数字逻辑

合集下载

(完整word版)《数字逻辑》(第二版)

(完整word版)《数字逻辑》(第二版)

第一章1. 什么是模拟信号什么是数字信号试举出实例。

模拟信号-----指在时间上和数值上均作连续变化的信号。

例如,温度、压力、交流电压等信号。

数字信号-----指信号的变化在时间上和数值上都是断续的,阶跃式的,或者说是离散的,这类信号有时又称为离散信号。

例如,在数字系统中的脉冲信号、开关状态等。

2. 数字逻辑电路具有哪些主要特点数字逻辑电路具有如下主要特点:●电路的基本工作信号是二值信号。

●电路中的半导体器件一般都工作在开、关状态。

●电路结构简单、功耗低、便于集成制造和系列化生产。

产品价格低廉、使用方便、通用性好。

●由数字逻辑电路构成的数字系统工作速度快、精度高、功能强、可靠性好。

3. 数字逻辑电路按功能可分为哪两种类型主要区别是什么根据数字逻辑电路有无记忆功能,可分为组合逻辑电路和时序逻辑电路两类。

组合逻辑电路:电路在任意时刻产生的稳定输出值仅取决于该时刻电路输入值的组合,而与电路过去的输入值无关。

组合逻辑电路又可根据输出端个数的多少进一步分为单输出和多输出组合逻辑电路。

时序逻辑电路:电路在任意时刻产生的稳定输出值不仅与该时刻电路的输入值有关,而且与电路过去的输入值有关。

时序逻辑电路又可根据电路中有无统一的定时信号进一步分为同步时序逻辑电路和异步时序逻辑电路。

4. 最简电路是否一定最佳为什么一个最简的方案并不等于一个最佳的方案。

最佳方案应满足全面的性能指标和实际应用要求。

所以,在求出一个实现预定功能的最简电路之后,往往要根据实际情况进行相应调整。

5. 把下列不同进制数写成按权展开形式。

(1) 10 (3) 8(2) 2 (4) 16解答(1)10 = 4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3(2)2= 1×24+1×22+1×21+1×2-2+1×2-4(3)8 = 3×82+2×81+5×80+7×8-1+4×8-2+4×8-3(4) 16 = 7×162+8×161+5×160+4×16-1+10×16-2+15×16-3 6.将下列二进制数转换成十进制数、八进制数和十六进制数。

《数字逻辑教案》

《数字逻辑教案》

《数字逻辑教案》word版第一章:数字逻辑基础1.1 数字逻辑概述介绍数字逻辑的基本概念和特点解释数字逻辑在计算机科学中的应用1.2 逻辑门介绍逻辑门的定义和功能详细介绍与门、或门、非门、异或门等基本逻辑门1.3 逻辑函数解释逻辑函数的概念和作用介绍逻辑函数的表示方法,如真值表和逻辑表达式第二章:数字逻辑电路2.1 逻辑电路概述介绍逻辑电路的基本概念和组成解释逻辑电路的功能和工作原理2.2 逻辑电路的组合介绍逻辑电路的组合方式和连接方法解释组合逻辑电路的输出特点2.3 逻辑电路的时序介绍逻辑电路的时序概念和重要性详细介绍触发器、计数器等时序逻辑电路第三章:数字逻辑设计3.1 数字逻辑设计概述介绍数字逻辑设计的目标和方法解释数字逻辑设计的重要性和应用3.2 组合逻辑设计介绍组合逻辑设计的基本方法和步骤举例说明组合逻辑电路的设计实例3.3 时序逻辑设计介绍时序逻辑设计的基本方法和步骤举例说明时序逻辑电路的设计实例第四章:数字逻辑仿真4.1 数字逻辑仿真概述介绍数字逻辑仿真的概念和作用解释数字逻辑仿真的方法和工具4.2 组合逻辑仿真介绍组合逻辑仿真的方法和步骤使用仿真工具进行组合逻辑电路的仿真实验4.3 时序逻辑仿真介绍时序逻辑仿真的方法和步骤使用仿真工具进行时序逻辑电路的仿真实验第五章:数字逻辑应用5.1 数字逻辑应用概述介绍数字逻辑应用的领域和实例解释数字逻辑在计算机硬件、通信系统等领域的应用5.2 数字逻辑在计算机硬件中的应用介绍数字逻辑在中央处理器、存储器等计算机硬件部件中的应用解释数字逻辑在计算机指令执行、数据处理等方面的作用5.3 数字逻辑在通信系统中的应用介绍数字逻辑在通信系统中的应用实例,如编码器、解码器、调制器等解释数字逻辑在信号处理、数据传输等方面的作用第六章:数字逻辑与计算机基础6.1 计算机基础概述介绍计算机的基本组成和原理解释计算机硬件和软件的关系6.2 计算机的数字逻辑核心讲解CPU内部的数字逻辑结构详细介绍寄存器、运算器、控制单元等关键部件6.3 计算机的指令系统解释指令系统的作用和组成介绍机器指令和汇编指令的概念第七章:数字逻辑与数字电路设计7.1 数字电路设计基础介绍数字电路设计的基本流程解释数字电路设计中的关键概念,如时钟频率、功耗等7.2 数字电路设计实例分析简单的数字电路设计案例讲解设计过程中的逻辑判断和优化7.3 数字电路设计工具与软件介绍常见的数字电路设计工具和软件解释这些工具和软件在设计过程中的作用第八章:数字逻辑与数字系统测试8.1 数字系统测试概述讲解数字系统测试的目的和方法解释测试在保证数字系统可靠性中的重要性8.2 数字逻辑测试技术介绍逻辑测试的基本方法和策略讲解测试向量和测试结果分析的过程8.3 故障诊断与容错设计解释数字系统中的故障类型和影响介绍故障诊断方法和容错设计策略第九章:数字逻辑在现代技术中的应用9.1 数字逻辑与现代通信技术讲解数字逻辑在现代通信技术中的应用介绍数字调制、信息编码等通信技术9.2 数字逻辑在物联网技术中的应用解释数字逻辑在物联网中的关键作用分析物联网设备中的数字逻辑结构和功能9.3 数字逻辑在领域的应用讲述数字逻辑在领域的应用实例介绍逻辑推理、神经网络等技术中的数字逻辑基础第十章:数字逻辑的未来发展10.1 数字逻辑技术的发展趋势分析数字逻辑技术的未来发展方向讲解新型数字逻辑器件和系统的特点10.2 量子逻辑与量子计算介绍量子逻辑与传统数字逻辑的区别讲解量子计算中的逻辑结构和运算规则10.3 数字逻辑教育的挑战与机遇分析数字逻辑教育面临的挑战讲述数字逻辑教育对培养计算机科学人才的重要性重点和难点解析重点环节一:逻辑门的概念和功能逻辑门是数字逻辑电路的基本构建块,包括与门、或门、非门、异或门等。

《数字逻辑教案》

《数字逻辑教案》

《数字逻辑教案》word版一、教学目标:1. 让学生了解数字逻辑的基本概念和原理。

2. 培养学生运用数字逻辑分析和解决问题的能力。

3. 引导学生掌握数字逻辑的基本运算和设计方法。

二、教学内容:1. 数字逻辑的基本概念:数字逻辑电路、逻辑门、逻辑函数等。

2. 逻辑运算:与运算、或运算、非运算、异或运算等。

3. 逻辑门电路:与门、或门、非门、异或门等。

4. 数字逻辑电路的设计方法:组合逻辑电路、时序逻辑电路。

5. 数字逻辑电路的应用:数字计算器、数字存储器等。

三、教学方法:1. 讲授法:讲解数字逻辑的基本概念、原理和运算方法。

2. 实验法:让学生动手搭建逻辑门电路,加深对数字逻辑的理解。

3. 案例分析法:分析实际应用中的数字逻辑电路,提高学生解决问题的能力。

四、教学准备:1. 教材:《数字逻辑》2. 实验器材:逻辑门电路模块、导线、电源等。

3. 教学工具:PPT、黑板、粉笔等。

五、教学进程:1. 第1周:数字逻辑的基本概念和原理。

第2周:逻辑运算和逻辑门电路。

第3周:组合逻辑电路的设计方法。

第4周:时序逻辑电路的设计方法。

第5周:数字逻辑电路的应用案例。

2. 实验环节:在第3周和第4周结束后,安排一次实验课程,让学生动手搭建逻辑门电路,加深对数字逻辑的理解。

3. 课程总结:在第5周课程结束后,进行课程总结,回顾本门课程的主要内容,巩固所学知识。

4. 课程考核:期末进行课程考核,包括笔试和实验操作两部分,全面评估学生的学习效果。

六、教学评估:1. 课堂参与度评估:通过观察学生在课堂上的提问、回答和讨论情况,评估学生的参与度和兴趣。

2. 作业评估:通过检查学生的作业完成情况,评估学生对课堂所学知识的理解和掌握程度。

3. 实验报告评估:对学生实验报告的完整性、准确性和创新性进行评估,了解学生对实验内容的理解和应用能力。

4. 期末考试评估:通过期末考试的笔试和实验操作两部分,全面评估学生对数字逻辑知识的掌握程度和应用能力。

数字逻辑名词解释

数字逻辑名词解释

组合逻辑电路简称组合电路,它由最基本的的逻辑门电路组合而成。

时序逻辑电路简称时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路。

组合逻辑电路特点是:输出值只与当时的输入值有关,即输出唯一地由当时的输入值决定。

电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。

时序逻辑电路特点:与组合电路最本质的区别在于时序电路具有记忆功能。

时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。

它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件译码器将N个输入转换成对应的M个输出的过程M≤2N类型全部译码和部分译码;二进制译码、代码译码器、数字显示译码器。

Eg: N-2n译码器, eg: 3线-8线译码器N-M译码器,M<2n, eg: 4线-10线译码器译码功能:根据输出引脚哪一条线有效,就可知道具体输入的二进制代码是哪一种组合。

•对二输入变量A0,A1,译码器将得到四个输出Y0,Y1,Y2,Y3,•对三输入变量A0,A1,A2,译码器将得到八个输出Y0,Y1,…,Y7,•每一个输出Yi对应该输入的最小项。

•对二输入变量,如:Yi’=0,即输入变量组合A1A0的M进制(M输出)形式为i。

•用数字形式表示即:Yi mi•可用译码器实现最小项1)二进制译码器的输出端能提供输入变量的全部最小项;2)任何组合逻辑函数都可以变换为最小项之和的标准式;=>用二进制译码器和门电路可实现任何组合逻辑函数。

当译码器输出低电平有效时,多选用与非门;译码器输出高电平有效时,多选用或门。

优点:可减少集成电路的使用数量。

例:用3线-8线译码器74LS138实现下面的逻辑函数:Y1=A’B’+AC+A’C’Y2=A’C+AC’Y3=B’C+BC’将逻辑函数化为最小项之和的形式:Y1=A’B’+AC+A’C’=A’B’C+A’B’C’+ABC+AB’C+A’BC’+A’B’C’=m1+m0+m7+m5+m2+m0= (m0’m1’m2’m5’m7’)’Y2=A’C+AC’=A’BC+A’B’C+ABC’+AB’C’= m3+m1+m6+m4= (m1’m3’m4’m6’)’Y3=B’C+BC’=AB’C+A’B’C+ABC’+A’BC’=m5+m1+m6+m2= (m1’m2’m5’m6’)’当译码器输出低电平有效时,多选用与非门;译码器输出高电平有效时,多选用或门。

数字逻辑表达式化简规则

数字逻辑表达式化简规则

数字逻辑表达式化简规则数字逻辑是计算机科学中的重要基础,它研究的是由逻辑门构成的电路的设计和分析问题。

在数字逻辑中,逻辑门可以用逻辑表达式来表示,而逻辑表达式的化简是数字逻辑设计中的一项关键任务。

本文将介绍数字逻辑表达式化简的一些常用规则。

1. 同一律同一律是数字逻辑表达式化简中最基本也是最简单的规则之一。

它指的是对于任意的逻辑变量x,都有x+x=x和x·x=x成立。

这意味着一个逻辑变量与自己进行或运算或与自己进行与运算的结果都等于自己。

2. 零和律零和律也是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x,都有x+0=x和x·1=x成立。

这意味着一个逻辑变量与0进行或运算的结果等于自己,与1进行与运算的结果也等于自己。

3. 吸收律吸收律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x和y,如果x+y=x,则称该规则为或运算的吸收律;如果x·y=x,则称该规则为与运算的吸收律。

吸收律的意义在于可以将逻辑表达式中重复出现的项进行合并,简化表达式。

4. 分配律分配律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x、y和z,有x·(y+z)=x·y+x·z和x+(y·z)=(x+y)·(x+z)成立。

分配律的意义在于可以将逻辑表达式中的项进行分解和合并,简化表达式。

5. 德摩根定律德摩根定律是数字逻辑表达式化简中常用的规则之一。

它指的是对于任意的逻辑变量x和y,有¬(x+y)=¬x·¬y和¬(x·y)=¬x+¬y成立。

德摩根定律的意义在于可以将逻辑表达式中的非运算进行转化,简化表达式。

6. 卡诺图卡诺图是一种图形化的方法,用于数字逻辑表达式的化简。

它将逻辑变量的取值以格子的形式表示在平面上,然后通过画线的方式找出逻辑表达式的最简形式。

数字逻辑课件——绪言

数字逻辑课件——绪言

基本模拟电路:
• 信号放大及运算 (信号放大、功率放大) • 信号处理(采样保持、电压比较、有源滤波) • 信号发生(正弦波发生器、三角波发生器、…)
数字电路研究的问题
基本电路元件
• 逻辑门电路 • 触发器
基本数字电路
• 组合逻辑电路 • 时序电路(寄存器、计数器、脉冲发生器、
脉冲整形电路) • A/D转换器、D/A转换器
逻辑0
0010111100111010 十六位数据的图形表示
数值大小和每次的增减变化为N·,N为整数, 为
最小数量单位。
数量如小于这个最小数量单位,则没有任何物理意义 。如2567.82326…km,
如量化单位为:1km
数字量为:2568km
如量化单位为:1m 数字量为: 2567823m
数字信号所传递的内容称为数字信息。处理数字信 号的电路称为数字电路,包括传送、逻辑运算、控 制计数、寄存、显示以及脉冲波形的产生和变换。
本课程的学习要求: 1、深入掌握数字电路领域的基本概念和基本理论。 2、熟练掌握数字电路的分析方法和设计方法。 3、逐步提高阅读集成电路产品手册的能力,以便从 中获取更多信息。 4、积极实践,提高使用仪器、测试电路和排除故障 的能力。
2.研究的内容
模拟电路主要研究:输入、输出信号间的大小、相位、失 真等方面的关系。主要采用电路分析方法,动态性能 用微变等效电路分析。
数字电路主要研究:电路输出、输入间的逻辑关系。主要 的工具是逻辑代数,电路的功能用真值表、逻辑表达 式及波形图表示。
模拟电路研究的问题
基本电路元件:
•晶体三极管 •场效应管 •集成运算放大器
2、使用灵活,易于器件标准化。
随着半导体工艺的发展,数字电路器件的体积越来 越小,集成度越来越高。今天,可以在一块硅片上 制造几千个、几万个甚至几千万个元件,并可制造 单片数字计算机、单片的数字信号处理器等功能很 强的标准化通用器件,也可由使用者定制专用的芯 片。

数字逻辑电路的特点

数字逻辑电路的特点

数字逻辑电路的特点
数字逻辑电路是由逻辑门、触发器、计数器等元件按照一定的逻辑功能和连接关系组成的电路。

它具有以下特点:
1. 二进制输入输出:数字逻辑电路的输入和输出信号都以二进制形式表示,只有两个状态(0和1)。

这大大简化了信号的
处理和传输。

2. 确定性:数字逻辑电路的运算过程是确定的,根据特定的逻辑规则进行操作。

对于相同的输入,始终得到相同的输出。

3. 可靠性:由于数字逻辑电路中只有两种状态,电路的工作状态更加稳定可靠。

数字信号可以通过正定低音噪声的方式进行传输和处理,从而降低误差率。

4. 可编程性:数字逻辑电路可以通过对逻辑门的布尔函数进行编程,实现不同的逻辑功能。

这使得数字逻辑电路具有较强的灵活性和可扩展性。

5. 高集成度:数字逻辑电路可以通过集成电路技术实现高度集成,将多个逻辑门或其他元件集成到同一芯片上。

这样可以大大提高电路的集成度和运算速度。

6. 低功耗:数字逻辑电路在计算机和其他数字设备中广泛应用,因为它们的功耗较低。

与模拟电路相比,数字逻辑电路不需要进行放大和滤波等复杂的处理,从而节省了能量消耗。

总的来说,数字逻辑电路具有简单、稳定、灵活、可靠、高效等特点,为计算机和其他数字设备提供了强大的计算和控制能力。

数字逻辑 知识点总结大全

数字逻辑 知识点总结大全

数字逻辑知识点总结大全数字逻辑是一门研究数字信号在计算机中传输和处理的学科,它涉及到数字电路和逻辑电路的设计、分析和应用。

数字逻辑在计算机科学、电子工程、通信工程等领域都有着广泛的应用。

下面将对数字逻辑的知识点进行详细的总结,包括数字系统、布尔代数、逻辑门、时序逻辑和组合逻辑等内容。

数字系统数字系统是由有限个数的符号和数字组成的一种系统。

在计算机中,使用的数字系统一般为二进制,即由0和1组成。

除了二进制,还有十进制、八进制和十六进制等其他进制系统。

其中,二进制是计算机内部使用的基本进制。

数字系统中的基本概念包括位、字节、字和字长。

位是数字系统中的最小单位,它只有两种状态:0和1。

字节是8位的二进制数,用来表示一个字符或一个字母。

字是由多个字节组成的一个固定长度的数据单元。

而字长是一个数字系统中的字的长度,它决定了一个数字系统中能够表示的最大的数值范围。

布尔代数布尔代数是一种逻辑代数,它用来描述逻辑语句的真假情况。

在布尔代数中,所有逻辑变量的取值只有两种情况:真和假。

布尔代数中的基本运算包括与运算、或运算和非运算。

与运算表示两个逻辑变量同时为真时结果为真,否则为假;或运算表示两个逻辑变量中任意一个为真时结果为真,否则为假;非运算表示逻辑变量的取值取反。

布尔代数中的定理包括分配律、结合律、德摩根定律、消去律等。

这些定理是布尔代数中的基本规则,用于简化布尔表达式,并帮助我们理解逻辑电路的设计和分析。

逻辑门逻辑门是数字电路中的基本组成部分,它用来实现布尔代数中的逻辑运算。

逻辑门一般包括与门、或门、非门、异或门、与非门、或非门等类型。

这些门都有着特定的逻辑功能和真值表。

与门表示与运算,或门表示或运算,非门表示非运算,异或门表示异或运算,与非门表示与非运算,或非门表示或非运算。

这些逻辑门可以组成各种复杂的逻辑电路,包括加法器、减法器、多路选择器、触发器、寄存器等。

时序逻辑时序逻辑是数字逻辑中的一个重要分支,它涉及到数字电路中的时序关系和时序控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 集成门电路与触发器
2. 开通时间 开通时间:二极管从反向截止到正向导通的时间称为开 通时间。 二极管的开通时间很短,对开关速度影响很小,相 对反向恢复时间而言几乎可以忽略不计。
第三章 集成门电路与触发器
3.2.2 晶体三极管的开关特性
一、静态特性 晶体三极管由集电结和发射结两个PN结构成。根据两 个PN结的偏置极性,三极管有截止、放大、饱和3种工作 状态。
TTL(Transistor Transistor Logic)电路是晶体 管-晶体管逻辑电路的简称。 TTL电路的功耗大、线路较复杂,使其集成度受到 一定的限制,故广泛应用于中小规模逻辑电路中。
下面,对几种常见TTL门电路进行介绍,重点讨论TTL 与非门。
第三章 集成门电路与触发器
一、典型TTL与非门 1. 电路结构及工作原理 (1) 电路结构 典型TTL与非门电 路图及相应逻辑符号如 右图所示。 该电路可按 图中虚线划分为三部分: 输入级—— 由多发射极晶体管T1和电阻R1组成; 中间级—— 由晶体管T2和电阻R2、R3组成; 输出级—— 由晶体管T3、T4、D4和电阻R4、R5组成。
3.2.1 晶体二极管的开关特性
一、静态特性 静态特性是指二极管在导通和截止两种稳定状态下的特性。
第三章 集成门电路与触发器
典型二极管的静态特性曲线 (又称伏安特性曲线) : 1. 正向特性
门槛电压 ( VTH ):使二极管开始导通的正向电压,又称为阈值 电压 (一般锗管约0.1V,硅管约0.5V)。 ★正向电压 VD ≤ VTH :管子截止,电阻很大、正向电流 IF 接近 于 0, 二极管类似于开关的断开状态 ; ★正向电压 VD = VTH :管子开始导通,正向电流 IF 开始上升; ★正向电压 VD >VTH (一般锗管为0.3V,硅管为0.7V) :管子充 分导通, 电阻很小,正向电流IF 急剧增加,二极管类似于开关的接 通状态。使二极管充分导通的电压为导通电压,用VF表示。
端 悬空时,流过接地输入端的电流。
(8) 高电平输入电流IiH:指某一输入端接高电平,而其他输入端接地
时,流入高电平输入端的电流,又称为输入 漏电流。
第三章 集成门电路与触发器
(9) 平均传输延迟时间tpd: 指一个矩形波信号从与非门输入端传到与
非门输出端(反相输出)所延迟的时间。通常 将从输入波上沿中点到输出波下沿中点的 时间延迟称为导通延迟时间tpdL;从输入 波下沿中点到输出波上沿中点的时间延迟 称为截止延迟时间tpdH。
第三章 集成门电路与触发器



集 成 门 电 路 与 触 发 器
第三章 集成门电路与触发器
集成门电路和触发器等逻辑器件是实现数字系统功能的 物质基础。 随着微电子技术的发展,人们把实现各种逻辑功能的元 器件及其连线都集中制造在同一块半导体材料小片上,并封 装在一个壳体中,通过引线与外界联系,即构成所谓的集成 电路块,通常又称为集成电路芯片。 采用集成电路进行数字系统设计的优点: 可靠性高、可维性好、功耗低、成本低等优点,可以大 大简化设计和调试过程。
第三章 集成门电路与触发器
双极型集成电路又可进一步可分为: TTL(Transistor Transistor Logic)电路; ECL(Emitter Coupled Logic)电路; I2L(Integrated Injection Logic)电路。 ┊ TTL电路的“性能价格比”最佳,应用最广泛。 MOS集成电路又可进一步分为: PMOS( P-channel Metel Oxide Semiconductor); NMOS(N-channel Metel Oxide Semiconductor); CMOS(Complement Metal OxideSemiconductor)。 ┊ CMOS电路应用较普遍,因为它不但适用于通用逻电路 的设计,而且综合性能最好 。
第三章 集成门电路与触发器
3.2.3 MOS管的开关特性
一、静态特性 MOS管作为开关元件,同样是工作在截止或导通两种状 态。MOS管是电压控制元件,主要由栅源电压vGS决定其工 作状态。
工作特性如下: 当VGS <开启电压VTN 时:MOS管工作在截止区,输出 电压vDS ≈VDD,MOS管处于“断开”状态; 当VDS≥VGS -VTN 时:MOS管工作在导通区,输出电压 vDS≈ 0V,MOS管处于“接通”状态。
第三章 集成门电路与触发器
由于二极管的单向导电性,所以在数字电路中经常把它 当作开关使用。 二极管组成的开关电路图如图(a)所示。二极管导通 状态下的等效电路如图(b)所示,截止状态下的等效电路如图 (c)所示,图中忽略了二极管的正向压降。
D
U 0 R 关闭 R 断开 R
(a)
(b) 二极管开关电路及其等效电路
第三章 集成门电路与触发器
二、动态特性
MOS管本身导通和截止时电荷积累和消散的时间 很小。 动态特性主要取决于电路中杂散电容充、放电所需 的时间。
第三章 集成门电路与触发器
为了提高MOS器件的工作速度,引入了CMOS电路。 在CMOS电路中,由于充电电路和放电电路都是低阻电 路,因此,其充、放电过程都比较快,从而使CMOS电路有 较高的开关速度。
第三章 集成门电路与触发器
1.开通时间( ton ) 开通时间:三极管从截止状态到饱和状态所需要的时间。 时间ton =延迟时间td +上升时间tr 2. 关闭时间 ( toff ) 关闭时间 :三极管从饱和状态到截止状态所需要的时间。 关闭时间toff =存储时间ts +下降时间tf 开通时间ton和关闭时间toff是影响电路工作速度的主要因素。
平。VOH的典型值是3.6V。
(2) 输出低电平VOL:输出低电平VoL是指输入全为高电平时的输
出电平。VOL的典型值是0.3V。
(3) 开门电平VO N :指在额定负载下,使输出电平达到标准低电平
VSL的输入电平,它表示使与非门开通的最小输 入电平。VON的产品规范值为VON≤1.8V。
第三章 集成门电路与触发器
第三章 集成门电路与触发器
(2) 工作原理 逻辑功能分析如下: ※ 输入端全部接高电平(3.6V):电源Vcc通过R1和T1的集电结
向T2提供足够的基极电流,使T2饱和导通。T2的发射极电流在R3上产生的 压降又使 T4 饱和导通,输出为低电平(≈0.3V)。
实现了“输入全高 ,输出为低”的逻辑关系。 ※当有输入端接低电平(0.3V)时:输入端接低电平的发射结导
第三章 集成门电路与触发器
3. 2 半导体器件的开关特性
数字电路中的晶体二极管、三极管和MOS管等器件一般是 以开关方式运用的,其工作状态相当于相当于开关的“接通” 与“断开”。 数子系统中的半导体器件运用在开关频率十分高的电路中 (通常开关状态变化的速度可高达每秒百万次数量级甚至千万次 数量级),研究这些器件的开关特性时,不仅要研究它们的静止 特性,而且还要分析它们的动态特性。
第三章 集成门电路与触发器
2. 反向特性 二极管在反向电压VR 作用下,处于截止状态,反向电阻 很大,反向电流 IR 很小(将其称为反向饱和电流,用 IS 表 示,通常可忽略不计 ),二极管的状态类似于开关断开。而 且反向电压在一定范围内变化基本不引起反向电流的变化。 注意事项: ● 正向导通时可能因电流过大而导致二极管烧坏。组成 实际电路时通常要串接一只电阻 R,以限制二极管的正向电 流; ● 反向电压超过某个极限值时,将使反向电流IR突然猛 增,致使二极管被击穿(通常将该反向电压极限值称为反向击 穿电压VBR),一般不允许反向电压超过此值。
(4) 关门电平VOFF :指输出空载时,使输出电平达到标准高电平VSH的
输入电平,它表示使与非门关断所允许的最大输 入电平。VOFF 的产品规范值VOFF≥0.8V。
(5) 扇入系数Ni :指与非门允许的输入端数目。 (6) 扇出系数No:指与非门输出端连接同类门的最多个数。 (7) 输入短路电流IiS :指当与非门的某一个输入端接地而其余输入
第三章 集成门电路与触发器
本章知识要点:
● ● ● 半导体器件的开关特性; 逻辑门电路的功能、外部特性及使用方法; 常用触发器的功能、触发方式与外部工作特性。
第三章 集成门电路与触发器
3.1
数字集成电路的分类
数字集成电路通常按照所用半导体器件的不同或者根据 集成规模的大小进行分类。 一、根据所采用的半导体器件进行分类 根据所采用的半导体器件,数字集成电路可以分为两大类。 1.双极型集成电路:采用双极型半导体器件作为元件。主 要特点是速度快、负载能力强,但功耗较大、 集成度较低。 2.单极型集成电路(又称为MOS集成电路): 采用金属-氧化 物半导体场效应管(Metel Oxide Semiconductor Field Effect Transister)作为元件。主要特点是结构简单、制造方便、集 成度高、功耗低,但速度较慢。
(c)
第三章 集成门电路与触发器
二、 动态特性 二极管的动态特性是指二极管在导通与截止两种状态转 换过程中的特性,它表现在完成两种状态之间的转换需要一 定的时间。为此,引入了反向恢复时间和开通时间的概念 时间称为反向恢复时间。
反向恢复时间tre=存储时间ts+渡越时间tt
第三章 集成门电路与触发器
在数字逻辑电路中,三极管相当于一个由基极信号控制的 无触点开关,其作用对应于触点开关的“闭合”与“断开”。 电路在三极管截止与饱和状态下的等效电路如下:
晶体三极管在截止与饱和这两种稳态下的特性称为三极 管的静态开关特性。
第三章 集成门电路与触发器
二、动态特性
晶体三极管在饱和与截止两种状态转换过程中具有的特性 称为三极管的动态特性。 三极管的开关过程和二极管一样,管子内部也存在着电荷 的建立与消失过程。因此,两种状态的转换也需要一定的时间 才能完成。
相关文档
最新文档