计算机操作系统实验
操作系统实验实验报告 虚拟内存

操作系统实验实验报告虚拟内存一、实验目的本次操作系统实验的目的是深入理解虚拟内存的概念、原理和实现机制,通过实际操作和观察,掌握虚拟内存的相关技术,包括页面置换算法、内存分配策略等,并分析其对系统性能的影响。
二、实验环境操作系统:Windows 10 专业版开发工具:Visual Studio 2019编程语言:C++三、实验原理1、虚拟内存的概念虚拟内存是一种计算机系统内存管理技术,它使得应用程序认为自己拥有连续的可用内存(一个连续完整的地址空间),而实际上,这些内存可能是被分散存储在物理内存和外部存储设备(如硬盘)中的。
虚拟内存通过将程序使用的内存地址映射到物理内存地址,实现了内存的按需分配和管理。
2、页面置换算法当物理内存不足时,操作系统需要选择一些页面(内存中的固定大小的块)换出到外部存储设备,以腾出空间给新的页面。
常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法、时钟(Clock)算法等。
3、内存分配策略操作系统在分配内存时,需要考虑如何有效地利用有限的物理内存资源。
常见的内存分配策略有连续分配、分页分配和分段分配等。
四、实验内容与步骤1、实现简单的虚拟内存系统使用 C++编写一个简单的虚拟内存模拟程序,包括内存页面的管理、地址映射、页面置换等功能。
2、测试不同的页面置换算法在虚拟内存系统中,分别实现 FIFO、LRU 和 Clock 算法,并对相同的访问序列进行测试,比较它们的页面置换次数和缺页率。
3、分析内存分配策略的影响分别采用连续分配、分页分配和分段分配策略,对不同大小和类型的程序进行内存分配,观察系统的性能(如内存利用率、执行时间等)。
具体步骤如下:(1)定义内存页面的结构,包括页面号、标志位(是否在内存中、是否被修改等)等。
(2)实现地址映射函数,将虚拟地址转换为物理地址。
(3)编写页面置换算法的函数,根据不同的算法选择要置换的页面。
(4)创建测试用例,生成随机的访问序列,对不同的算法和分配策略进行测试。
操作系统实验实验报告

操作系统实验实验报告一、实验目的操作系统是计算机系统中最为关键的核心软件,它管理着计算机的硬件资源和软件资源,为用户提供了一个方便、高效、稳定的工作环境。
本次操作系统实验的目的在于通过实际操作和实践,深入理解操作系统的基本原理和核心概念,掌握操作系统的基本功能和操作方法,提高对操作系统的认识和应用能力。
二、实验环境本次实验使用的操作系统为 Windows 10 专业版,开发工具为Visual Studio 2019,编程语言为 C 和 C++。
实验硬件环境为一台配备Intel Core i7 处理器、16GB 内存、512GB SSD 硬盘的个人计算机。
三、实验内容(一)进程管理实验1、进程创建与终止通过编程实现创建新的进程,并在完成任务后终止进程。
在实验中,我们使用了 Windows API 函数 CreateProcess 和 TerminateProcess 来完成进程的创建和终止操作。
通过观察进程的创建和终止过程,深入理解了进程的生命周期和状态转换。
2、进程同步与互斥为了实现进程之间的同步与互斥,我们使用了信号量、互斥量等同步对象。
通过编写多线程程序,模拟了多个进程对共享资源的访问,实现了对共享资源的互斥访问和同步操作。
在实验中,我们深刻体会到了进程同步与互斥的重要性,以及不正确的同步操作可能导致的死锁等问题。
(二)内存管理实验1、内存分配与释放使用 Windows API 函数 VirtualAlloc 和 VirtualFree 进行内存的分配和释放操作。
通过实验,了解了内存分配的不同方式(如堆分配、栈分配等)以及内存释放的时机和方法,掌握了内存管理的基本原理和操作技巧。
2、内存分页与分段通过编程模拟内存的分页和分段管理机制,了解了内存分页和分段的基本原理和实现方法。
在实验中,我们实现了简单的内存分页和分段算法,对内存的地址转换和页面置换等过程有了更深入的理解。
(三)文件系统实验1、文件操作使用 Windows API 函数 CreateFile、ReadFile、WriteFile 等进行文件的创建、读取和写入操作。
操作系统实验二实验报告

操作系统实验二实验报告一、实验目的本次操作系统实验二的主要目的是深入理解和掌握进程管理的相关概念和技术,包括进程的创建、执行、同步和通信。
通过实际编程和实验操作,提高对操作系统原理的认识,培养解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容及步骤(一)进程创建实验1、首先,创建一个新的 C++项目。
2、在项目中,使用 Windows API 函数`CreateProcess`来创建一个新的进程。
3、为新进程指定可执行文件的路径、命令行参数、进程属性等。
4、编写代码来等待新进程的结束,并获取其退出代码。
(二)进程同步实验1、设计一个生产者消费者问题的模型。
2、使用信号量来实现生产者和消费者进程之间的同步。
3、生产者进程不断生成数据并放入共享缓冲区,当缓冲区已满时等待。
4、消费者进程从共享缓冲区中取出数据进行处理,当缓冲区为空时等待。
(三)进程通信实验1、选择使用管道来实现进程之间的通信。
2、创建一个匿名管道,父进程和子进程分别读写管道的两端。
3、父进程向管道写入数据,子进程从管道读取数据并进行处理。
四、实验结果及分析(一)进程创建实验结果成功创建了新的进程,并能够获取到其退出代码。
通过观察进程的创建和执行过程,加深了对进程概念的理解。
(二)进程同步实验结果通过使用信号量,生产者和消费者进程能够正确地进行同步,避免了缓冲区的溢出和数据的丢失。
分析结果表明,信号量机制有效地解决了进程之间的资源竞争和协调问题。
(三)进程通信实验结果通过管道实现了父进程和子进程之间的数据通信。
数据能够准确地在进程之间传递,验证了管道通信的有效性。
五、遇到的问题及解决方法(一)在进程创建实验中,遇到了参数设置不正确导致进程创建失败的问题。
通过仔细查阅文档和调试,最终正确设置了参数,成功创建了进程。
(二)在进程同步实验中,出现了信号量使用不当导致死锁的情况。
操作系统安全实验1实验报告

操作系统安全实验1实验报告一、实验目的本次操作系统安全实验的主要目的是让我们深入了解操作系统的安全机制,通过实际操作和观察,掌握一些常见的操作系统安全配置和防护方法,提高对操作系统安全的认识和应对能力。
二、实验环境本次实验使用的操作系统为Windows 10 和Linux(Ubuntu 2004),实验设备为个人计算机。
三、实验内容与步骤(一)Windows 10 操作系统安全配置1、账户管理创建新用户账户,并设置不同的权限级别,如管理员、标准用户等。
更改账户密码策略,包括密码长度、复杂性要求、密码有效期等。
启用账户锁定策略,设置锁定阈值和锁定时间,以防止暴力破解密码。
2、防火墙配置打开 Windows 防火墙,并设置入站和出站规则。
允许或阻止特定的应用程序通过防火墙进行网络通信。
3、系统更新与补丁管理检查系统更新,安装最新的 Windows 安全补丁和功能更新。
配置自动更新选项,确保系统能够及时获取并安装更新。
4、恶意软件防护安装并启用 Windows Defender 防病毒软件。
进行全盘扫描,检测和清除可能存在的恶意软件。
(二)Linux(Ubuntu 2004)操作系统安全配置1、用户和组管理创建新用户和组,并设置相应的权限和归属。
修改用户密码策略,如密码强度要求等。
2、文件系统权限管理了解文件和目录的权限设置,如读、写、执行权限。
设置特定文件和目录的权限,限制普通用户的访问。
3、 SSH 服务安全配置安装和配置 SSH 服务。
更改 SSH 服务的默认端口号,增强安全性。
禁止 root 用户通过 SSH 登录。
4、防火墙配置(UFW)启用 UFW 防火墙。
添加允许或拒绝的规则,控制网络访问。
四、实验结果与分析(一)Windows 10 操作系统1、账户管理成功创建了具有不同权限的用户账户,并能够根据需求灵活调整权限设置。
严格的密码策略有效地增加了密码的安全性,减少了被破解的风险。
账户锁定策略在一定程度上能够阻止暴力破解攻击。
计算机操作系统实验报告

中南大学计算机操作系统实验报告................................................................................................................................................................................................................1、增强学生对计算机操作系统基本原理、基本理论、基本算法的理解;2、提高和培养学生的动手能力。
1、每人至少选作1 题,多做不限;2、每人单独完成,可以讨论,但每人的设计内容不得彻底相同,抄袭或者有2 人/多人设计彻底一样者,不能通过;3、设计完成后,应上交课程设计文档,文档格式应是学校课程设计的标准格式,所有学生的封面大小、格式也必须一样;4、同时上交设计的软盘(或者以班刻录光盘)。
调度算法的摹拟:摹拟各种调度算法,并进行调度性能分析。
摹拟了一个作业调度算法,其中用到了先来先服务算法(FCFS)、短作业优先算法(SJF)、最高响应比优先算法(HRN)三种算法。
如下,分别为三种算法的程序流程图。
图1 - 开始界面图 2 –输入作业的信息(名字、提交时间、运行时间) 图3 –选择算法(FCFS 、SJF、HRN)图4、5 –选择FCFS 算法后输出结果图6、7 –选择SJF 算法后输出结果图8、9 –选择HRN 算法后输出结果能体现公平性;一旦一个较长的作业进入系统后就会长期的占用系统的资源,这样如果有优先级较高的短作业需要执行的话需要等待很长期。
比前者改善了平均周转时间和平均带权周转时间,缩短作业的等待时间,提高系统的吞吐量;对长作业非常不利,可能长期得不到执行,未能一句作业的紧迫程度来划分执行的优先级,难以准确估计作业的执行时间,从而影响调度性能。
这种算法是对FCFS 方式和SJF 方式的一种综合平衡。
操作系统实验报告

篇一:操作系统实验报告完全版《计算机操作系统》实验报告班级:姓名:学号:实验一进程控制与描述一、实验目的通过对windows 2000编程,进一步熟悉操作系统的基本概念,较好地理解windows 2000的结构。
通过创建进程、观察正在运行的进程和终止进程的程序设计和调试操作,进一步熟悉操作系统的进程概念,理解windows 2000中进程的“一生”。
二、实验环境硬件环境:计算机一台,局域网环境;软件环境:windows 2000 professional、visual c++6.0企业版。
三、实验内容和步骤第一部分:程序1-1windows 2000 的gui 应用程序windows 2000 professional下的gui应用程序,使用visual c++编译器创建一个gui应用程序,代码中包括了winmain()方法,该方法gui类型的应用程序的标准入口点。
:: messagebox( null, “hello, windows 2000” , “greetings”,mb_ok) ;/* hinstance */ , /* hprevinstance */, /* lpcmdline */, /* ncmdshow */ )return(0) ; }在程序1-1的gui应用程序中,首先需要windows.h头文件,以便获得传送给winmain() 和messagebox() api函数的数据类型定义。
接着的pragma指令指示编译器/连接器找到user32.lib库文件并将其与产生的exe文件连接起来。
这样就可以运行简单的命令行命令cl msgbox.cpp来创建这一应用程序,如果没有pragma指令,则messagebox() api函数就成为未定义的了。
这一指令是visual studio c++ 编译器特有的。
接下来是winmain() 方法。
其中有四个由实际的低级入口点传递来的参数。
操作系统实验

操作系统实验操作系统实验是计算机科学与技术领域非常重要的一门实验课程。
通过操作系统实验,学生可以深入了解操作系统的基本原理和实践技巧,掌握操作系统的设计和开发方法。
本文将介绍操作系统实验的一般内容和实验室环境要求,并详细说明一些常见的操作系统实验内容。
一、实验内容1. 实验环境搭建:操作系统实验通常在实验室中进行。
为了完成实验,学生需要搭建一个操作系统实验环境。
实验环境通常由一个或多个计算机节点组成,每个计算机节点需要安装操作系统实验所需要的软件和驱动程序。
2. 操作系统整体结构分析:学生首先需要通过文献研究和课堂学习,了解操作系统的整体结构和基本原理。
在实验中,学生需要分析和理解操作系统的各个模块之间的功能和相互关系。
3. 进程管理实验:进程是操作系统中最基本的运行单位。
在这个实验中,学生可以通过编写程序并使用系统调用来实现进程的创建、销毁和调度。
学生需要熟悉进程状态转换和调度算法,理解进程间通信和同步机制。
4. 内存管理实验:内存管理是操作系统中非常重要的一个模块。
学生需要实现虚拟内存管理、页面置换算法以及内存分配和回收策略。
通过这个实验,学生可以深入了解虚拟内存管理的原理和实际应用。
5. 文件系统实验:文件系统是操作系统中负责管理文件和目录的模块。
在这个实验中,学生需要实现基本的文件系统功能,如文件的创建、读取和修改。
学生还可以实现进程间的文件共享和保护机制。
6. 设备管理实验:设备管理是操作系统中与硬件设备交互的一个重要模块。
在这个实验中,学生需要实现设备的初始化、打开和关闭功能。
学生还可以实现设备驱动程序,完成对硬件设备的控制。
二、实验室环境要求1. 计算机硬件:实验室需要配备一定数量的计算机节点。
每个计算机节点需要具备足够的计算能力和内存容量,以满足操作系统实验的要求。
2. 操作系统软件:实验室中的计算机节点需要安装操作系统软件,通常使用Linux或者Windows操作系统。
此外,还需要安装相关的开发工具和编程语言环境。
操作系统实验报告(进程的创建)

wait(0);printf("parent process doesn't change the glob and loc:\n");printf("glob=%d,loc=%d\n",glob,loc);exit(0);}运行结果:2、理解vofork()调用:程序代码:#include<stdio.h>#include<sys/types.h>#include<unistd.h>int glob=3;int main(void){pid_t pid;int loc=3;if((pid=vfork())<0){printf("vfork() error\n");exit(0);}else if(pid==0){glob++;loc--;printf("child process changes the glob and loc\n");exit(0);}elseprintf ("parent process doesn't change the glob and loc\n");printf("glob=%d,val=%d\n",glob,loc);}运行结果:3、给进程指定一个新的运行程序的函数exec().程序代码:printe1.c代码:#include<stdio.h>int main(int argc,char * argv[]){int n;char * * ptr;extern char * * environ;for(n=0;n<argc;n++)printf("argv[%d]:%s\n",n,argv[n]);for(ptr=environ; * ptr!=0;ptr++)printf("%s\n",* ptr);exit(0);}file4.c代码如下:#include<stdio.h>#include<sys/types.h>#include<unistd.h>#include<sys/wait.h>char * env_list[]={"USER=root","PATH=/root/",NULL};int main(){pid_t pid;if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execle("/root/print1","print1","arg1","arg2",(char *)0,env_list)<0) printf("execle error!\n");exit(0);}if((waitpid(pid,NULL,0))<0)printf("WAIT ERROR!\n");exit(0);if((pid=fork())<0){printf("fork error!\n");exit(0);}else if(pid==0){if(execlp("print1","print1","arg1",(char *)0)<0)printf("execle error!\n");exit(0);}exit(0);}运行结果:4、进程终止函数exit()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作系统实验报告
1.实验目的及要求
①了解什么是信号。
②熟悉LINUX系统中进程之间软中断通信的基本原理。
2.实验环境
VMware Workstation 12 Player
3.实验内容
①编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按ctrl+c 键),当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止:Child process 1 is killed by parent!
Child process 2 is killed by parent!
父进程等待两个子进程终止后,输出以下信息后终止:
Parent process is killed!
②程序实例
#include<stdio.h>
#include<signal.h>
#include<unistd.h>
int wait_mark;
void waiting();
void stop();
void main()
{
int p1,p2;
signal(SIGINT,stop); //signal()初始位置while((p1=fork())==-1);
if(p1>0)
{ signal(SIGINT,stop);
while((p2=fork())==-1);
if(p2>0)
{
signal(SIGINT,stop);
wait_mark=1;
waiting();
kill(p1,10);
kill(p2,12);
wait();
wait();
printf("parent process is killed!\n");
exit(0);
}
else
{
wait_mark=1;
signal(12,stop);
waiting();
lockf(1,1,0);
printf("child process 1 is killed by parent!\n");
lockf(1,0,0);
exit(0);
}
}
else
{
wait_mark=1;
signal(10,stop);
waiting();
lockf(1,1,0);
printf("child process 2 is killed by parent!\n");
lockf(1,0,0);
exit(0);
}
}
void waiting()
{
while(wait_mark!=0);
}
void stop()
{
wait_mark=0;
}
③程序结果以及分析
分析:程序执行时,首先会先在父程序中创建一个子程序,然后父程序向子程序发送一个信号(kill方法),子进程在接收到父程序发送的信号后,会在控制台打印一句话,这时因为有两个子进程接收到信号,他们都要对控制台操作,这时会发生互斥操作。
lockf(1,1,0);
printf("child process 2 is killed by parent!\n");
lockf(1,0,0);
lockf(1,1,0)和lockf(1,0,0)是分别加锁和解锁操作,再打印后子程
序会退出。
在程序中加入wait()是等待两个程序都结束了父程序在控制台打印输出。
exit(0)的作用是退出子程序。
④修改上面的程序,增加语句signal(SIGINT,SIG_IGN)和语句signal(SIGQUIT,SIG_IGN),再观察程序执行时屏幕上出现的现象,并分析其原因。
⑤示例程序
#include<stdio.h>
#include<signal.h>
#include<unistd.h>
void IntDelete();
void Int1();
void Int2();
int pid1,pid2;
int EndFlag=0;
void main()
{
int exitcode;
signal(SIGINT,SIG_IGN);
signal(SIGQUIT,SIG_IGN);
while((pid1=fork())==-1);
if(pid1==0)
{
signal(SIGUSR1,Int1);
signal(SIGINT,SIG_IGN);
pause();
}else{
while((pid2=fork())==-1);
if(pid2==0)
{
signal(SIGUSR2,Int2);
signal(SIGINT,SIG_IGN);
pause();
}else
{
signal(SIGINT,IntDelete);
waitpid(-1,&exitcode,0);
printf("parent process is killed \n");
}
}
}
void IntDelete()
{
kill(pid1,10);
kill(pid2,12);
EndFlag=1;
}
void Int1()
{
printf("child process 1 is killed by parent !\n");
exit(0);
}
void Int2()
{
printf("child process 2 is killed by parent !\n");
exit(0);
}
⑥程序分析
1.首先在主进程中创建一个子进程1,并将自定义中断信号SIGUSR1注册到函数Int1()上去,子进程1挂起并监听中断信
号,当接收到中断信号子进程1会打印一句话并退出;
2.父进程还会创建一个子进程2,并将自定义中断信号SIGUSR2注册到函数Int2()上去,子进程2挂起并监听中断信号,当接收到中断信号子进程2会打印一句话并退出;
3.父进程将中断信号SIGINT上注册到了IntDelete函数上,当父进程接收到中断后,会向两个子进程发送软中断信号,子进程接收到软中断信号后会执行响应的响应;
以下是截图:
4.实验问题
从执行结果上来看,按照程序执行的顺序是父进程先接收到中断信号那么为什么父进程反而最后打印输出?
这是因为pid_t waitpid(pid_t pid,int * status,int options);
pid=-1 等待任何子进程,相当于wait()。
5.实验总结
通过本次试验学习了解到进程如何接受中断信号,以及发出软中断信号,以及进程间的等待问题。