全同粒子状态空间维数
第七章-自旋和全同粒子

第七章 自旋和全同粒子 §7 - 1 电子自旋一 电子自旋的概念在非相对论量子力学中,电子自旋的概念是在原子光谱的研究中提出来的。
实验研究表明,电子不是点电荷,它除了轨道运动外还有自旋运动。
描述电子自旋运动的两个物理量: 1 、 自旋角动量(内禀角动量)S它在空间任一方向上的投影s z 只能取两个值21±=z s ;(7. 1)2、 自旋磁矩(内禀磁矩)μs它与自旋角动量S 间的关系是:S es m e-=μ,(7. 2)B e s 2μμ±=±=m e z,(7. 3)式中(- e ):电子的电荷,m e :电子的质量,B μ:玻尔磁子。
3、电子自旋的磁旋比(电子的自旋磁矩/自旋角动量)es e s 2m e g m e s zz=-=μ,(7. 4)g s = –2是相应于电子自旋的g因数,是对于轨道运动的g因数的两倍。
强调两点:●相对论量子力学中,按照电子的相对论性波动方程 狄拉克方程,运动的粒子必有量子数为1/2的自旋,电子自旋本质上是一种相对论效应。
●自旋的存在标志着电子有了一个新的自由度。
实际上,除了静质量和电荷外,自旋和内禀磁矩已经成为标志各种粒子的重要的物理量。
特别是,自旋是半奇数还是整数(包括零),决定了粒子是遵从费米统计还是玻色统计。
二 电子自旋态的描述ψ ( r , s z ):包含连续变量r 和自旋投影这两个变量, s z 只能取 ±2/ 这两个离散值。
电子波函数(两个分量排成一个二行一列的矩阵)⎪⎭⎫⎝⎛-=)2/,()2/,(),( r r r ψψψz s , (7. 5) 讨论:● 若已知电子处于/2z s = ,波函数写为(,/2)(,) 0z s ψψ⎛⎫= ⎪⎝⎭r r ● 若已知电子处于/2z s =- ,波函数写为0(,)(,/2)z s ψψ⎛⎫= ⎪-⎝⎭r r ● 概率密度2)2/,( r ψ:电子自旋向上()2/ =z s 且位置在r 处的概率密度;2)2/,( -r ψ:电子自旋向下()2/ -=z s 且位置在r 处的概率密度。
专题讲座9-全同粒子

专题讲座9-全同粒子全同粒子: 质量、电荷、自旋等固有性质完全相同的粒子称为全同粒子。
在一个微观体系中,全同粒子是不可区分的。
费米子:自旋为1/2, 3/2, 5/2……, 体系的波函数是反对称的, 两个全同费米子不能处于同一个状态.波色子: 自旋为0, 1, 2, 3, 体系的波函数是反对称的, 两个或两个以上的波色子可以处于同一个状态.交换力假设我们有一个两粒子体系, 一个粒子处于()a x ψ,另一个处于()b x ψ态.(简单起见,先不考虑自旋)如果两个粒子是可以区分的,粒子1处于()a x ψ,粒子2处于()b x ψ态,那么体系的波函数为1212(,)()()a b x x x x ψψψ=如果是全同玻色子, 波函数必须是对称的]1212211(,)()()()()a b a b x x x x x x ψψψψψ+=+ 如果两个态相同 a b =1212(,)()()a a x x x x ψψψ=对于费米子, 波函数必须是反对称的]1212211(,)()()()()a b a bx x x x x xψψψψψ-=-两个费米子的状态不能相同,否则波函数为零.我们来求两个粒子坐标差平方的期待值222121212()2x x x x x x-=+-1.可区分粒子222 2222 111122111()()()a b a a x x x dx x dx x x dx x ψψψ===⎰⎰⎰2222222 211222222()()()a b b b x x dx x x dx x x dx x ψψψ===⎰⎰⎰2212111222()()a b a bx x x x dx x x dx x xψψ==⎰⎰所以22212()2a bd a bx x x x x x-=+-2.对全同粒子()22211122112221()()()()212a b a ba bx x x x x x dx dxx xψψψψ=±=+⎰同样有其中显然有:同可分辨粒子情况相比较,两者差别在最后一项和处于相同状态的可分辨粒子相比,全同波色子(取上面的+号项)将更趋向于相互靠近,而全同费米子(取下面的-号项)更趋向于相互远离。
自旋和全同粒子2

32
16
2005-06
基础物理学(下)
17
2005-06
基础物理学(下)
18
ˆ Pij .( 对 任 何 i j )
反对称波函数
1பைடு நூலகம்
二粒子互换后波函数变号, 即
(q1 , q2 , qi q j qN , t ) (q1 , q2 , q j qi qN , t )
ˆ ˆ 可以证明: [ P ij , H ] 0
i j
Sij q1 , q2 ) (
1 2
[ i ( q1 ) j ( q2 ) j ( q1 ) i ( q2 )]
(2)Fermi 子体系
i j
Aij q1 , q2 ) (
1 2
[i (q1 ) j (q2 ) j (q1 )i (q2 )]
描写全同粒子体系状态的波函数只能是对称的或反对称的,其对 称性不随时间改变。如果体系在某一时刻处于对称(或反对称) 态上,则它将永远处于对称(或反对称)态上。
(三)Fermi 子和 Bose 子
实验表明:对于每一种微观粒子,它们的多粒子体系波函数的交换对 称性是完全确定的,而且该对称性与该粒子的自旋有确定的联系。 (1)Bose 子 凡自旋为 整数倍(s = 0,1,2,……) 的粒子,其多粒子波函数 对于交换 两个粒子总是对称的,这种粒子遵从Bose-Einstein统计, 故称为 Bose 子。
0 0 1 0 -1 0 1 0 -1 2 1 0 -1 -2
ms
½ ½ ½ ½ ½ ½ ½ ½ ½ -½ -½ -½ -½ -½ -½ -½ -½ -½
2(2l+1)
2 2
§5.5 全同粒子系统

既然所有Pij都是守恒量,所以其对称性不 随时间变化,即全同粒子的统计性质(Bose 或Fermi统计)是不变的。
结论:描写全同粒子系统状态的波函数只能是 5对2 称的或反对称的,它们的对称性不随时间变化。10
④全同粒子的分类 所有的基本粒子可分为两类:
玻色子Fermion和费米子Boson
1)玻色子:
凡自旋为整数倍,波函数满足交换对称,
遵从Bose-Einstein统计的粒子。 如π介子(s=0)、光子( s=1 )等。
52
11
引力子(Graviton)
引力子(Graviton),又称重力子,在物理学中是一个传 递引力的假想粒子。为了传递引力,引力子必须永远 相吸、作用范围无限远及以无限多的型态出现。在量 子力学中,引力子被定义为一个自旋为2、质量为零的 玻色子。
52
16
2、两个全同粒子组成的体系 ①简介
忽略相互作用,Hamiltonian可表为
Hˆ h(q1) h(q2 )
q1 q2 Hˆ 不变
故
[P12, Hˆ ] 0
设h(q)的单粒子本征态为
k
(q),本征能为
,
k
则有
h(q)k (q) kk (q)
其中k为力学量(包含Hˆ)的一组完备量子数
(q1, q2,, qi ,q j ,)
来描述。其中 qi (i 1,2,N) 表示第i个
粒子的全部坐标(空间和自旋)。
若Pij表示第i个粒子与第j个粒子的全部 坐标变换,即
Pij (q1, q2,, qi ,q j ,, qN )
52
(q1, q2,, q j ,qi ,, qN ) 5
热力学统计物理总复习知识点

热力学统计物理总复习知识点The manuscript was revised on the evening of 2021热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W -=V p W d d -=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:p p T H C ⎪⎭⎫ ⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫ ⎝⎛∂∂= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=-γγT p 。
三种统计的微观状态数同一个分布对于玻耳兹曼系统

三种统计的微观状态数
同一个分布对于玻耳兹曼系统、玻色系统、费 米系统给出的微观状态数显然是不同的,下面分别 加以讨论.
1. 玻耳兹曼系统
粒子可以分辨,若对粒子加以编号,则 al 个 粒子占据能级 l 上的 l 个量子态时,是彼此独立、 互不关联的。分布相应的系统的微观状态数为:
1
AB
2
AB
3
AB
4
A
B
5
B
A
6
A
B
7
B
A
8
Aபைடு நூலகம்
B
9
B
A
对于玻色系统,可以有6种不同的微观状态。
量子态1 量子态2 量子态3
1
AA
2
AA
3
AA
4
A
A
5
A
A
6
A
A
对于费米系统,可以有3个不同的微观状态。
量子态1 量子态2 量子态3
1
A
A
2
A
A
3
A
A
玻耳兹曼系统、玻色系统和费米系统的的微观状态数
粒子类别 玻耳兹曼系统
用 μ 空间中N个点描述
一个粒子在某时刻的力学运动状态可以在 μ空间中用一个点表示,由N个全同粒子组成的 系统在某时刻的微观运动状态可以在μ空间中用 N个点表示,那么如果交换两个代表点在μ空间 的位置,相应的系统的微观状态是不同的。
3)玻色子与费米子
a)费米子:自旋量子数为半整数的基本粒子或复
量子力学--第九章 全同粒子体系

1 2
S1z
1 2
S2z
1 2
S1z
1
2
S2z
A
1 2
1 2
S1z
1 2
S2z
1 2
S1z
1
2
S2z
可以证明,上面四个波函数是正交归一的见习题。
(二)自旋单态与三重态
上面我们从全同粒子波函数的对称性角度来考虑,构造了
七. 两个电子的自旋函数
两个电子系统是很重要的,氦原子,氢原子都是两个
电子的系统。另外它是多粒子系的最简单情况,
因此理论上也很重要。
(一)两电子的自旋波函数(不计自旋―自旋相互作用)
1、自旋波函数
电 子 的 两 个 单 粒 子 自 旋态:
这四个自旋波函数
1 Sz 1 Sz
2
四个对称化的自旋波函数,
下面我们从两个角动量的耦合角度来考察这个问题。
1、两电子体系总自旋角动量算符
定 义:
Sˆ Sˆ1 Sˆ 2
或者
Sˆ x Sˆ1x Sˆ 2x Sˆ y Sˆ1 y Sˆ 2 y Sˆ z Sˆ1z Sˆ 2z
再 引 入 Sˆ 2 Sˆ x 2 Sˆ y 2 Sˆ z 2
为泡利不相容原理
(2) 玻色子系的对称波函数
S C Pi (q1 ) j (q2 )k (qN )
P
(7.7 7)
(7.7-7)式中P表示N各粒子在波函数中的某一种排列, 表
P
示对所有可能的排列求和.
i) Hˆ S ES E i j k
量子力学思考题和讨论题

量子力学思考题1、以下说法是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。
解答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。
(2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已经过渡到经典力学,二者相吻合了。
2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么?解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。
如已知单粒子(不考虑自旋)波函数)(r ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其他力学量的概率分布也均可通过)(rψ而完全确定。
由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。
从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。
3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。
解答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ和2ψ的干涉项]Re[2*21*21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。
4、量子态的叠加原理常被表述为:“如果1ψ和2ψ是体系的可能态,则它们的线性叠加2211ψψψc c +=也是体系的一个可能态”。
(1)是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=;(2)对其中的1c 与2c 是任意与r无关的复数,但可能是时间t 的函数。
这种理解正确吗? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全同粒子状态空间维数
全同粒子是指具有相同质量、电荷和自旋的粒子。
在统计物理学中,我们研究的是这些粒子的集体行为,其中一个重要的概念就是全同粒子的状态空间。
全同粒子的状态空间是指描述所有全同粒子可能的量子态的集合。
对于仅由全同粒子构成的系统,其状态空间可以非常庞大。
为了计算状态空间的维度,我们需要考虑每个粒子的自由度和它们之间的相互作用。
首先,考虑一维空间中的全同粒子系统。
假设系统中有N个
全同粒子,每个粒子可以处于L个离散的量子态中的一个。
因为粒子是全同的,所以每个粒子都有相同的L个可能的状态。
那么整个系统的状态可以通过描述每个粒子的状态来确定。
因此,系统的状态空间维度为L^N。
更具体地说,我们可以考虑一个由两个粒子构成的系统。
假设每个粒子有两个可能的状态,即每个粒子可以处于状态A或
B中。
那么这个系统的状态空间维度为2^2=4。
系统的四个可
能态可以用以下符号表示:|AA⟩,|AB⟩,|BA⟩和|BB⟩。
可
以看出,对于两个粒子的系统,它具有一个二维状态空间。
对于更多的粒子,状态空间的维度会呈指数增长。
假设现在有
3个粒子,每个粒子有2个可能的状态。
那么这个系统的状态
空间维度为2^3=8。
系统的八个可能态可以用以下符号表示:
|AAA⟩,|AAB⟩,|ABA⟩,|ABB⟩,|BAA⟩,|BAB⟩,
|BBA⟩和|BBB⟩。
可以看出,对于三个粒子的系统,它具有
一个三维状态空间。
一般来说,对于具有N个粒子的全同粒子系统,如果每个粒
子有M个可能的状态,那么系统的状态空间维度为M^N。
当
N和M都变得非常大时,系统的状态空间维度将会非常庞大。
此外,还要考虑全同粒子的取向和自旋等其他自由度。
这些额外的自由度将进一步扩大系统的状态空间。
例如,在三维空间中考虑两个自旋为1/2的全同粒子,每个粒子有两个可能的状态。
那么这个系统的状态空间维度为(2^2)*(2^2)=16。
综上所述,全同粒子的状态空间维度取决于粒子个数和每个粒子可能的状态数。
随着粒子个数和状态数的增加,状态空间的维度将指数增长。
由于状态空间维度的庞大,我们需要使用合适的数学工具和技术来研究全同粒子系统的性质和行为。