七年级上册数学苏科版有理数单元测试卷

合集下载

苏科版七年级上《第二章有理数》单元测试含答案.docx

苏科版七年级上《第二章有理数》单元测试含答案.docx

第二章有理数单元测试一. 单选题(共10题;共30分)1•下列各组数中:①・扌和(-5) 2;②(-3)彳和.宁;③.(-0.3) 5和0.35;④和0"°; ⑤(-1)彳和一 (-1) 2 .相等的共有( )4组 D 、5组2•计算-4x2的结果是(3.2015的倒数是() 6.下列说法屮,正确的是( )7. - 5的相反数是()A.5B.15C. - 15 8•已知 a>b 且 a+b=0,贝ij ()9•下列各数中,比・2小的数是(A. - 3B. - 1C.OD.210.如果向北走3m,记作+3m,那么・10m 表示()A 、向东走10mB 、向南走10mC 、向西走10mD 、向北走10m二、填空题(共8题;共39分)|a|=1, |b|=2, |c|=3,月.a>b>c,那么 a+b - c= _____________12. 在数・5, 1,・3, 5,・2中任选两个数相乘,其中最大的积是A.aVOB.b>0C.b<0D.a>0 A 、-6 B 、-2C 、D 、-8 A. -20152015 c 2015 D. 20154.计•算(1 - -孑-^)• ・§) • B 、5•计算( -25)三手的结果等于( B 、-5 C 、-15D 、A •所冇的冇理数都能用数轴上的点表示B •冇理数分为正数和负数C •符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数13. 若 a<0, b<0, |a|<|b|,则 a ・b ____________ 0.14. ・2倒数是 ______ ,・2绝对值是 _________15. 计算:1 ■ ( ■ 3) = _______16. 如果水库的水位高于正常水位Im 时,记作+lm,那么低于正常水位2m 时,应记作 ____________ . 17. 若 |a - 1|=4,则 a= ________ .18. 计算:-(+ j , - ( - 5.6) = ___________ ,・ | ・ 2|= ______ , 0+ (・ 7) = _________ ・ (・ 1)- I -3|= __________ •三、解答题(共6题;共31分)29.把下列各数分别填入相应的大括号里:・ 227 , 0,・(+0.18) , 34 }:};};}.20. 若|a|=5, |b|=3,① 求a+b 的值;② 若a+b<0,求a-b 的值.21. 若|a| =4, |b|=2,且 aVb,求 a - b 的值.-5.13, 5,・ | ・ 2|, +41, 正数集合{ 负数集合{ 整数集合{ 分数集合{22.小明在初三复习归纳吋发现初中阶段学习了三个非负数,分别是:①X;②a;③|a| (a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2) 2+|x+y・1|二0,求/的值•请你利用三个非负数的知识解答这个问题23•为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, -4, +13, - 10, - 12, +3,- 13, - 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格屮的数.-3795答案解析一、单选题I、【答案】C【考点】有理数的乘方【解析】f分莎丿首先计算出各组数的值,然后作出判断.【解答】@-52=-25, (-5)2=25;②(-3)3=-27 ^-33=-27;③.(-0.3)乙0.00729 , 0.35=0.00729;④O ioo=o2oo=o;⑤(-1)3=-1,・(-1)2=-1.故②③④⑤组相等.故选C.(点讦口本题主要考查有理数乘方的运算.正数的任何次幕都是正数;负数的奇次帚是负数,负数的偶次幕是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式二・(4x2)=-8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是诰故选:C.【分析】根据倒数的定义可得2015的倒数是祐 .4、【答案】C【解析】【解答】解:设44+4=a,原式二(.1 - a) (a+£ ) - (1 _ a - ) a=a+-^ - a2 - a _ a+a2+-^ a=-^ ,■ ■■故选c【分析】设4+j+^=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:V (- 25) 号 (-25) x|=- 15, ・•・(・25)十扌的结果等于・15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(-25) 的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;・3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:-5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:Va>b a+b=O, Aa>0, b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知- 3<-2. 故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比・2小的数是・3・10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么-10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出-10m的意义.二、填空题11>【答案】2或0【考点】有理数的混合运算【解析】【解答】解:V|a|=l, |b|=2, |c|=3,・:a=±l, b=±2, c=±3,Va>b>c,a= - 1, b= - 2, c= - 3 xiK a=l, b= - 2, c= - 3,则a+b - c=2 或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a, b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(・5) x (・3) "5,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【解析】【解答】解:Va<0, b<0, |a|<|b|A a ・ b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】2【考点】绝对值,倒数【解析】【解答】解:- 2的倒数为-*, - 2的绝对值为2. 故答案为■ * ; 2.【分析】分别根据倒数的定义以及绝刈值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:(・3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出(・3)的值是多少即可.16、【答案】-2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:-2m. 故答案为:-2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或・3【考点】绝对值【解析】【解答】解:・・・|a-l|=4, .\a - 1=4或解得:a=5或3.故答案为:5或・3.【分析】依据绝对值的定义得到a・1=±4,故此可求得a的值.18、【答案】-5.6; -2; - 7; -4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=・扌;原式=5.6:原式=-2;原式二・7;原式=-1 - 3= - 4, 故答案为:・亍;5.6; - 2; - 7; - 4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{5, +41, 34}; 负数集合{-5.13, -|-2|,・ 227,・(+0.18) }; 整数集合{5, -|-2|, +41, 0};分数集合{- 5.13, - 227, - (+0.18) , 34}【考点】有理数【解析】【分析】按照有理数的分类填写:'正整数整数0负整数 V ■20、 【答案】解:(1) V|a|=5, |b|=3,a=±5, b=±3,.\a+b=8或2或・2或-8;(2) Va=±5, b 二±3,且 a+b<0,a= - 5, b=±3,A a - b= - 8 nJc - 2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5, |b|=3,那么a=±5, b=±3,再分4种情况分别计算即可;(2)由于a=±5, b=±3,且a+b<0,易求a= - 5, b=±3,进而分2种情况计算即可.21、 【答案】解:V|a|=4, |b|=2,a=±4, b=±2,Va<b,•Ia= - 4, b=±2,a - b= - 4 - 2= - 6,或 a-b=-4- ( - 2 ) = - 4+2= - 2,所以,a - b 的值为-2或-6.【解析】【分析】根据绝对值的性质求出a 、b,再判断出a 、b 的对应情况,然后根据有理数的减法运算 法则有理数' 分数{ 正分数负分数进行计算即可得解.22、【答案】解:I (x+2) »x+y - 1冋,/• x+2=0x+y-l=0,解得x=-2y=3,x y= ( - 2)3= - 8,即x,的值是■&【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y-l|=O,然后根据偶次方的非负性,以及绝对值的非负性, 可得x+2=0, x+y・20,据此求出x、y的值各是多少,再把它们代入/ ,求出的值是多少即可.23、【答案】解:(1) 0+15 - 4+13 - 10 ・ 12+3 - 13 - 17= - 25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2) |+151 + | - 4| + |+131 + | - 10| + | - 121 + |+31 + | - 13| + | - 171 =87 (千米),87x0.1=8.7 (升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,岀车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值, 如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:J・3+7+5=・3+12=9,・・・三个数的和为9,第三行中间的数是9 -(9+5) =-5,最中间的数是9 -(- 3+9) =3,第二列最上边的数是9- ( - 5+3) =9+2=11,第一行的第一个数是9・(・3+21) =9・8二1,第一列的第二个数是9・(1+9)=・3111■379-5【考点】冇理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

苏科版七年级数学上册有理数单元测试卷50

苏科版七年级数学上册有理数单元测试卷50

苏科版七年级数学上册有理数单元测试卷50一、选择题(共10小题;共50分)的绝对值是A. C. D.的相反数是A. B. C.3. 下列说法中,正确的是A. 是正数B. 是负数C. 既不是正数,也不是负数D. 以上均不对4. 下列实数中,属于无理数的是A. B. D.5. 如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是到,其中可以看见个面,其余个面是看不见的,则看不见的面上的点数总和是A. B. C. D.6. 下列各数:,,,,,中,无理数个数为A. 个B. 个C. 个D. 个7. 计算的结果是B. C. D.8. 下列命题正确的是A. 零的倒数是零B. 乘积是的两数互为倒数C. 如果一个数是,那么它的倒数是D. 任何不等于的数的倒数都大于零9. 据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持,据统计,截至年月日,全国已有万多名党员自愿捐款,共捐款亿元,亿用科学记数法可表示为A. B. C. D.10. 如图,若数轴上的两点,表示的数分别为,,则下列结论正确的是B.C. D.二、填空题(共6小题;共30分)11. 在月球表面,白天阳光垂直照射的地方温度高达;夜晚温度可降到最大温差是.12. 如图是一个数表,现用一个矩形在数表中任意框出个数,则①,的关系是:;②当时,.13. 一把标有至的直尺,如图所示放在数轴上,且直尺上的刻度、、、、和数轴上的、、、、分别对应.现把直尺向右平移个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是.14. 在实数,,,,中,无理数有个.15. 我们知道表示的是到的距离,若,则,当式子取得最小值时,的取值范围为.16. 沙均匀铺在长米,宽米的长方体沙坑内,可以铺分米厚.三、解答题(共8小题;共104分)17. 写出下列各数的倒数:,,,18. 黑板上有个不同的有理数,小明说:“其中有个正数.”小红说:“其中有个整数.”小华说:“其中正分数的个数与负分数的个数相等.”小林说:“负数的个数不超过个.”请你根据四名同学的叙述判断这个有理数中共有几个负整数.19. 表示与之差的绝对值,实际上也可理解为与两数在数轴上所对的两点之间的距离,试探索:(1.(2)找出所有符合条件的整数,使得,这样的整数有.(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,说明理由.20. 在下面的方阵图中,每行、每列、每条对角线上的个数的和相等.(1)根据图中给出的数,对照完成图.(2)试着自己找出个不同的数,完成图.(3)想一想图中个数,最中间的数与其他个数有什么关系?21. 计算:.22. 把下列各数分别填入相应的集合里.,,,,.(1;(2;(3;(4.23. (1)(2)(3)24. 用计算器探索规律:任选,,,,,,,,中的一个数字,将这个数字乘,再将所得结果乘.多选几个数进行尝试,寻找其中的规律.答案第一部分1. C2. A3. C4. A 【解析】是有理数,是开方开不尽的数,是无理数.故选:A.5. C【解析】先求出所有面上的点数的总和,然后减去看得见的个面上的点数的和,然后计算即可得解.三个骰子个面上的数字的总和为,看得见的个面上的数字的和为,所以看不见的面上的点数总和是.6. A 【解析】在所列实数中,无理数有这个.7. D 【解析】原式.8. B 【解析】A、零没有倒数,本选项说法错误;B、乘积是的两数互为倒数,本选项说法正确;C、如果,则没有倒数,本选项说法错误;D、的倒数是,,则任何不等于的数的倒数都大于零说法错误.9. B 【解析】亿.10. D【解析】,,,,.第二部分11.12. (或等),13.【解析】提示:平移后刻度尺上的数字与数轴上的数字对应,所以相同的数字是.14.【解析】,是无理数.15. 和表示在数轴上与距离为,点的对应数为和,即的值为和.取最小值,表示的点在和之间的线段上,..16.【解析】(分米).答:可以铺分米.第三部分17. ,18. 由小红说的,可知有个分数.由小华说的,可知有个正分数和个负分数.由小明说的,可知有个非正数.由小林说的,可知有个负数,另一个非正数为,所以负整数有个.19. (1)(2),,,【解析】由绝对值的几何意义可得:当时,总成立,整数,,,.(3)由()的探索猜想,对于任何有理数有最小值为.20. (1)略(2)略(3)中间的数是其余个数的平均数.21.22. (1)正数集合:,,,, };(2)分数集合:,,, };(3)整数集合:,,,, };(4)无理数集合:{ ,, }.23. (1) .(2)(3)24. 选择的数不唯一,如,,.规律:所得结果为从个位到亿位都为所选数字的九位数.。

【精选】苏科版数学七年级上册 有理数单元测试卷 (word版,含解析)

【精选】苏科版数学七年级上册 有理数单元测试卷 (word版,含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上有A、B两点(点A在点B的左侧),且两点距离为8个单位长度,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)图中如果点A、B表示的数是互为相反数,那么点A表示的数是________;(2)当t=3秒时,点A与点P之间的距离是________个长度单位;(3)当点A表示的数是-3时,用含t的代数式表示点P表示的数;(4)若点P到点A的距离是点P到点B的距离的2倍,请直接写出t的值.【答案】(1)-4(2)6(3)解:当点A为-3时,点P表示的数是-3+2t;(4)解:当点P在线段AB上时,AP=2PB,即2t=2(8−2t),解得,t=,当点P在线段AB的延长线上时,AP=2PB,即2t=2(2t−8),解得,t=8,∴当t=或8秒时,点P到A的距离是点P到B的距离的2倍.【解析】【解答】解:(1)设点A表示的数是a,点B表示的数是b,则|a|+|b|=8,又|a|=|b|,∴|a|=4,∴a=−4,则点A表示的数是−4;( 2 )∵P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴当t=3秒时,点A与点P之间的距离为6个单位长度;【分析】(1)设点A表示的数是a,点B表示的数是b,两点间的距离是8及互为相反数的两个数分别位于原点的两侧,到原点的距离相等即可判断得出答案;(2)根据路程等于速度乘以时间即可得出答案;(3)由点A表示的数结合AP的长度,即可得出点P表示的数;(4)分当点P在线段AB上时,AP=2t,BP=(8-2t),根据AP=2PB 列出方程,求解即可;当点P在线段AB的延长线上时,AP=2t,BP=(2t-8),根据 AP=2PB 列出方程,求解即可,综上所述即可得出答案.2.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.3.如图,数轴的单位长度为1,点,,,是数轴上的四个点,其中点,表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点表示;(2)点表示的数是________,点表示的数是________,,两点间的距离是________;(3)将点先向右移动4个单位长度,再向左移动2个单位长度到达点,点表示的数是________,在数轴上距离点3个单位长度的点表示的数是________.【答案】(1)解:距离A点和B点的距离相等的点即AB的中点,点 .如图所示,点即为所求.(2);5;9(3);或1【解析】【解答】解:(2)点表示的数是,点表示的数是5,所以,两点间的距离是 .故答案为9.( 3 )如图,将点先向右移动4个单位长度是0,再向左移动2个单位长度到达点,得点表示的数是 .到点距离3个单位长度的点表示的数是-2-3= 或-2+3=1.故答案为,或1.【分析】(1)由点A和点B表示的数互为相反数,因此原点到点A和点B的距离相等,可得到原点的位置。

新苏教版七年级数学上册《有理数》单元测试卷(附答案)

新苏教版七年级数学上册《有理数》单元测试卷(附答案)

《有理数》单元测试卷班级 姓名一、选择题1、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、不可能是负数D 、可能是正数,也可能是负数2、若m m m <-0,则||的值为( )A 、正数B 、负数C 、0D 、非正数3、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值4、下列等式成立的是( )A 、0=-+a aB 、a a --=0C 、0=--a aD 、a --a =05、若230a b -++=,则a b +的值是( )A 、5B 、1C 、-1D 、-56、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3 B.-9 C.-3或-9 D.3或97、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数D 、减数小于被减数8、负数a 与它相反数的差的绝对值等于( )A 、 0B 、a 的2倍C 、-a 的2倍D 、不能确定9、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数10、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和,可能是其中的一个加数④两个有理数的和可能等于0A 、1B 、2C 、3D 、411、有理数a ,b 在数轴上的对应点的位置如图所示,则( )A 、a +b =0B 、a +b >0C 、a -b <0 D 、a -b >0 12、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( ) -a bA 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )+(-c )D 、a +b -c =a +b +(-c )13、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数14、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )A 、被减数a 为正数,减数b 为负数B 、a 与b 均为正数,且被减数a 大于减数bC 、a 与b 两数均为负数,且减数 b 的绝对值大D 、以上答案都可能15、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b二、填空题1、小明与小刚规定了一种新运算*:若a 、b 是有理数,则a*b = b a 23-。

最新苏科版七年级上册有理数》单元测试题 附答案

最新苏科版七年级上册有理数》单元测试题  附答案

一.选择题(共10小题,满分30分,每小题3分)1.|﹣|的值是()A.2020B.﹣2020C.﹣D.2.在3.14159,4,1.1010010001…,4.,π,中,无理数有()A.1个B.2个C.3个D.4个3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣25.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数6.2020年3月抗击“新冠肺炎”居家学习期间,小华计划每天背诵6个汉语成语.将超过的个数记为正数,不足的个数记为负数,某一周连续5天的背诵记录如下:+4,0,+5,﹣3,+2,则这5天他共背诵汉语成语()A.38个B.36个C.34个D.30个7.计算(﹣5)÷的结果等于()A.﹣25B.﹣1C.1D.258.|x﹣1|+|y+3|=0,则y﹣x﹣的值是()A.﹣4B.﹣2C.﹣1D.19.若计算机按如图所示程序工作,若输入的数是1,则输出的数是()A.﹣63B.63C.﹣639D.63910.将九个数分别填在3×3 (3行3列)的方格中,如果满足每个横行,每个竖列和每条对角线上的三个数之和都等于m,则将这样的图称为“和m幻方”.如图①为“和15幻方”,图②为“和0幻方”,图③为“和39幻方”,若图④为“和m幻方”,则m的值等于()A.6B.3C.﹣6D.﹣9二.填空题(共6小题,满分24分,每小题4分)11.计算:0﹣(﹣6)=.12.﹣3的相反数是,的倒数是.13.如果盈利100元记作+100元,那么亏损50元记作元.14.在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是.15.定义新运算:a⊕b=ab+b,例如:3⊕2=3×2+2=8,则(﹣3)⊕4=.16.计算:(﹣1)1+(﹣1)2+(﹣1)3+…+(﹣1)2030=.三.解答题(共8小题,满分66分)17.(12分)计算(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.18.(6分)如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示、、;(2)将点B向左移动3个单位长度后,点B所表示的数是;(3)将点A向右移动4个单位长度后,点A所表示的数是.19.(6分)若(a﹣1)2与(b+2)2互为相反数,求(a+b)2013+a2011.20.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.21.(8分)一辆货车从百货大楼出发送货,向东行驶4千米到达小明家,继续向东行驶1.5千米到达小红家,然后向西行驶8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?22.(8分)用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.23.(9分)学校阅览室有故事书、科学书、漫画书等.已知故事书240本,科学书比故事书多.(1)求学校阅览室的科学书有多少本?(2)学校阅览室的漫画书比科学书少,求漫画书有多少本?(3)在(2)的条件下,漫画书占学校阅览室书的,求学校阅览室的书一共有多少本?24.(9分)2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期一二三四五六日增减+100 ﹣200 +400 ﹣100 ﹣100 +350 +150 (1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:,故选:D.2.解:在3.14159,4,1.1010010001…,4.,π,中,无理数有1.1010010001…,π共2个.故选:B.3.解:690万=6900000=6.9×106.故选:D.4.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.5.解:A、没有最小的整数,错误;B、最大的负整数是﹣1,正确;C、有理数包括0、正有理数和负有理数,错误;D、一个有理数的平方是非负数,错误;故选:B.6.解:(+4+0+5﹣3+2)+5×6=38个,∴这5天他共背诵汉语成语38个,故选:A.7.解:(﹣5)÷=(﹣5)×5=﹣25.故选:A.8.解:∵|x﹣1|+|3+y|=0,∴x﹣1=0,3+y=0,解得y=﹣3,x=1,∴y﹣x﹣=﹣3﹣1﹣=﹣4.故选:A.9.解:把x=1代入计算程序中得:(1﹣8)×9=﹣63,把x=﹣63代入计算程序中得:(﹣63﹣8)×9=﹣639.则输出的数是﹣639.故选:C.10.解:图④中,由第1行与第1列三数和相等,便可求得第3行第1个数为﹣2,∵﹣2﹣4=﹣6,∴中间数是﹣6÷2=﹣3,∴m=﹣6﹣3=﹣9.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=0+6=6.故答案为:6.12.解:﹣3的相反数是:3,的倒数是:3.故答案为:3,3.13.解:∵盈利100元记作+100元,∴亏损50元记作﹣50元,故答案为:﹣50.14.解:在数轴上,到原点的距离等于1.6个单位长度的点所表示的有理数是±1.6,故答案为:±1.6.15.解:∵a⊕b=ab+b,∴(﹣3)⊕4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.16.解:原式=﹣1+1﹣1+1﹣……﹣1+1=0×1015=0,故答案为:0.三.解答题(共8小题,满分66分)17.解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.18.解:(1)从数轴看,点A、B、C三点分别为:﹣4,﹣2,3,故答案为:﹣4,﹣2,3;(2)将点B向左移动3个单位长度后,点B所表示的数是﹣5,故答案为﹣5;(3)将点A向右移动4个单位长度后,点A所表示的数为0,故答案为:0.19.解:∵(a﹣1)2与(b+2)2互为相反数,∴(a﹣1)2+(b+2)2=0,∴a﹣1=0,a=1,b+2=0,b=﹣2,∴(a+b)2013+a2011=(1﹣2)2013+12011=﹣1+1=0.20.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.21.解:(1)如图所示:(2)小明家与小刚家相距:4﹣(﹣3)=7(千米).答:小明家与小刚家相距7千米远.22.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.23.解:(1)240×(1+)=300,所以学校阅览室的科学书有300本;(2)300×(1﹣)=225,所以学校阅览室的漫画书有225本;(3)225÷=1200,所以学校阅览室的书一共有1200本.24.解:(1)(+100﹣200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)+400﹣(﹣200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)5000×7+(100﹣200+400﹣100﹣100+350+150)=35600(个),0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.。

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中( )A .B .C .D .2.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体B .方程C .转化D .数形结合3.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯4.如图,关于A 、B 、C 这三部分数集的个数,下列说法正确的是( )A .A 、C 两部分有无数个,B 部分只有一个0 B .A 、B 、C 三部分有无数个 C .A 、B 、C 三部分都只有一个D .A 部分只有一个,B 、C 两部分有无数个5.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b+的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个B .1个C .2个D .3个6.(2019·江西省大吉山中学初一期末)当使用计算器的键,将1156的结果切换成小数格式19.16666667,则对应这个结果19.16666667,以下说法错误的是( )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数7.设n 是自然数,则()()2112nn +-+-的值为( )A .1B .-1C .0D .1或-18.如图,数轴上A ,B 两点所表示的数互为倒数,则关于原点的说法正确的是( )A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.)“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4, 则20182017!!的值是( ) A .1 B .2016 C .2017 D .201810.数32019・72020・132021的个位数是 ( ) A .1B .3C .7D .911.有一张厚度为0.1毫米的纸片,对折1次后的厚度是20.1⨯毫米,继续对折,2次,3次,4次……假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是( )(参考数据:1021024=, 2021048576=) A .3层B .20层C .35层D .350层12.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3.A .1B .2C .3D .4二、填空题13.若()2320m n -++=,则m+2n 的值是______。

数学:第二章《有理数》单元测试(苏科版七年级上)

数学:第二章《有理数》单元测试(苏科版七年级上)

数学:第二章《有理数》单元测试(苏科版七年级上)一、选择题(每题3分,共30分) 1.下列说法中,不正确的是( )(A )0既不是正数,也不是负数 (B )0不是整数 (C )0的相反数是0 (D )0的绝对值是0 2.温度上升-3后,又下降2实际上就是 ( ) A. 上升1 B. 上升5 C.下降5 D. 下降-13.数轴上点A 表示-4,点B 表示2,则表示A 、B 两点间的距离的算式是( ) A. -4+2 B. -4-2 C. 2―(―4) D. 2-4 . 4.两个有理数的和为负数,那么这两个数一定( ) (A )都是负数 (B )至少有一个负数 (C )有一个是0 (D )绝对值不相等 5.如果|a|=7,|b|=5,试求a-b 的值为( ) (A )2(B )12(C )2和12(D )2;12;-12;-2 6.用计算器求25的值时,按键的顺序是( )A.5、y x 、2、=B. 2、y x、5、= C. 5、2、y x、= D. 2、3、y x、=7.如果a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么 a+b+m 2-cd 的值为( )A.3B.±3C.3±21 D.4±21 8. 若0<a<1,则a ,) (,12从小到大排列正确的是a a A 、a 2<a<a 1 B 、a < a 1< a 2 C 、a 1<a< a 2 D 、a < a 2<a19.学校为了改善办学条件,从银行贷款100万元,盖起了实验大楼,贷款年息为12%,房屋折旧每年2%,学校约1400名学生,仅贷款付息和房屋折旧两项,每个学生每年承受的实验费用为( ) A 、约104元; B 、1000元 C 、100元 D 、约21.4元 10计算(-2)2004+(-2)2003的结果是( )A 、-1B 、-2C 、-22003D 、-22004二、填空题(每题3分,共30分)11.某种零件,标明要求是φ20±0.02(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,它 (“填合格” 或“不合格”).12.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________.13.数轴上的一点由+3出发,向左移动4个单位,又向右移动了5个单位,两次移动后,这一点所表示的数是14.一个水利勘察队,第一天沿江向下游走313km ,第二天又向下游走325km ,第三天向上游走517km ,第四天向上游走534km ,这时勘察队在出发点的上游 千米? 15.一口深井,井底有一只青蛙,这只青蛙白天沿着井壁向上爬3米,夜间又落下2米,到了第十天的下午,这只青蛙恰好爬到井口,则这口井的深度是 米。

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.2.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.3.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.4.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.5.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.6.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.7.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【答案】(1)解:−2+4=2. 故点B所对应的数为2;(2)解:(−2+6)÷2=2(秒),这时A对应的数为:-6,B对应的数为:2+2×2=6,故A,B两点间距离为是6-(-6)=12个单位长度;(3)解:分两种情况讨论:1)运动后的B点在A点右边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有2x=12−4,解得x=4;2)运动后的B点在A点左边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有 2x=12+4,解得x=8;故经过4秒或8秒长时间A,B两点相距4个单位长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章有理数单元测试卷(基础篇)
【苏科版】
考试时间:45分钟;满分:100分
学校:___________姓名:___________班级:___________考号:___________
题号一二三总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上
第Ⅰ卷(选择题)
评卷人得分
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)两千多年前,中国人就开始使用负数,且在世界上也是首创《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作100
+,那么支出40元应记作()
A.60
-B.40
-C.40
+D.60
+
2.(3分)下列分数中能化成有限小数的是()
A.2
3B.6
15
C.3
21
D.8
36
3.(3分)在3.14159,22
7,0,
π,2.67 这5个数中,无理数的个数有()
A.1个B.2个C.3个D.4个
4.(3分)2018年10月23日,世界上最长的跨海大桥--港珠澳大桥正式开逋,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米,其中55000用科学记数法可表示为()
A.3
5.510
⨯B.3
5510
⨯C.4
5.510
⨯D.5
0.5510

5.(3分)下列各对数中互为相反数的是()
A.(3)
-+和(3)
+-B.(3)
+-和|3|
+-C.(3)
--和|3|
+-D.(3)
+-和|3|
-+
6.(3分)下列各组的两个数中,运算后结果相等的是()
A .3
4和4
3
B .5(3)-和5
3
-C .4
(2)-和4
2
-D .32()3和
3
237.(3分)已知||5a =,||2b =,且a b >,则a b +的值为()
A .7或3
-B .7-或3
C .7-或3
-D .7或3
8.(3分)符号语言“||(0)a a a =- ”所表达的意思是()
A .正数的绝对值等于它本身
B .负数的绝对值等于它的相反数
C .非正数的绝对值等于它的相反数
D .负数的绝对值是正数
9.(3分)如图,数轴上四点O ,A ,B ,C ,其中O 为原点,且2AC =,OA OB =,若点C 表示的数为x ,则点B 表示的数为(
)
A .(2)x -+
B .(2)x --
C .2x +
D .2
x -10.(3分)如果有4个不同的正整数a 、b 、c 、d 满足(2019)(2019)(2019)(2019)9a b c d ----=,那么a b c d +++的值为(
)
A .0
B .9
C .8048
D .8076
第Ⅱ卷(非选择题)
评卷人得分
二.填空题(共8小题,满分24分,每小题3分)11.(3分)写出一个比4大且比5小的无理数:.
12.(3分)3
||5
-的相反数是

13.(3分)A 、B 、C 三点相对于海平面分别是13-米、7-米、20-米,那么最高的地方比最低的地方高米.
14.(3分)计算:5199966
-÷=

15.(3分)将有理数
227
化为小数是3.14285 7
,则小数点后第2018位上的数是.
16.(3分)已知2|1|(2019)a b +=--,则b a =.
17.(3分)已知a 、b 互为相反数,c ,d 互为倒数,m 的绝对值为2,
那么3()52019a b m m cd +++的值为.
18.(3分)a 、b 、c 在数轴上的对应点的位置如图所示,下列式子:①0a b +>;②a b a c +>+;③bc ac >;④ab ac >.其中正确的有(填上序号)
评卷人得分
三.解答题(共5小题,满分46分)19.(12分)计算题(1)38156
-+--(2)311
((1)(2)
424
-⨯-÷-(3)1311
((24324-+-÷-(4)222
1
(6)()72(3)3
-÷--+⨯-20.(8分)计算:已知||3x =,||2y =,(1)当0xy <时,求x y +的值(2)求x y -的最大值
21.(8分)小明有5张写着不同的数字的卡片
请按要求抽出卡片,完成下面各题:
(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?
(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?
22.(8分)某检修小组乘坐一辆汽车从A地出发,在东西方向的马路上检修线路,如果向东行驶记为正,向西行驶记为负,一天六次检修中行驶记录如下:(单位:千米)
第一次第二次第三次第四次第五次第六次
6-7+9-8+6+7-
(1)求收工时检修汽车在A地的东边还是西边?距A地多远?
(2)若汽车行驶每千米耗油0.3升,开工时储油13升,问从A地出发到收工,再回到A地,请问中途是否需要加油?若不需要加油,还剩多少升汽油?
23.(10分)已知在纸面上有一数轴(如图1),折叠纸面.
(1)若1表示的点与1
-表示的点与表示的点重合;
-表示的点重合,则4
(2)若2
-表示的点与8表示的点重合,回答以下问题:
①16表示的点与表示的点重合;
②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B
两点表示的数分别是、.
(3)如图3,若m和n表示的点C和点D经折叠后重合,(0)
>>,现数轴上P、Q两点之间的距离为(a P
m n
在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)。

相关文档
最新文档