工的概率分别为0.5、0.3、0.2,各机床加工的零件为合格品的概率分别为0.94、0.90、0.95,求全部产品的合格率.3、(11分)某机械零件的指标值ξ在[90,110]内服从均匀分布,试求:(1)ξ的分布密度、分布函数;(2)ξ取值于区间(92.5,107.5)内的概率.4、(9分)某射手每次射击打中目标的概率都是0.8,现连续向一目标射击,直到第一次击中为止.求“射击次数”的期望.5、(17分)对于下列三组参数,写出二维正态随机向量的联合分布密度与边缘分布密度.6、(15分)求下列各题中有关分布的临界值.1))6(205.0χ,)9(201.0χ; 2))12(01.0t ,)8(05.0t ; 3))10,5(025.0F ,)5,10(95.0F . 7、(11分)某水域由于工业排水而受污染,现对捕获的10条鱼样检测,得蛋白质中含汞浓度(%)为0.213 0.228 0.167 0.766 0.054 0.037 0.266 0.135 0.095 0.101,若生活在这个区域的鱼的蛋白质中含汞浓度ξ~N (μ,2σ),试求μ=E ξ,2σ=D ξ的无偏估计.8、(12分)某种导线的电阻服从正态分布N(μ,2σ),要求电阻的标准差不得超过0.004欧姆. 今从新生产的一批导线中抽取10根,测其电阻,得s*=0.006欧姆. 对于α=0.05,能否认为这批导线电阻的标准差显著偏大?9、 (7分)某校电器(3)班学生期末考试的数学成绩x (分)近似服从正态分布N (75,102),求数学成绩在85分以上的学生约占该班学生的百分之几?概率与统计试卷(2)1、(9分)已知某城市中有50%的用户订日报,65%的用户订晚报,85%用户至少这两种报中的一种,问同时订两种报的用户占百分之几.2、(9分)从4台甲型、5台乙型电脑中,任取3台,求其中至少要有甲型与乙型电脑各一台的概率。

概率论与数理统计总习题及答案

概率论与数理统计总习题及答案

试题一、填空1、设P(A)=0.4,P(AUB)=0.7,A与B不相容,则P(B)=0.3 解:由公式,P(AUB)= P(A)+ P(B)所以P(B)= 0.7-0.4=0.32、若X~B(n,p),则X的数学期望E(X)= n*p解:定义:二项分布E(X)= n*p D(X)=n*p(1-p)3、甲盒中有红球4个,黑球2个,白球2个;乙盒中有红球5个,黑球3个;丙盒中有黑球2个,白球2个。

从这3个盒子中任取1个盒子,再从中任取1球,他是红球的概率0.375解:设甲为A1,乙为A2,丙为A3,红球为B则P(B)=P(A1)P(B| A1)+P(A2)P(B| A2)+P(A3)P(B| A3)=1/3*1/2+1/3*5/8+1/3*0=0.3754、若随机变量X的分布函数为f(x)={0,x<0√x,0≤x<1 1, x≥1则P{0.25<X≤1}=0.5解:分布函数求其区间概率即右端点函数值减去左端点函数值F (1)-F (0.25) = 1-0.5=0.55、设(X1,X2,…X n)为取自正态分布,总体X~N(μ,σ2),的样本,则X的分布为N(μ,σ2n )解:定义6、设ABC表示三个随机变量事件,ABC至少有一个发生,可表示为AUBUC解:至少;如果是一切发生为A∩B∩C7、设X为连续随机变量,C是一个常数,则P{X=C}=0 解:取常数,取一个点时,恒定为08、一射手对同一目标独立地进行4次射击,若至少命中1次的概率为80/81,则该射击的命中率为2/3解:射击,即伯努利试验。

求P(X=0)=Cn0p0(1−p)4=1−80/81(1−p)4=181,1−p=13,p=239、设X~N(−1,2),Y~N(1,3)且X与Y相互独立,则X+ 2Y~N(1,14)解:因为X与Y相互独立,再由正态分布得E(X)=-1,D(X)=2;E(Y)=1,D(Y)=3;所以E(X+2Y)=E(X)+2E(Y)=-1+2*1=1D(x+2Y)=D(X)+4D(Y)=2+4*3=14所以X+2Y~N(1,14)10、设随机变量X的方差为2.5,利用切比雪夫不等式估计概率得P{|X−E(X)|≥7.5}≤ 2.57.52解:由切比雪夫不等式P{|X−μ|≥ε}≤σ2ε2≤ 2.57.52二、 计算1、 从0,1,2,…9中任意取出3个不同的数字,求下列的概率。

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册(内附答案)

概率论与数理统计练习册 复习题和自测题解答第一章 复习题1、一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是正品(i =1,2,3,……,n ),用i A 表示下列事件: (1) 没有一个零件是次品; (2) 至少有一个零件是次品; (3) 仅仅只有一个零件是次品; (4) 至少有两个零件是次品。

解:1)1ni i A A ==2)1ni i A =3)11nn i j i j j i B A A ==≠⎡⎤⎛⎫⎢⎥ ⎪=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦4)A B2、任意两个正整数,求它们的和为偶数的概率。

解:{}(S =奇,奇),(奇,偶),(偶,奇),(偶,偶) 12P ∴=3、从数1,2,3,……,n 中任意取两数,求所取两数之和为偶数的概率。

解:i A -第i 次取到奇数(i =1,2);A -两次的和为偶数1212()()P A P A A A A =当n 为奇数时:11111112222()112n n n n n P A n n n n n----+--=⋅+⋅=-- 当n 为偶数时:1122222()112(1)n n n n n P A n n n n n ---=⋅+⋅=---4、在正方形{(,)|1,1}p q p q ≤≤中任意取一点(,)p q ,求使方程20x px q ++=有两个实根的概率。

解: 21411136x S dx dy --==⎰⎰ 13136424p ∴==5、盒中放有5个乒乓球,其中4个是新的,第一次比赛时从盒中任意取2个球去用,比赛后放回盒中,第二次比赛时再从盒中任意取2个球,求第二次比赛时取出的2个球都是新球的概率。

解:i A -第一次比赛时拿到i 只新球(i =1,2)B -第二次比赛时拿到2只新球1)()()1122()()|()|P B P A P B A P A P B A =⋅+⋅2122344222225555950C C C C C C C C =⨯+⨯=6、两台机床加工同样的零件,第一台加工的零件比第二台多一倍,而它们生产的废品率分别为0.03与0.02,现把加工出来的零件放在一起 (1)求从中任意取一件而得到合格品的概率;(2)如果任意取一件得到的是废品,求它是第一台机床所加工的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率与数理统计》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《概率与数理统计》(编号为01008)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。

一、计算题11.设A,B,C表示三个随机事件,试将下列事件用A,B,C表示出来。

(1) A出现,B、C不出现;(2) A、B都出现,而C不出现;(3) 所有三个事件都出现;(4) 三个事件中至少一个出现;(5) 三个事件中至少两个出现。

2.在分别标有1,2,3,4,5,6,7,8的八张卡片中任抽一张。

设事件A为“抽得一张标号不大于4的卡片”,事件B为“抽得一张标号为偶数的卡片”,事件C为“抽得一张标号为奇数的卡片”。

试用样本点表示下列事件:(1)AB;(2)A+B;(3)B;(4)A-B;(5)BC3.写出下列随机试验的样本空间:(1)一枚硬币掷二次,观察能出现的各种可能结果;(2)对一目标射击,直到击中4次就停止射击的次数;(3)二只可辨认的球,随机地投入二个盒中,观察各盒装球情况。

4.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生;(2)A,B,C都发生;(3)A,B,C中不多于一个发生。

5.甲、乙、丙三人各向目标射击一发子弹,以A、B、C分别表示甲、乙、丙命中目标。

试用A、B、C的运算关系表示下列事件:(1)至少有一人命中目标(2)恰有一人命中目标(3)恰有二人命中目标 (4)最多有一人命中目标 (5)三人均命中目标6. 袋内有5个白球与3个黑球。

从其中任取两个球,求取出的两个球都是白球的概率。

7. 两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02。

加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍,求任意取出的零件是合格品的概率。

8. 某地区的电话号码由7个数字组成(首位不能为0),每个数字可从0,1,2,…,9中任取,假定该地区的电话用户已经饱和,求从电话码薄中任选一个号码的前两位数字为24的概率。

9. 同时掷两颗骰子(每个骰子有六个面,分别有点数1,2,3,4,5,6),观察它们出现的点数,求两颗骰子得点数不同的概率。

10. 一批零件共100个,其中次品有10个,今从中不放回抽取2次,每次取一件,求第一次为次品,第二次为正品的概率。

11. 设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>+=-00)(22x x Be A x F x求(1)系数A 及B ;(2)X 的概率密度()f x ;(3)X 的取值落在(1,2)内的概率。

12. 假设X 是连续随机变量,其密度函数为2,02()0,cx x f x ⎧<<⎪=⎨⎪⎩其他求:(1)c 的值;(2)(11)P X -<<13. 设二维随机变量(X ,Y )的联合分布函数(,)(arctan )(arctan )F x y A B x C y =++,求常数A,B,C(),()x y -∞<<+∞-∞<<+∞.14. 设随机变量X 的分布函数为0,1()ln ,11,X x F x x x e x e ⎧<⎪=≤<⎨⎪≥⎩求{2},{03},{252}P X P X P X <<≤<<;(2)求概率密度()X f x15. 设随机变量X 的概率密度为212(1),12,()0,x x f x ⎧-≤≤⎪=⎨⎪⎩其他.16. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤-+=其它0101011)(x x x x x f ,求E(X),D(X)。

17. 设X 的概率密度为⎪⎪⎩⎪⎪⎨⎧>≤=-022)(x e x e x f xx,试求|X|的数学期望。

18. 搜索沉船,在时间t 内发现沉船的概率为1t e λ--(λ>0),求为了发现沉船所需的平均搜索时间。

19. 设X服从参数为λ的指数分布,即X有密度函数,0()0,x e x f x λλ-⎧>⎪=⎨⎪⎩其他求:2E X E X (),()。

20.*X =X 的标准化随机变量,求)()(**X D X E 及。

二、计算题221. 已知X~B(n,p),试求参数n,p 的矩法估计值。

22. 设总体X 在[a,b]上服从均匀分布⎪⎩⎪⎨⎧∉∈-=],[0],[1),,(b a x b a x ab b a x f ,试求参数a,b 的矩法估计量。

23. 设21,,N n X X μσ⋅⋅⋅是来自(,)的样本,求2μσ,的最大似然估计。

24. 设有一批产品。

为估计其废品率p ,随机取一样本X 1,X 2,…,X n ,其中⎩⎨⎧=取得废品取得合格品10i X (i=1,2,…,n) 则∑===ni i X n X p11ˆ是p 的一致无偏估计量。

25. 设总体X 的均值μ及方差2σ都存在,且有20σ>。

但μ,2σ均未知。

又设12,,...,n X X X 是来自X 的样本。

试求μ,2σ的矩估计量。

26. 某厂生产的某种型号电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布。

今有一批这种电池,从它的生产情况来看,寿命波动性较大。

为判断这种想法是否合乎实际,随机取了26只这种电池测出其寿命的样本方差s 2=7200(小时2)。

问根据这个数字能否断定这批电池的波动性较以往的有显著变化(取a=0.02,查表见后面附表)?概率论与数理统计附表χ2分布部分表常用抽样分布)1,0(~N nX U σμ-=)1(~/--=n t nS X T μ)1(~)1(2222--=n S n χσχ27. 某电站供应10000户居民用电,设在高峰时每户用电的概率为0.8,且各户用电量多少是相互独立的。

求:1、 同一时刻有8100户以上用电的概率;2、 若每户用电功率为100W ,则电站至少需要多少电功率才能保证以0.975的概率供应居民用电?(查表见后面的附表)概率论与数理统计附表 标准正态分布部分表2常用抽样分布)1,0(~N nX U σμ-=)1(~/--=n t nS X T μ)1(~)1(2222--=n S n χσχ28. 某种电子元件的寿命x (以小时计)服从正态分布,μ,σ2均未知,现测得16只元件,其样本均值为5.241=x ,样本标准方差为S=98.7259。

问是否有理由认为元件的平均寿命大于225(小时)?29. 已知某炼铁厂的铁水含碳量在正常情况下有正态分布N(4.55,0.1082)。

现在测了五炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37。

问:若标准差不改变,总体平均值有无变化?(a=0.05)常用抽样分布)1,0(~N nX U σμ-=)1(~/--=n t nS X T μ )1(~)1(2222--=n S n χσχ30. 已知某炼铁厂的铁水含碳量在正常情况下有正态分布N(4.55,0.1082)。

现在测了五炉铁水,其含碳量分别为4.28,4.40,4.42,4.35,4.37。

问:若标准差不改变,总体平均值有无变化?(a=0.05)标准正态分布部分表常用抽样分布)1,0(~N nX U σμ-=)1(~/--=n t nS X T μ )1(~)1(2222--=n S n χσχ答案一、计算题11. 解:(1)ABC ;(2)C AB ;(3)ABC ;(4)A+B+C ;(5)AB+BC+CA (每个3分)2. 解:(1)AB={2,4};(2)A+B={1,2,3,4,5,6,8};(3)B ={1,3,5,7};(4)A-B={1,3};(5)BC ={1,2,3,4,5,6,7,8}(每个3分)3. 解:(1){(HH )(HT )(TH )(TT )}(2){4,5,6,…}(3){(12,0)(0,12)(1,2)(2,1)} 其中:1为一号球,2为二号球(每个5分)4. 解:(1)利用事件的运算定义,该事件可表示为ABC 。

(2)同理,该事件可表示为ABC 。

(3)CA CB B A ++(每小题5分)5. 解:(1)A B C ⋃⋃(2)ABC ABC ABC ⋃⋃ (3)ABC ABC ABC ⋃⋃ (4) BC AC AB ⋃⋃ (5) ABC (每小题3分)解:基本事件的总数28C n =;基本事件数25C k =。

故所求的概率97.003.01)|(1=-=B A P ,98.002.01)|(2=-=B A P (10分)8. 解:第一位数字不能是0,这时,基本事件的总数为1069(3分)A 表示“任选的电话号码的前两位数字恰好为24”。

由于电话号码的前两个数字为24,后五个数字中每一个可以由0,1,2,…,9中任取,故对A 有利事件的数目为105。

(6分)于是90191010)(65==A P (15分)9. 解:一个基本事件是由两个数字组成的排列(i ,j ),i,j=1,2,3,4,5,6,而i,j 可以重复,故基本事件的总数为62。

(5分)A 表示“两颗骰子掷得的点数不同”。

对A 有利的基本事件数等于所有i ≠j 排列方式的数目,即从1,2,3,4,5,6这六个数字任取其二作不可重复的排列方式数A 62,所以656)(226==A A P (15分)10. 解:记{}A =第一次为次品、B {}=第一次为正品,要求P AB ()。

(2分)已知90P A 0.1P B A 99()=,而()=,因此(8分) 90P AB P A P B A 0.10.09199()=()()==(15分)11. 解:X 为连续型随机变量,()F x 应为x 的连续函数,应有(3)由⎰-==<<baa Fb Fdx x f b X aP )()()(}{式有12. 解:(1)因为()f x 是一密度函数,所以必须满足()1f x dx +∞-∞=⎰,于是有(5分)15分)13. 解:由分布函数的性质得:lim (arctan )(arctan )()()122x y A B x C y A B C ππ→+∞→+∞++=++=(4分)lim (arctan )(arctan )()(arctan )02x A B x C y A B C y π→-∞++=-+=(8分)lim (arctan )(arctan )(arctan )()02y A B x C y A B x C π→-∞++=+-=(12分) 由此可解得21,,22C B A πππ===。

(15分)14. 解:(1)0,1()ln ,11,X x F x x x e x e ⎧<⎪=≤<⎨⎪≥⎩{2}(2)ln 2X P X F <==(3分){03}(3)(10)101X X P X F F <≤=-=-=(6分) 555{252}()(2)lnln 2ln 224X X P X F F <<=-=-=(9分) (2)0,()()'11X X f x F x x e x⎧⎪==⎨≤<⎪⎩其他,(15分)15. 解:因概率密度()f x 在1,2x x <>处等于零,即知当1x <时,()()00,xxF x f x dx dx -∞-∞===⎰⎰(3分)当2x >时,()()1()10 1.xxxF x f x dx f x dxdx ∞-∞∞==-=-=⎰⎰⎰(8分)当12x ≤≤时,12111()()02(1)112()2(2).x xxF x f x dx dx dx xx x x x-∞-∞==+-=+=+-⎰⎰⎰(12分)故所求分布函数是0,1,1()2(2),12,1, 2.x F x x x x x <⎧⎪⎪=+-≤<⎨⎪≥⎪⎩(15分)16. 解:⎰⎰⎰-+∞∞-=-++==0110)1()1()()(dx x x dx x x dx x xf X E (7分)⎰⎰⎰-∞+∞-=-++==-=01102222261)1()1()()]([)()(dx x x dx x x dx x f x X E X E x D (15分)17. 解:令Y=|X|,所以:⎰⎰⎰∞+∞-∞-∞+-=+-==00122)(||)(dx e x dx e x dx x f x X E xx (15分)18. 解:设发现沉船所需要的搜索时间为X 。

相关文档
最新文档