平面立体截交线.
合集下载
第08章截交线

Ⅱ Ⅳ Ⅲ
正垂线
Ⅰ
正平线
平面与圆柱相交
具体步骤如下:
(1)先作出截交线上的特殊点 2’
5’(6’) 3’4’ 1’
7’8’
(2)再作一般点。
2”
6”
4”
8”
5” 3”
7”
(3)依次光滑连接各点,即得 截交线的水平投影和侧面投影。 (4)补全侧面转向轮廓线。
1” 4
Ⅱ
6 2
8
Ⅳ Ⅲ
正垂线
1
7
3 5 平面与圆锥相交
1
7 2
求 4 交 6 线 1。求交点连线 方 2。根据条件直接求交线 法
求切割体的投影就是在 基本体的基础上,画出 截断面的投影,去掉截 去部分轮廓的投影
注意利用平面投影特 性中“类似形”“积 聚性”这些投影特征 来分析、作图、检查。
例2 求立体截切后的投影
4 5 1
(3)
3 6
4
3” 2”
1”
二:作图:①求正垂面 与立体的交线
1 ·
4 3
2
(a) 求正垂面与立体的交线
作图:②,判别可见性, 完成轮廓投影、加深。
2’ (4’)
1’
3’ 4” 1”
3” 2”
4 3 1 2
(c) 整理、加深 正四棱锥被一正垂面截切
作图: ③检查、完成
(d) 检查、完成 图3-21 正四棱锥被一正垂面截切
8
1 7 6 2
4
3
(d) 整理、加深
图3-22 正四棱锥被两平面截切
作图: ③检查、完成
(e) 检查、完成 图3-22 正四棱锥被两平面截切
例:求立体截割后的投影
1’(2’) 1〞 4〞 2〞 3〞
(平面立体截交线)

4) Draw views of intersections (key point) Step1. Identify object according to the given views. (what kind of object it is? Is it a prism or pyramid?) 分析立体, 分析立体,识别立体。 Step2. Identify spatial position of the cutting-plane according to the given views. (Is it a principal plane or a plane perpendicular to projection plane?) 分析截 平面, 平面,认识截平面的空间位置。 Step3. Find out intersections’ known views and mark all projection points in numeral or lowercase .
Lesson six
Intersection (І) —— Intersection of polyhedron
1.Introduction: In engineering practice, there are many solids which are cut by planes. For example:
5) Draw two TS of two horizontal planes of front rear. Answer:
Example 4: Complete top view.
Steps for drawing top view are as following. 1) Draw bottom base, namely, a rectangle of which length is measured from front view and width from top view. 2) Draw similar shape of the plane perpendicular to V plane (画出正垂面的类似形 画出正垂面的类似形). 画出正垂面的类似形 ① Find front view and left view for two lines perpendicular to V plane (找出两根正垂线的主、左视图 找出两根正垂线的主、 找出两根正垂线的主 左视图). ② Draw top view of two lines perpendicular to V plane (画出两根正垂线的俯视图 画出两根正垂线的俯视图). 画出两根正垂线的俯视图 5) Draw TS of top horizontal planes.
画法几何与机械制图第章立体的投影平面与立体表面相交(截交线)

圆
倾斜于轴线
椭圆
例4:求左视图
● ● ●
截交线的 截交线的已知投影? 空间形状? 截交线的侧面投 影是什么形状?
●
● ● ● ●
●
●
●
●
★找特殊点 ★补充中间点 ★光滑连接各点 ★分析轮廓素线的投影
例4:求左视图
★找特殊点 ★找中间点 ★光滑连接各点 ★分析轮廓素线的投影
椭圆的长、短 轴随截平面与圆 柱轴线夹角的变 化而改变。
图3-30
㈢ 圆球表面的截交线
例:求半球体截切后的俯视图和左视图。
两个侧平面与圆球面的 水平面与圆球面的交 交线的投影,在侧视上为 线的投影,在俯视图上 部分圆弧,在俯视图上积 为部分圆弧,在侧视图 聚为直线。 上积聚为直线。
y
二、平面立体的切割与穿孔
例:已知缺口三棱锥的正面投 影,补全它的水平投影和侧面 投影。P55
y
y
★ 空间分析 ★ 投影分析 两个截平面一个是水平面,一个是正垂 ★ 求截交线 注意: 面,都在正面投影中积聚。 ★ 分析棱线的投影 要逐个截平面分析和绘制截交线和 水平截面在水平投影中反映实形,在侧 ★ 检查 尤其注意检查截 截平面之间的交线。 面投影中积聚。 交线投影的类似性
当平面立体只有局部被截切时,先 假想为整体被截切,求出截交线后再
y
y
二. 平面立体的切割与穿孔
已知一个具有正垂的三棱柱穿孔的正六棱 柱的正面投影,补全穿孔六棱柱的水平投 影,作出它的侧面投影。P56
y
y 分析:正垂的三棱柱孔在正投影面上积 聚,三个截面的交线积聚成三角形的三 个顶点。 找到各截面与棱边的交点的正面投影。
2.2 平面与立体表面相交(截交线)
几个基本概念
倾斜于轴线
椭圆
例4:求左视图
● ● ●
截交线的 截交线的已知投影? 空间形状? 截交线的侧面投 影是什么形状?
●
● ● ● ●
●
●
●
●
★找特殊点 ★补充中间点 ★光滑连接各点 ★分析轮廓素线的投影
例4:求左视图
★找特殊点 ★找中间点 ★光滑连接各点 ★分析轮廓素线的投影
椭圆的长、短 轴随截平面与圆 柱轴线夹角的变 化而改变。
图3-30
㈢ 圆球表面的截交线
例:求半球体截切后的俯视图和左视图。
两个侧平面与圆球面的 水平面与圆球面的交 交线的投影,在侧视上为 线的投影,在俯视图上 部分圆弧,在俯视图上积 为部分圆弧,在侧视图 聚为直线。 上积聚为直线。
y
二、平面立体的切割与穿孔
例:已知缺口三棱锥的正面投 影,补全它的水平投影和侧面 投影。P55
y
y
★ 空间分析 ★ 投影分析 两个截平面一个是水平面,一个是正垂 ★ 求截交线 注意: 面,都在正面投影中积聚。 ★ 分析棱线的投影 要逐个截平面分析和绘制截交线和 水平截面在水平投影中反映实形,在侧 ★ 检查 尤其注意检查截 截平面之间的交线。 面投影中积聚。 交线投影的类似性
当平面立体只有局部被截切时,先 假想为整体被截切,求出截交线后再
y
y
二. 平面立体的切割与穿孔
已知一个具有正垂的三棱柱穿孔的正六棱 柱的正面投影,补全穿孔六棱柱的水平投 影,作出它的侧面投影。P56
y
y 分析:正垂的三棱柱孔在正投影面上积 聚,三个截面的交线积聚成三角形的三 个顶点。 找到各截面与棱边的交点的正面投影。
2.2 平面与立体表面相交(截交线)
几个基本概念
§4.2 平面与立体相交求截交线

1
s 2
3
(3)连接各点同面投影即等截交 线的三个投影
(4)补全棱线投影
求作四棱锥被截切后的水平投影和侧面投影。
分析:截平面为正垂面 截交线的正面投影积聚 为直线。截平面与四条 棱线相交,从正面可直 接找出交点。 作出各对应点的投影, 4• 1 2
•
1'
(4') 2'
3'
4"
3"
2"
1"
依次连接各点。 3 补全棱锥体的外形投影。
3 1
2
a
3
2
[例题5]
分析并想象出圆锥穿孔后的投影
主要内容
4.2.1 圆柱截交线 4.2.2 圆锥截交线
4.2.3 圆球截交线
一.面与圆球相交所得截交线
圆
二.求圆球截交线上点
平行圆画法:在圆球表面上取若干个平行于投
影面的平行圆,求这些平行圆与截平面的交点;
三.圆球截交线
[例题1]求圆球截交线
ο
截平面与圆锥轴线
倾斜,倾角θ>α 截交线为椭圆。
Pv
Pv
Pv
截平面与圆锥轴线 倾斜面,倾角θ=α 截交线为抛物线。
截平面与圆锥轴线 平行或倾角θ<α, 截交线为双曲线。
截平面过锥顶截 交线为三角形。
特殊点 一般点 b'
a'
a''
c'
b''
c''
整理加深
S
由点连线
P
b
c
a
Ⅰ
解题步骤 1 分析 截交线的水 平投影和侧面投影已 知,正面投影为双曲 线并反映实形; 2 求出截交线上的特 殊点A、C; 3 求出一般点B ; 4 光滑且顺次地连接 各点,作出截交线, 并且判别可见性; 5 整理轮廓线。
第四章 截交线

2020/6/11
上一页 下一页
39
【例题十六】已知圆球被两个面所截,求截交线的水平投影和 侧面投影 。
退回总目录 回章节目录
2020/6/11
4-17 动画演示
上一页 下一页
40
退回总目录 回章节目录
2020/6/11
上一页 下一页
41
§4.2 同轴叠加回转体截交线的画法
求取:分解多体为基本体,分析各基本体截交线形状,画出交线的投影。 [例十七]已知圆锥被两个平面P、Q所截,求截交线的水平投影和侧
退回总目录 回章节目录
2020/6/11
4-1 动画演示 上一页
下一页
6
(二)作图
退回总目录 回章节目录
2020/6/11
上一页
下一页
7
【例三】已知六棱柱被P、Q面所截切,求截交后交线的各投影。 (一)分析
截平面P是正垂面,Q是侧平面, 正面投影都有积聚性。 求截交线的H、W面的投影。
退回总目录 回章节目录
二、求取:同平面立体 对圆锥、圆球等用素线法或纬圆法作图求交点。
三、 注意: ①同平面立体; ②连线:多点光滑相连;找点 :特殊点(转向轮廓线上 点如最高、最底、最前、最后、最 左、最右); 一般点。 ③同平面立体; ④曲面立体截交线要明确其特点:
退回总目录 回章节目录
2020/6/11
上一页 下一页
2020/6/11
上一页 下一页
8
(二)作图
退回总目录 回章节目录
2020/6/11
上一页 下一页
9
【例四】已知四棱柱被五个面所截切,求截切后形体的俯视图
退回总目录 回章节目录
2020/6/11
4-2 动画演示
上一页 下一页
39
【例题十六】已知圆球被两个面所截,求截交线的水平投影和 侧面投影 。
退回总目录 回章节目录
2020/6/11
4-17 动画演示
上一页 下一页
40
退回总目录 回章节目录
2020/6/11
上一页 下一页
41
§4.2 同轴叠加回转体截交线的画法
求取:分解多体为基本体,分析各基本体截交线形状,画出交线的投影。 [例十七]已知圆锥被两个平面P、Q所截,求截交线的水平投影和侧
退回总目录 回章节目录
2020/6/11
4-1 动画演示 上一页
下一页
6
(二)作图
退回总目录 回章节目录
2020/6/11
上一页
下一页
7
【例三】已知六棱柱被P、Q面所截切,求截交后交线的各投影。 (一)分析
截平面P是正垂面,Q是侧平面, 正面投影都有积聚性。 求截交线的H、W面的投影。
退回总目录 回章节目录
二、求取:同平面立体 对圆锥、圆球等用素线法或纬圆法作图求交点。
三、 注意: ①同平面立体; ②连线:多点光滑相连;找点 :特殊点(转向轮廓线上 点如最高、最底、最前、最后、最 左、最右); 一般点。 ③同平面立体; ④曲面立体截交线要明确其特点:
退回总目录 回章节目录
2020/6/11
上一页 下一页
2020/6/11
上一页 下一页
8
(二)作图
退回总目录 回章节目录
2020/6/11
上一页 下一页
9
【例四】已知四棱柱被五个面所截切,求截切后形体的俯视图
退回总目录 回章节目录
2020/6/11
4-2 动画演示
平面立体表面截交线与相贯线

平面与平面体相交平面与平面体相交先求棱锥侧投影求截交线aaccbbaa截交线求法截交线求法截平面棱线交点截平面棱面交线棱线法棱面法第三章第三章二相贯体及尺寸标注二相贯体及尺寸标注二相贯体及尺寸标注二相贯体及尺寸标注?立体表面的相贯线?立体表面的相贯线?本章小结结束放映?两立体相交相贯
•大家看看这些形体是规则的还是不规则的?
⒉ 平面截切回转体,截交线的形状取决于截 平面与被截立体轴线的相对位置。
截交线是截平面与回转体表面的共有线。
⒊ 解题方法与步骤
⑴ 空间及投影分析 ☆分析截平面与被截立体的相对位置,以 确定截交线的形状。 ☆分析截平面与被截立体对投影面的相对 位置,以确定截交线的投影特性。 ⑵ 求截交线 当截交线的投影为非圆曲线时,要先 找特殊点,再补充中间点,最后光滑连接 各点。 注意分析平面体的棱线和回转体轮廓 素线的投影。
例5:求四棱锥被截切后的俯视图和左视图。
1(2)
2
●
1
●
注意:
2 1
要逐个截平面分析和 三面共点: 绘制截交线。当平面体只 Ⅰ、Ⅱ两点分 有局部被截切时,先假想 别同时位于三个面 为整体被截切,求出截交 线后再取局部。 上。
例5:求四棱锥被截切后的俯视图和左视图。
例6:求四棱锥被截切后的俯视图和左视图。
一、平面体与回转体相贯 ★ 相贯线是由若干段平面曲 线或直线组成的空间折线, 每一段是平面体的棱面与 回转体表面的交线。 ★ 求交线的实质是求各棱面 与回转面的截交线。 ★ 求相贯线的步骤:
分析各棱面与回转体表面的相对 位置,从而确定交线的形状。 求出各棱面与回转体表面的截交线。 连接各段交线,并判断可见性。
㈢ 圆球表面的截交线
平面与圆球相交,截交线的形状都是圆, 但根据截平面与投影面的相对位置不同,其截交 线的投影可能为圆、椭圆或积聚成一条直线。
•大家看看这些形体是规则的还是不规则的?
⒉ 平面截切回转体,截交线的形状取决于截 平面与被截立体轴线的相对位置。
截交线是截平面与回转体表面的共有线。
⒊ 解题方法与步骤
⑴ 空间及投影分析 ☆分析截平面与被截立体的相对位置,以 确定截交线的形状。 ☆分析截平面与被截立体对投影面的相对 位置,以确定截交线的投影特性。 ⑵ 求截交线 当截交线的投影为非圆曲线时,要先 找特殊点,再补充中间点,最后光滑连接 各点。 注意分析平面体的棱线和回转体轮廓 素线的投影。
例5:求四棱锥被截切后的俯视图和左视图。
1(2)
2
●
1
●
注意:
2 1
要逐个截平面分析和 三面共点: 绘制截交线。当平面体只 Ⅰ、Ⅱ两点分 有局部被截切时,先假想 别同时位于三个面 为整体被截切,求出截交 线后再取局部。 上。
例5:求四棱锥被截切后的俯视图和左视图。
例6:求四棱锥被截切后的俯视图和左视图。
一、平面体与回转体相贯 ★ 相贯线是由若干段平面曲 线或直线组成的空间折线, 每一段是平面体的棱面与 回转体表面的交线。 ★ 求交线的实质是求各棱面 与回转面的截交线。 ★ 求相贯线的步骤:
分析各棱面与回转体表面的相对 位置,从而确定交线的形状。 求出各棱面与回转体表面的截交线。 连接各段交线,并判断可见性。
㈢ 圆球表面的截交线
平面与圆球相交,截交线的形状都是圆, 但根据截平面与投影面的相对位置不同,其截交 线的投影可能为圆、椭圆或积聚成一条直线。
§平面与立体相交求截交线

线面交点法:求平面立体棱线与截平面的交 点,顺序连接各交点,即为所求。
面面交线法:求截平面与平面立体表面的交 线。
2、单一平面与平面立体截交
例.三棱锥被正垂面所截切
s’ Pv 3’
2’
s”
3” 2”
(1)求Pv与s’a’、s’b’、s’c’的交点 1’、2’、3’为截平面与各棱线的 交点Ⅰ、Ⅱ、Ⅲ的正面投影
截交线是封闭的平面曲线或曲线与平面 组成的平面图形。
截交线的形状,取决于回转体表面的形 状及截平面对回转体轴线的相对位置。
曲面立体截交线形状
平面(截平面)与曲面立体表面相交,截交线的形状是 ①由曲线围成的平面图形, ②由曲线和直线围成的平面图形, ③由直线围成的平面多边形。
曲面立体截交线求法
5.整理轮廓线;
Ⅲ
Ⅰ
Ⅴ
Ⅱ
Ⅶ
Ⅳ
Ⅷ
Ⅵ
圆柱截交线
3'
4('5)'
3" 5'
1('2)'
2"
2 5
3
4 1
解题步骤
4'
1.分析侧面投影为圆的一部分,截交线 的水平投影为椭圆的一部分;
1" 2.求出截交线上的特殊点Ⅰ、Ⅱ、Ⅲ ;
3.求出若干个一般点Ⅳ、 Ⅴ ;
4.光滑且顺次地连接各点,作出截交线 ,并且判别可见性;
2
4
3、多个平面与平面立体截交
如下图所示,作四棱柱被截切后的投影。
B
a' (b') b"•
•a"
A
b
分析:四棱柱的上部被一个正垂面和 一个侧平面所截切,因四棱柱的四个
面面交线法:求截平面与平面立体表面的交 线。
2、单一平面与平面立体截交
例.三棱锥被正垂面所截切
s’ Pv 3’
2’
s”
3” 2”
(1)求Pv与s’a’、s’b’、s’c’的交点 1’、2’、3’为截平面与各棱线的 交点Ⅰ、Ⅱ、Ⅲ的正面投影
截交线是封闭的平面曲线或曲线与平面 组成的平面图形。
截交线的形状,取决于回转体表面的形 状及截平面对回转体轴线的相对位置。
曲面立体截交线形状
平面(截平面)与曲面立体表面相交,截交线的形状是 ①由曲线围成的平面图形, ②由曲线和直线围成的平面图形, ③由直线围成的平面多边形。
曲面立体截交线求法
5.整理轮廓线;
Ⅲ
Ⅰ
Ⅴ
Ⅱ
Ⅶ
Ⅳ
Ⅷ
Ⅵ
圆柱截交线
3'
4('5)'
3" 5'
1('2)'
2"
2 5
3
4 1
解题步骤
4'
1.分析侧面投影为圆的一部分,截交线 的水平投影为椭圆的一部分;
1" 2.求出截交线上的特殊点Ⅰ、Ⅱ、Ⅲ ;
3.求出若干个一般点Ⅳ、 Ⅴ ;
4.光滑且顺次地连接各点,作出截交线 ,并且判别可见性;
2
4
3、多个平面与平面立体截交
如下图所示,作四棱柱被截切后的投影。
B
a' (b') b"•
•a"
A
b
分析:四棱柱的上部被一个正垂面和 一个侧平面所截切,因四棱柱的四个
第三章(2)3-2平面立体的截交线

2'
4 1 2 3 5
[例题 例题6] 例题
想象出物体并补画出侧面投影图
2. 平面立体截交线的性质
3. 平面立体截交线的求法
(1) 棱柱上截交线的求法
①求出截平面与棱柱上若干条棱线的交点; 如立体被多个平面截割,应求出截平面间的交线。 ②依次连接各点; ③判断可见性 ④整理轮廓线
例题1
例题2
例题3
例题4
[例题 试画出图中所示四棱柱被P、Q两平面切去一角 例题1] 例题 后的三面投影图。
4'5' 1'2'
2 5 3 4 1
[例题 例题3] 例题
1'2' 3'4'
求圆柱截交线
2' 4' 1' 3'
解题步骤 1.分析 截交线的水平 投影为直线和部分圆,侧 面投影为矩形; 2 .求出 截交线上的 特殊 点Ⅰ、Ⅱ、Ⅲ、Ⅳ; 3 .顺次 地连接各点 ,作 出截交线并判别可见性; 4.整理轮廓线。
§3-2 平面与立体相交
3.2.1 平面与平面立体相交
截平面与立体表面的交线称为截交线。 平面立体的截交线是截平面与平面立体表面的交线。 1. 平面立体的截交线 2. 平面立体截交线的性质 3. 平面立体截交线的求法 (1) 棱柱上截交线的求法 (2) 棱锥上截交线的求法
1. 平面立体的截交线 平面立体的截交线是截平面与平面立体表面的交线。 它是由直线段组成的平面多边形。
(2)求作截平面与复合回转体的截交线时,应把复合回 转体分解为基本几何体,分别求出截交线。求作多个截 平面与基本几何体相交时,应按单一截平面求截交线的 方法,分别求出各截平面的截交线。
4.截交线上的特殊点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 立体形状不同,相贯线形状不一样:
平面立体相贯:空间 折线
平面立体与曲面立体相贯: 多段平面曲线
曲面立体相贯:空间曲 线
(2) 立体大小不同,相贯线形状不一样:
直径不同的 两圆柱
直径相同的 两圆柱
(3) 立体相对位置不同,相贯线形状不一样:
两圆柱轴 线斜交
两圆柱轴线 偏交
平面立体相贯种类及相贯 线的特点
C
不可见
求作两平面体表面交线的方法有两种: • 求各棱线与棱面的交点——棱线法 • 求各棱面的交线——棱面法 作图步骤: • 找到相贯线的已知投影 • 找点 • 顺序连接各点 • 完成轮廓线 • 判断可见性
例3:已知三棱锥与三棱柱相交,求作相贯线。
(11’) 1’
2’ 3’ (31’)
11” 1 ” (31”) (3”) 41”
(41’) 4’ (41) 31
11
1
3
解题步骤: 1、分析两立体的 空间关系,确定相 41” 4” 贯线的已知投影。 2、从已知投影出发,确定相贯 线上的贯穿点。 3、先判断可见性,再连接贯穿点。 4、将棱线补到相贯点,注意可见性。
2”
2 (4)
例4:已知三棱锥上穿有三棱柱孔洞,求作相贯线。
(11’) 1’
确定截交线 的投影特性
例1:求四棱锥被截切后的俯视图和左视图。
1 (4) 2 4
● ●
1
●
2
3
●
3
4 3
●
●
1
● ●
★ 空间分析 截平面与体的几个棱 ★ 投影分析 交线的形状?
2
★ ★ 分析棱线的投影 ★ 检查 尤其注意检查截 交线投影的类似性
面相交? 截交线在俯、左视图 求截交线 上的形状?
相贯体
相贯线
1、相贯线的性质
1)表面性—相贯线位于两相交立体的表面。
2)共有性—相贯线是两相交立体表面的共有线和分界 线,线上所有点都是两相交立体表面的共有点。是求 相贯线投影的作图依据。 3) 封闭性—由于立体的表面是封闭的,因此相贯线一 般是封闭的空间折线或空间曲线。
2、相贯线的形状
相贯线的形状取决于两立体的形状、大小及两立 体的相对位置。
(41’) 4’
11
(41) 31
1
3
解题步骤: 1、分析两立体的 空间关系,确定相 4” 贯线的已知投影。 2、从已知投影出发,确定相贯 线上的贯穿点。 3、先判断可见性,再连接贯穿点。
2”
2
(4)
例3:已知三棱锥与三棱柱相交,求作相贯线。
(11’) 1’
2’ 3’ (31’)
11” 1 ” (31”) (3”)
棱线法! 我们采用的是哪种解
题方法?
例2、求作截交线的水平投影和侧面投影。
s’ 3’ 2’ s” Pv 3” 2”
具体步骤如下: (1) 求Pv与s’a’、s’b’、 s’c’的交点1’、2’、3’为 截平面与各棱线的交点 Ⅰ、Ⅱ、Ⅲ的正面投影。
b”
1’ a’
b’ c’ c”
1” a”
3
1 s 2
截平面 截断面 截交线
截交线与截断面
截交线的性质:
截交线是一个由直线组成的封闭的平面多边形,其 形状取决于平面体的形状及截平面相对平面体的截 切位置。 平面立体的截交线是一个多边形,它的顶点是平 面立体的棱线或底边与截平面的交点。截交线的每 条边是截平面与棱面的交线。 共有性:截交线既属于截平面,又属于立体表面。 求截交线的实质是求两平面的交线
6.3 平面立体交线
一、平面截切的基 本形式 二、平面截切体的 画图
截切: 用一个平面与立体相交,截去立体的一 部分。
截平面 —— 用以截切物体的平面。 截交线 —— 截平面与物体表面的交线。 截断面 —— 因截平面的截切,在物体上形 成的平面。 讨论的问题:截交线的分析和作图 。
一、平面截切的基本形式
二、平面截切体的画图
关键是正确地画出截交线的投影。
⒈ 求截交线的两种方法: ★ 求各棱线与截平面的交点→棱线法。 ★ 求各棱面与截平面的交线→棱面法。 ⒉ 求截交线的步骤: 确定截交 ★ 空间及投影分析 线的形状
☆ 截平面与体的相对位置 ☆ 截平面与投影面的相对位置
★ 画出截交线的投影
分别求出截平面与棱面的交 线,并连接成多边形。
根据线上取点的方 法,求出1、2、3和1”、 2”、3”。 (3) 连接各点的同面投 影即等截交线的三个投 影。
(2)
(4) 补全棱线的投影。
例3 求做立体被截切后的投影
1”
1’
2’ 3’(4’)
4”
3”
4 2
1
3
例题4:求三棱锥被截切后的俯视图和左视图。
4´ 3´ 6´ 1´ 2´≡5 ´ 5″≡6″
P 4 ≡5 7 5 6 3 4 2 Ⅷ Ⅰ 5 6 Ⅶ Ⅴ Ⅳ Ⅵ Ⅲ 1 ≡8 8 7 8 1 Ⅱ
2≡3≡6≡7
3 1 2
4
检查截交 分析棱线的投 截交线的形状? 截交线的投影特性? 求截交线 影 线的投影
6.4 平面立体相贯线
概述
相贯 : 两立体相交称为相贯 相贯体 : 参与相贯的立体叫做相贯体 相贯线:相交两立体表面的交线叫做相贯线
2’ 3’ (31’)
11” 1 ” (31”) (3”) 41”
2”
4”
(41’) 4’
解题步骤: 1、分析两立体的 空间关系,确定相 贯线的已知投影。
4″ 3″ 2″ 1″
5 6 4 3 1 2
例5、补出立体被截割后的投影。
6' 4'(5') 2' (3') (6 " )
5"
3"
4"
1" 2 "
Ⅵ Ⅴ Ⅲ Ⅱ Ⅰ Ⅳ
1'
3
5 6
1
2 4
例6:求六棱柱被截切后的水平投影和侧面投影
1 ׳2׳ 1״ 3״ 5״ 7״ 2״ 4״ 6״
相贯类型: 相贯线的性质:
全贯 互贯
也可为平面折线
一般为封闭的空间折线
可见
相贯线的特性及求法
相贯线上折线的端点 相贯线的可见性 --相贯点(贯穿点) 可见的条件:相贯线位于同时可见 的两相交表面时,才可见。
A
B
相贯线的求法:
方法一:先求贯穿点,再依次连线, 同时判断可见性。 方法二:求面面交线。
3׳ 5׳
7׳
4׳
作图方法:
1 求棱线与截平面 的共有点
2 连线 3 根据可见性处理轮廓线
6׳
5
3 1
7 2 6 4
例7 补全俯视图和左视图的投影
1’ 2’(3’) 3” 5” 4’(5’) 7’(6’) 6”
1” 2”
4” 7”
6
7
例 8: 求八棱柱被平面P截切后的俯视图。
平面立体相贯:空间 折线
平面立体与曲面立体相贯: 多段平面曲线
曲面立体相贯:空间曲 线
(2) 立体大小不同,相贯线形状不一样:
直径不同的 两圆柱
直径相同的 两圆柱
(3) 立体相对位置不同,相贯线形状不一样:
两圆柱轴 线斜交
两圆柱轴线 偏交
平面立体相贯种类及相贯 线的特点
C
不可见
求作两平面体表面交线的方法有两种: • 求各棱线与棱面的交点——棱线法 • 求各棱面的交线——棱面法 作图步骤: • 找到相贯线的已知投影 • 找点 • 顺序连接各点 • 完成轮廓线 • 判断可见性
例3:已知三棱锥与三棱柱相交,求作相贯线。
(11’) 1’
2’ 3’ (31’)
11” 1 ” (31”) (3”) 41”
(41’) 4’ (41) 31
11
1
3
解题步骤: 1、分析两立体的 空间关系,确定相 41” 4” 贯线的已知投影。 2、从已知投影出发,确定相贯 线上的贯穿点。 3、先判断可见性,再连接贯穿点。 4、将棱线补到相贯点,注意可见性。
2”
2 (4)
例4:已知三棱锥上穿有三棱柱孔洞,求作相贯线。
(11’) 1’
确定截交线 的投影特性
例1:求四棱锥被截切后的俯视图和左视图。
1 (4) 2 4
● ●
1
●
2
3
●
3
4 3
●
●
1
● ●
★ 空间分析 截平面与体的几个棱 ★ 投影分析 交线的形状?
2
★ ★ 分析棱线的投影 ★ 检查 尤其注意检查截 交线投影的类似性
面相交? 截交线在俯、左视图 求截交线 上的形状?
相贯体
相贯线
1、相贯线的性质
1)表面性—相贯线位于两相交立体的表面。
2)共有性—相贯线是两相交立体表面的共有线和分界 线,线上所有点都是两相交立体表面的共有点。是求 相贯线投影的作图依据。 3) 封闭性—由于立体的表面是封闭的,因此相贯线一 般是封闭的空间折线或空间曲线。
2、相贯线的形状
相贯线的形状取决于两立体的形状、大小及两立 体的相对位置。
(41’) 4’
11
(41) 31
1
3
解题步骤: 1、分析两立体的 空间关系,确定相 4” 贯线的已知投影。 2、从已知投影出发,确定相贯 线上的贯穿点。 3、先判断可见性,再连接贯穿点。
2”
2
(4)
例3:已知三棱锥与三棱柱相交,求作相贯线。
(11’) 1’
2’ 3’ (31’)
11” 1 ” (31”) (3”)
棱线法! 我们采用的是哪种解
题方法?
例2、求作截交线的水平投影和侧面投影。
s’ 3’ 2’ s” Pv 3” 2”
具体步骤如下: (1) 求Pv与s’a’、s’b’、 s’c’的交点1’、2’、3’为 截平面与各棱线的交点 Ⅰ、Ⅱ、Ⅲ的正面投影。
b”
1’ a’
b’ c’ c”
1” a”
3
1 s 2
截平面 截断面 截交线
截交线与截断面
截交线的性质:
截交线是一个由直线组成的封闭的平面多边形,其 形状取决于平面体的形状及截平面相对平面体的截 切位置。 平面立体的截交线是一个多边形,它的顶点是平 面立体的棱线或底边与截平面的交点。截交线的每 条边是截平面与棱面的交线。 共有性:截交线既属于截平面,又属于立体表面。 求截交线的实质是求两平面的交线
6.3 平面立体交线
一、平面截切的基 本形式 二、平面截切体的 画图
截切: 用一个平面与立体相交,截去立体的一 部分。
截平面 —— 用以截切物体的平面。 截交线 —— 截平面与物体表面的交线。 截断面 —— 因截平面的截切,在物体上形 成的平面。 讨论的问题:截交线的分析和作图 。
一、平面截切的基本形式
二、平面截切体的画图
关键是正确地画出截交线的投影。
⒈ 求截交线的两种方法: ★ 求各棱线与截平面的交点→棱线法。 ★ 求各棱面与截平面的交线→棱面法。 ⒉ 求截交线的步骤: 确定截交 ★ 空间及投影分析 线的形状
☆ 截平面与体的相对位置 ☆ 截平面与投影面的相对位置
★ 画出截交线的投影
分别求出截平面与棱面的交 线,并连接成多边形。
根据线上取点的方 法,求出1、2、3和1”、 2”、3”。 (3) 连接各点的同面投 影即等截交线的三个投 影。
(2)
(4) 补全棱线的投影。
例3 求做立体被截切后的投影
1”
1’
2’ 3’(4’)
4”
3”
4 2
1
3
例题4:求三棱锥被截切后的俯视图和左视图。
4´ 3´ 6´ 1´ 2´≡5 ´ 5″≡6″
P 4 ≡5 7 5 6 3 4 2 Ⅷ Ⅰ 5 6 Ⅶ Ⅴ Ⅳ Ⅵ Ⅲ 1 ≡8 8 7 8 1 Ⅱ
2≡3≡6≡7
3 1 2
4
检查截交 分析棱线的投 截交线的形状? 截交线的投影特性? 求截交线 影 线的投影
6.4 平面立体相贯线
概述
相贯 : 两立体相交称为相贯 相贯体 : 参与相贯的立体叫做相贯体 相贯线:相交两立体表面的交线叫做相贯线
2’ 3’ (31’)
11” 1 ” (31”) (3”) 41”
2”
4”
(41’) 4’
解题步骤: 1、分析两立体的 空间关系,确定相 贯线的已知投影。
4″ 3″ 2″ 1″
5 6 4 3 1 2
例5、补出立体被截割后的投影。
6' 4'(5') 2' (3') (6 " )
5"
3"
4"
1" 2 "
Ⅵ Ⅴ Ⅲ Ⅱ Ⅰ Ⅳ
1'
3
5 6
1
2 4
例6:求六棱柱被截切后的水平投影和侧面投影
1 ׳2׳ 1״ 3״ 5״ 7״ 2״ 4״ 6״
相贯类型: 相贯线的性质:
全贯 互贯
也可为平面折线
一般为封闭的空间折线
可见
相贯线的特性及求法
相贯线上折线的端点 相贯线的可见性 --相贯点(贯穿点) 可见的条件:相贯线位于同时可见 的两相交表面时,才可见。
A
B
相贯线的求法:
方法一:先求贯穿点,再依次连线, 同时判断可见性。 方法二:求面面交线。
3׳ 5׳
7׳
4׳
作图方法:
1 求棱线与截平面 的共有点
2 连线 3 根据可见性处理轮廓线
6׳
5
3 1
7 2 6 4
例7 补全俯视图和左视图的投影
1’ 2’(3’) 3” 5” 4’(5’) 7’(6’) 6”
1” 2”
4” 7”
6
7
例 8: 求八棱柱被平面P截切后的俯视图。