中考数学试卷B卷新版

合集下载

重庆市2021年中考数学试卷(B卷)及解析

重庆市2021年中考数学试卷(B卷)及解析

2021年重庆市中考数学试卷(B卷)一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二.填空题(共6小题)13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.26.△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2021年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12小题)1.5的倒数是()A.5B.C.﹣5D.﹣【分析】根据倒数的定义,可得答案.【解答】解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体【分析】根据平面与曲面的概念判断即可.【解答】解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4【分析】根据同底数幂的乘法法则计算即可.【解答】解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°【分析】根据切线的性质得到∠OAB=90°,根据直角三角形的两锐角互余计算即可.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1【分析】将a+b的值代入原式=1+(a+b)计算可得.【解答】解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5【分析】根据位似图形的概念求出△ABC与△DEF的相似比,根据相似三角形的性质计算即可.【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21【分析】根据已知图形中实心圆点的个数得出规律:第n个图形中实心圆点的个数为2n+n+2,据此求解可得.【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米【分析】过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x,利用勾股定理求出x的值,进而可得出EF与DF的长,故可得出CF的长.由矩形的判定定理得出四边形EFCM是矩形,故可得出EM=FC,CM=EF,再由锐角三角函数的定义求出AM的长,进而可得出答案.【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【解答】解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4【分析】延长BC交AE于H,由折叠的性质∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,由外角的性质可求∠AED=∠EAC,可得AC=EC,由“SAS”可证△ABC≌△EBC,可得AB=BE,∠ABC=∠EBC=45°,利用等腰直角三角形的性质和直角三角形的性质可求解.【解答】解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.【分析】过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,得到∠BHC=90°,根据勾股定理得到AE==4,根据矩形的性质得到AD=BC,根据全等三角形的性质得到BH=AE=4,求得AF=2,根据相似三角形的性质即可得到结论.【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二.填空题(共6小题)13.计算:()﹣1﹣=3.【分析】先计算负整数指数幂和算术平方根,再计算加减可得.【解答】解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)【分析】由菱形的性质可得AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,可证△BEO,△DFO是等边三角形,由等边三角形的性质可求∠EOF=60°,由扇形的面积公式和面积和差关系可求解.【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.【分析】首先确定甲乙两人的速度,求出总里程,再求出甲到达B地时,乙离B地的距离即可解决问题.【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现(50x+30y+10z),根据“第三时段返现金额比第一时段多420元”,得出z=42﹣9y,进而确定出y≤,再根据“三个时段返现总金额为2510元”,得出25x=42y﹣43,进而得出≤y≤,再将满足题意的y的知代入④,计算x,进而得出x,z,即可得出结论.【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三.解答题19.计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.【考点】4A:单项式乘多项式;4C:完全平方公式;6C:分式的混合运算.【专题】512:整式;513:分式;66:运算能力;69:应用意识.【分析】(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,【解答】解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)根据平行四边形的性质得到AB∥CD,根据平行线的性质得到∠ABC+∠BCD =180°,根据角平分线的定义得到∠BCD=2∠BCF,于是得到结论;(2)根据平行四边形的性质得到AB∥CD,AB=CD,∠BAD=∠DCB,求得∠ABE=∠CDF,根据角平分线的定义得到∠BAE=∠DCE,根据全等三角形的性质即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【考点】V5:用样本估计总体;W4:中位数;W5:众数.【专题】542:统计的应用;69:应用意识.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【解答】解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【考点】#3:数的整除性.【专题】32:分类讨论;66:运算能力.【分析】(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为a,则百位数字为a+5(0<a≤4的整数),得出百位数字和十位数字的和为2a+5,再分别取a=1,2,3,4,计算判断即可得出结论.【解答】解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.【考点】F3:一次函数的图象;F5:一次函数的性质;FD:一次函数与一元一次不等式;P5:关于x轴、y轴对称的点的坐标.【专题】533:一次函数及其应用;64:几何直观.【分析】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.【解答】解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<x<1.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.【考点】9A:二元一次方程组的应用;AD:一元二次方程的应用.【专题】523:一元二次方程及应用;69:应用意识.【分析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.【解答】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=10,答:a的值为10.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;32:分类讨论;65:数据分析观念.【分析】(1)利用直线BC的解析式求出点B、C的坐标,则y=ax2+bx+2=a(x+)(x﹣3)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,即可求解;(2)四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH,即可求解;(3)分AE是平行四边形的边、AE是平行四边形的对角线两种情况,分别求解即可.【解答】解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;。

2020年重庆市中考招生考试数学试题(B卷)(解析版)

2020年重庆市中考招生考试数学试题(B卷)(解析版)

A. 23 米
B. 24 米
C. 24.5 米
D. 25 米
2x 1 3x 2
10.若关于
x的一元一次不等式组x 2a Nhomakorabea1
的解集为 x≥5,且关于 y 的分式方程
y
y
2
2
a
y
1 有非负整数解,则符合条件的所有整数
a
的和为(

A. -1
B. -2
C. -3
D. 0
11.如图,在△ABC 中,AC= 2 2 ,∠ABC=45°,∠BAC=15°,将△ACB 沿直线 AC 翻折至△ABC 所在的平
上一动点,点 N 为平移后的抛物线上一动点.在(2)中,当四边形 BECD 的面积最大时,是否存在以 A, E,M,N 为顶点的四边形为平行四边形,若存在,直接写出点 N 的坐标;若不存在,请说明理由.
四、解答题(本大题 1 个小题,共 8 分) 26.△ABC 为等边三角形,AB=8,AD⊥BC 于点 D,E 为线段 AD 上一点,AE= 2 3 .以 AE 为边在直线 AD
4.如图,AB 是⊙O 的切线,A 为切点,连接 OA,OB,若∠B=35°,则∠AOB 的度数为( )
重庆市 2020 年初中学业水平暨高中招生考试数学试题(B 卷)
(全卷共四个大题,满分 150 分,考试时间 120 分钟)
参考公式:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为( b ,4ac b2 ),对称轴公式为 x= b .
2a 4a
2a
一、选择题(本大题 12 个小题,每小题 4 分,共 48 分)
为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为____元.

2024年重庆市中考数学试题B卷(含答案)

2024年重庆市中考数学试题B卷(含答案)

重庆市2024年初中学业水平暨高中招生考试数学试题(B卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a=++≠的顶点坐标为24,24b ac ba a⎛⎫-- ⎪⎝⎭,对称轴为2bxa=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列各数中最小的数是()A.1-B.0C.1D.2【答案】A【解析】【分析】根据正数大于0,0大于负数,即可作出判断.【详解】1-是负数,其他三个数均是非负数,故1-是最小的数;故选:A.【点睛】本题考查了有理数大小的比较:负数小于一切非负数,明确此性质是关键.2.下列标点符号中,是轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】本题考查轴对称图形的识别.解题的关键是理解轴对称的概念(如果一个平面图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴),寻找对称轴,图形两部分沿对称轴折叠后可重合.据此对各选项逐一进行判断即可.【详解】解:A.该标点符号是轴对称图形,故此选项符合题意;B.该标点符号不是轴对称图形,故此选项不符合题意;C.该标点符号不是轴对称图形,故此选项不符合题意;D .该标点符号不是轴对称图形,故此选项不符合题意.故选:A .3.反比例函数10y x =-的图象一定经过的点是()A.()1,10 B.()2,5- C.()2,5 D.()2,8【答案】B【解析】【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当1x =时,10101y =-=-,图象不经过()1,10,故A 不符合要求;当2x =-时,1052y =-=-,图象一定经过()2,5-,故B 符合要求;当2x =时,1052y =-=-,图象不经过()2,5,故C 不符合要求;当2x =时,1052y =-=-,图象不经过()2,8,故D 不符合要求;故选:B .4.如图,AB CD ∥,若1125∠=︒,则2∠的度数为()A .35︒ B.45︒ C.55︒ D.125︒【答案】C【解析】【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒-∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .5.若两个相似三角形的相似比为1:4,则这两个三角形面积的比是()A.1:2B.1:4C.1:8D.1:16【答案】D【解析】【分析】本题主要考查了相似三角形的性质,根据相似三角形的面积之比等于相似比的平方进行求解即可.【详解】解:∵两个相似三角形的相似比为1:4,∴这两个三角形面积的比是221:41:16=,故选:D .6.估计的值应在()A.8和9之间B.9和10之间C.10和11之间D.11和12之间【答案】C【解析】【分析】本题考查的是二次根式的乘法运算,无理数的估算,先计算二次根式的乘法运算,再估算即可.6=,而45<=,∴10611<<,故答案为:C7.用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是()A.20B.21C.23D.26【答案】C【解析】【分析】本题考查了图形类的规律探索,解题的关键是找出规律.利用规律求解.通过观察图形找到相应的规律,进行求解即可.【详解】解:第①个图案中有()131112+⨯-+=个菱形,第②个图案中有()132115+⨯-+=个菱形,第③个图案中有()133118+⨯-+=个菱形,第④个图案中有()1341111+⨯-+=个菱形,∴第n 个图案中有()131131n n +-+=-个菱形,∴第⑧个图案中菱形的个数为38123⨯-=,故选:C .8.如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为()A.28︒B.34︒C.56︒D.62︒【答案】B【解析】【分析】本题考查了圆周角定理,等腰三角形的性质等知识,利用圆周角定理求出COB ∠,根据等腰三角形的三线合一性质求出AOB ∠,等边对等角然后结合三角形内角和定理求解即可.【详解】解:∵28D ∠=︒,∴256BOC D ∠=∠=︒,∵OC AB ⊥,OA OB =,∴2112AOB BOC ∠=∠=︒,OAB OBA ∠=∠,∴()1180342OAB AOB ∠=︒-∠=︒,故选:B .9.如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为()A.2B.C.D.125【答案】D【解析】【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,先由正方形的性质得到904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,再证明()SAS ABE ADF △≌△得到AE AF =,进一步证明()SAS AEM AFM △≌△得到EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得()()222134x x +=+-,解方程即可得到答案.【详解】解:∵四边形ABCD 是正方形,∴904ABE ADC ADF C AB AD CD BC ====︒====∠∠∠∠,,又∵1BE DF ==,∴()SAS ABE ADF △≌△,∴AE AF =,∵AM 平分EAF ∠,∴EAM FAM ∠=∠,又∵AM AM =,∴()SAS AEM AFM △≌△,∴EM FM =,设DM x =,则14EM FM DF DM x CM CD DM x ==+=+=-=-,,在Rt CEM △中,由勾股定理得222EM CE CM =+,∴()()222134x x +=+-,解得125x =,∴125DM =,故选:D .10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是()A.0B.1C.2D.3【答案】D【解析】【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:023-+=______.【答案】3【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.12.甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.【答案】13【解析】【分析】本题考查了列表法与树状图法:画树状图展示所有9种等可能的结果数,找出甲、乙恰好游玩同一景点的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由图可知,共有9种等可能的情况,他们选择同一个景点有3种,故他们选择同一个景点的概率是:3193=,故答案为:13.13.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045︒÷︒可求得边数.【详解】解: 多边形外角和是360度,正多边形的一个外角是45︒,360458∴︒÷︒=即该正多边形的边数是8,故答案为:8.【点睛】本题主要考查了多边形外角和以及多边形的边数,解题的关键是掌握正多边形的各个内角相等,各个外角也相等.14.重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.【答案】()22001401x +=【解析】【分析】本题主要考查了一元二次方程的实际应用,设第二、第三两个季度安全运行架次的平均增长率为x ,则第二季度低空飞行航线安全运行了()2001x +架次,第三季度低空飞行航线安全运行了()22001x +架次,据此列出方程即可.【详解】解:设第二、第三两个季度安全运行架次的平均增长率为x ,由题意得,()22001401x +=,故答案为:()22001401x +=.15.如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.【答案】2【解析】【分析】本题主要考查了等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,先根据等边对等角和三角形内角和定理求出72C ABC ∠=∠=︒,再由角平分线的定义得到36ABD CBD ∠=∠=︒,进而可证明A ABD BDC C ==∠∠,∠∠,即可推出2AD BC ==.【详解】解:∵在ABC 中,AB AC =,36A ∠=︒,∴180722A C ABC ︒︒-∠∠=∠==,∵BD 平分ABC ∠,∴1362ABD CBD ABC ∠=∠=∠=︒,∴72A ABD BDC A ABD C ==+=︒=∠∠,∠∠∠∠,∴AD BD BD BC ==,,∴2AD BC ==,故答案为:2.16.若关于x 的一元一次不等式组2133423x x x a +⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.【答案】12【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集求参数,先解不等式组中的两个不等式,再根据不等式组的解集求出2a >;解分式方程得到102a y -=,再由关于y 的分式方程8122a y y y --=++的解均为负整数,推出10a <且6a ≠且a 是偶数,则210a <<且6a ≠且a 是偶数,据此确定符合题意的a 的值,最后求和即可.【详解】解:2133423x x x a +⎧≤⎪⎨⎪-<+⎩①②解不等式①得:4x ≤,解不等式②得:2x a <+,∵不等式组的解集为4x ≤,∴24a +>,∴2a >;解分式方程8122a y y y --=++得102a y -=,∵关于y 的分式方程8122a y y y --=++的解均为负整数,∴1002a -<且102a -是整数且102202a y -+=+≠,∴10a <且6a ≠且a 是偶数,∴210a <<且6a ≠且a 是偶数,∴满足题意的a 的值可以为4或8,∴所有满足条件的整数a 的值之和是4812+=.故答案为:12.17.如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.【答案】①.203##263②.83##223【解析】【分析】由直径所对的圆周角是直角得到90ADB BDC ∠=∠=︒,根据勾股定理求出4BD =,则3cos 5CD C BC ==,由切线的性质得到90ABC ∠=︒,则可证明C ABD ∠=∠,解直角三角形即可求出20cos 3BD AB ABD ==∠;连接AE ,由平行线的性质得到BAF ABE ∠=∠,再由F ADE ∠=∠,ADE ABE ∠=∠,推出F BAF ∠=∠,得到203BF AB ==,则208433DF BF BD =-=-=.【详解】解:∵AB 是O 的直径,∴90ADB BDC ∠=∠=︒,在Rt BDC中,由勾股定理得4BD ==,∴3cos 5CD C BC ==,∵BC 是O 的切线,∴90ABC ∠=︒,∴90C CBD CBD ABD +=+=︒∠∠∠∠,∴C ABD ∠=∠,在Rt △ABD 中,4203cos 35BD AB ABD ===∠;如图所示,连接AE,∵AF BE ∥,∴BAF ABE ∠=∠,∵F ADE ∠=∠,ADE ABE ∠=∠,∴F BAF ∠=∠,∴203BF AB ==,∴208433DF BF BD =-=-=;故答案为:203;83.【点睛】本题主要考查了切线的性质,同弧所对的圆周角相等,直径所对的圆周角是直角,勾股定理,解直角三角形,等腰三角形的判定等等,证明F BAF ∠=∠是解题的关键.18.一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是________.【答案】①.3456②.6273【解析】【分析】本题主要考查了新定义,根据新定义得到9a d b c +=+=,再由1b a c b -=-=可求出a 、b 、c 、d 的值,进而可得答案;先求出9999099M a b =++,进而得到()36981313F M ab cda b a ++++=++,根据()13F M ab cd++是整数,得到369813a b a ++++是整数,即3613a b ++是整数,则36a b ++是13的倍数,求出8a ≤,再按照a 从大到小的范围讨论求解即可.【详解】解:∵abcd 是一个“友谊数”,∴9a d b c +=+=,又∵1b a c b -=-=,∴45b c ==,,∴36a d ==,,∴这个数为3456;∵M abcd =是一个“友谊数”,∴100010010M a b c d=+++()10001001099a b b a=++-+-9999099a b =++,∴()11110119M F M a b ==++,∴()13F M ab cd++1111011101013a b a b c d++++++=()111101*********a b a b b a +++++-+-=12011013a b ++=1173104613a a b ++++=369813a b a ++=++,∵()13F M ab cd++是整数,∴369813a b a ++++是整数,即3613a b ++是整数,∴36a b ++是13的倍数,∵a b c d 、、、都是不为0的正整数,且9a d b c +=+=,∴8a ≤,∴当8a =时,313638a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当7a =时,283635a b ≤++≤,此时不满足36a b ++是13的倍数,不符合题意;当6a =时,253632a b ≤++≤,此时可以满足36a b ++是13的倍数,即此时2b =,则此时37d c ==,,∵要使M 最大,则一定要满足a 最大,∴满足题意的M 的最大值即为6273;故答案为:3456;6273.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.【答案】(1)42a -(2)2x x +【解析】【分析】本题主要考查了整式的混合计算,分式的混合计算∶(1)先根据单项式乘以多项式的计算法则和多项式乘以多项式的计算法则去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.【小问1详解】解:()()()312a a a a -+-+22322a a a a a =-+-+-42a =-;【小问2详解】解:22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭()()()2222222x x x x x +--+=÷--()()()22222x x x x x -=⋅-+-2x x =+.20.数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均数中位数众数七年级8687b 八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【解析】【分析】本题主要考查了中位数,众数,用样本估计总体,扇形统计图等等:(1)根据中位数和众数的定义可求出a 、b 的值,先求出把年级A 组的人数,进而可求出m 的值;(2)根据八年级学生成绩的中位数和众数都比七年级学生成绩的高即可得到结论;(3)用七年级的人数乘以七年级样本中优秀的人数占比求出七年级优秀人数,用八年级的人数乘以八年级样本中优秀的人数占比求出八年级优秀人数,再二者求和即可得到答案.【小问1详解】解:八年级C 组的人数为1020%2⨯=人,而八年级B 组有4人,则把八年级10名学生的成绩按照从低到高排列,处在第5名和第6名的成绩分别为88分,88分,∴八年级学生成绩的中位数8888882a +==;∵七年级10名学生成绩中,得分为87分的人数最多,∴七年级的众数87b =;由题意得,1041020%%100%40%10m --⨯=⨯=,∴40m =;故答案为:88;87;40;【小问2详解】解:八年级学生数学文化知识较好,理由如下:∵两个年级10名学生的平均成绩相同,但是八年级学生成绩的中位数和众数都比七年级学生成绩的高,∴八年级学生数学文化知识较好;【小问3详解】解:350040040%31010⨯+⨯=人,∴估计该校七、八年级学生中数学文化知识为“优秀”的总共有310人.21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EFAC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【解析】【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【小问1详解】解:如图所示,即为所求;【小问2详解】证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元.(2)甲每小时粉刷外墙的面积是25平方米.【解析】【分析】本题考查的是分式方程的应用,一元一次方程的应用,理解题意建立方程是解本题的关键;(1)设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,再根据总费用为15000元列方程求解即可;(2)设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;利用乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.从而建立分式方程求解即可.【小问1详解】解:设A 种外墙漆每千克的价格为x 元,则B 种外墙漆每千克的价格为()2x -元,∴()300300215000x x +-=,解得:26x =,∴224x -=,答:A 种外墙漆每千克的价格为26元,B 种外墙漆每千克的价格为24元.【小问2详解】设甲每小时粉刷外墙面积为y 平方米,则乙每小时粉刷外墙面积是45y 平方米;∴500500545y y -=,解得:25y =,经检验:25y =是原方程的根且符合题意,答:甲每小时粉刷外墙的面积是25平方米.23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y.(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)【答案】(1)()()124606063y x x y x x=<≤=<≤,(2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【解析】【分析】本题主要考查了一次函数与反比例函数综合,相似三角形的性质与判定:(1)证明APQ ABC ∽,根据相似三角形的性质得到APQABC C PQ AP C BC AB==△△,据此可得答案;(2)根据(1)所求利用描点法画出对应的函数图象并根据函数图象写出对应的函数图象的性质即可;(3)找到一次函数图象在反比例函数图象上方时自变量的取值范围即可.【小问1详解】解:∵PQ BC ∥,∴APQ ABC ∽,∴APQABC C PQ AP C BC AB==△△,∴12686y x AB y AP x ===,∴()()124606063y x x y x x =<≤=<≤,;【小问2详解】解:如图所示,即为所求;由函数图象可知,1y 随x 增大而增大,2y 随x 增大而减小;【小问3详解】解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米.1.41≈,1.73≈2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?【答案】(1)2.5千米(2)甲选择的路线较近【解析】【分析】本题主要考查了解直角三角形的实际应用:(1)过点B 作BE AC ⊥于E ,先求出45ACB ∠=︒,再解Rt ABE △得到BE =千米,进一步解Rt BCE即可得到 2.5sin BE BC BCE ==≈∠千米;(2)过点C 作CF AD ⊥于D ,先解Rt ABE △得到1AE =千米,则(1AC AE CE =+=+千米,再Rt AFC △得到12CF +=千米,32AF +=千米,最后解Rt DCF 得到36DF +=千米,333CD +=千米,即可得到33 4.033CD BC ++=+千米, 5.15AD AB +≈千米,据此可得答案.【小问1详解】解:如图所示,过点B 作BE AC ⊥于E ,由题意得,903060901575CAB ABC =︒-︒=︒=︒-︒=︒∠,∠,∴18045ACB CAB ABC ∠=︒-∠-∠=︒,在Rt ABE △中,902AEB AB =︒=∠,千米,∴cos 2cos60BE AB BAE =⋅=⋅︒=∠千米,在Rt BCE 中, 2.5sin sin 45BE BC BCE ===︒∠千米,∴BC 的长度约为2.5千米;【小问2详解】解:如图所示,过点C 作CF AD ⊥于D ,在Rt ABE △中,cos 2cos601AE AB BAE =⋅=⋅︒=∠千米,∴(13AC AE CE =+=+千米,在Rt AFC △中,(13sin 13sin 302CF AC CAF +=⋅∠=+⋅︒=千米,(33cos 13cos302AF AC CAF =⋅∠=⋅︒=千米,在Rt DCF 中,3090DCF DFC =︒=︒∠,∠,∴1333tan tan 3026DF CF DCF +=⋅=⋅︒=∠千米,13332cos cos303CF CD DCF ++===︒∠千米,∴336 4.033CD BC ++=+≈千米,33332 5.1562AD AB DF AF AB +++=++=++≈千米,∵4.03 5.15<,∴甲选择的路线较近.25.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.【答案】(1)215322y x x =--(2)52PD PE +最大值为152;()5,3P -;(3)573,4732N ⎛- ⎝⎭或131113,2⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式即可;(2)如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H ,求解223635BC =+=,可得625sin 535OB BCO BC ∠===,证明255PE PH =,设215,322P x x x ⎛⎫-- ⎪⎝⎭,2132PH x x =-+,25PD x =-,再建立二次函数求解即可;(3)由抛物线沿射线BC 方向平移5个单位,即把抛物线向左平移2个单位,再向下平移1个单位,可得新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,证明()0,1M -,可得45AMO OAM FMK ∠=∠=︒=∠,证明NMK ABC ∠=∠,如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T ,同理可得:N MT ABC '∠=∠,再进一步结合三角函数建立方程求解即可.【小问1详解】解:∵抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =,∴30522a b b a --=⎧⎪⎨-=⎪⎩,解得1252a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴215322y x x =--;【小问2详解】解:如图,延长PE 交x 轴于G ,过P 作PH y ∥轴于H,∵当2153022y x x =--=时,解得:11x =-,26x =,∴()6,0B ,当0x =时,=3y -,∴()0,3C -,∴BC ==,∴25sin 5OB BCO BC ∠===,∵PD x 轴,∴PHE BCO ∠=∠,∴25sin 5PE PHE PH ∠==,∴255PE PH =,∵()6,0B ,()0,3C -,设BC 为3y mx =-,∴630m -=,解得:12m =,∴直线BC 为:132y x =-,设215,322P x x x ⎛⎫-- ⎪⎝⎭,∴1,32H x x ⎛⎫- ⎪⎝⎭,∴2132PH x x =-+,∵抛物线215322y x x =--的对称轴为直线52x =,∴25PD x =-,∴2552512532252PD PE x x x ⎛⎫+=-+-+ ⎪⎝⎭21552x x =-+-,当55122x =-=⎛⎫⨯- ⎪⎝⎭时,52PD PE +取得最大值,最大值为152;此时()5,3P -;【小问3详解】解:∵抛物线沿射线BC方向平移个单位,即把抛物线向左平移2个单位,再向下平移1个单位,∴新的抛物线为:211722y x x =--,()3,4F -,如图,当N 在y 轴的左侧时,过N 作NK y ⊥轴于K ,∵()1,0A -,同理可得:直线AF 为=1y x --,当0x =时,1y =-,∴()0,1M -,∴45AMO OAM FMK ∠=∠=︒=∠,∵45NMF ABC ∠-∠=︒,∴4545NMK ABC ∠+︒-∠=︒,∴NMK ABC ∠=∠,∴1tan tan 2NMK ABC ∠=∠=,设211,722N n n n ⎛⎫-- ⎪⎝⎭,∴211121722NKn MK n n -==--++,解得:5732n =或5732+(舍去)∴573,42N ⎛- ⎝;如图,当N 在y 轴的右侧时,过M 作y 轴的垂线,过N '作N T '⊥过M 的垂线于T,同理可得:N MT ABC '∠=∠,设211,722N x x x ⎛-'⎫- ⎪⎝⎭,则(),1T x -,同理可得:211711222x x x --+=,∴1x =+或1,∴13112N ⎛⎫+ ⎝'⎪⎪⎭.【点睛】本题属于二次函数的综合题,难度很大,考查了待定系数法,二次函数的性质,锐角三角函数的应用,关键是做出合适的辅助线进行转化,清晰的分类讨论是解本题的关键.26.在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:2AM CN BD =+;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.【答案】(1)证明见解析(2)证明见解析(3)2++【解析】【分析】(1)证明()ASA ACE CBD ≌得到BD CE =,再由点E 是BC 的中点,得到22BC CE BD ==,即可证明2AC BD =;(2)如图所示,过点G 作GH AB ⊥于H ,连接HF ,先证明()AAS AGF DBF ≌,得到AG BD =,BF GF =,再证明AHG 是等腰直角三角形,得到2222AH AG ==;由直角三角形斜边上的中线的性质可得12FH FC BF BG ===,则FBH FHB FBC FCB ==∠∠,∠∠,进而可证明290HFC ABC ==︒∠∠,则HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,可得135HMF BFM FBM x =+=︒-∠∠∠由角平分线的定义可得1452GCN ACB ==︒∠∠,则可证明HMF CNF =∠∠,进而证明()AAS HFM CFN ≌,得到HM CN =,即可证明22AM BD CN =+;(3)如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,则四边形BCHD 是矩形,可得BC DH AC ==,证明FDH △是等边三角形,得到60DFH FDH ==︒∠∠,进而得到30BDA DAH ==︒∠∠,30FHA FAH ==︒∠∠;由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,证明()SAS DFQ HFP ≌,得到30FDQ FHP ==︒∠∠,则点Q 在直线DQ 上运动,设直线DQ 交FH 于K ,则113022DK FH FK FH FDK FDH ===︒⊥,,∠,可得60BDQ ∠=︒,由垂线段最短可知,当BQ DQ ⊥时,BQ 有最小值,则30DBQ ∠=︒,设6AC DH a ==,则AH ==6BD CH a ==-,则3DQ a =-,9BQ a =-;再求出3FK a =,则DK =,3QK DK DQ a =-=,由勾股定理得FQ =;由全等三角形的性质可得3PH DQ a ==-,则3CP a =-;由折叠的性质可得9TQ BQ a ==-,由FT FQ TQ ≤+,得到当点Q 在线段FT 上时,FT CP 此时有最大值,最大值为FQ TQ CP+,据此代值计算即可.【小问1详解】证明:∵90ACB ∠=︒,BD AC ∥,∴18090CBD ACB ∠∠︒︒=-=,∵AE CD ⊥,∴90ACD CAE ∠+∠=︒,∵90ACD BCD ∠+∠=︒,∴CAE BCD ∠=∠,又∵90AC CB CBD ACE ===︒,∠∠,∴()ASA ACE CBD ≌,∴BD CE =,∵点E 是BC 的中点,∴22BC CE BD ==,∴2AC BD =;【小问2详解】证明:如图所示,过点G 作GH AB ⊥于H ,连接HF ,∵BD AC ∥,∴FBD FGA D FAG ==∠∠,∠∠,∵点F 是AD 的中点,∴AF DF =,∴()AAS AGF DBF ≌,∴AG BD =,BF GF =,∵90AC BC ACB =∠=︒,,∴45CAB ACB ∠=∠=︒,∵GH AH ⊥,∴AHG 是等腰直角三角形,∴2222AH AG BD ==;∵90BHG BCG BF GF ==︒=∠∠,,∴12FH FC BF BG ===,∴FBH FHB FBC FCB ==∠∠,∠∠,∴22GFH FBH FHB FBH GFC FBC FCB FBC =+==+=∠∠∠∠,∠∠∠∠,∴22290HFC GFH GFC FBH FBC ABC =+=+==︒∠∠∠∠∠∠,∵FM BG ⊥,∴90BFM ∠=︒,∴HFM CFN =∠∠;设CBG x ∠=,则4590ABG x CGB x =︒-=︒-∠,∠,∴135HMF BFM FBM x =+=︒-∠∠∠,∵CN 平分ACB ∠,∴1452GCN ACB ==︒∠,∴135CNF CGN GCN x =+=︒-∠∠∠,∴HMF CNF =∠∠,∴()AAS HFM CFN ≌,∴HM CN =,∵AM AH HM =+,∴22AM BD CN =+;【小问3详解】解:如图所示,过点D 作DH AC ⊥交AC 延长线与H ,连接FH ,∵90BD AC ACB =︒∥,∠,∴90BCH CBD ==︒∠∠,∵DH AC ⊥,∴四边形BCHD 是矩形,∴BC DH AC ==,∵点F 是AD 的中点,且AF AC =,∴2222AD AF DH FH DF ====,∴FDH △是等边三角形,∴60DFH FDH ==︒∠∠,∴30BDA DAH ==︒∠∠,∴30FHA FAH ==︒∠∠,由旋转的性质可得60FQ FP PFQ DFH ==︒=,∠∠,∴DFQ HFP =∠∠,。

2022年重庆市中考数学试卷(b卷)(解析版)

2022年重庆市中考数学试卷(b卷)(解析版)

2022年重庆市中考数学试卷(B卷)一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:96.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.97.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=6259.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB 的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.311.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.2012.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为.(结果保留π)16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CF A(AAS).同理可得:④.S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=,b=,c=.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快(接送游客上下船的时间忽略不计)艇能否在5分钟内将该游客送上救援船?请说明理由.23.(10分)(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b >c.在a,b,c中任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若为整数,求出满足条件的所有数A.24.(10分)(2022•重庆)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3).(1)求抛物线的函数表达式;(2)点P为直线AB上方抛物线上一动点,过点P作PQ⊥x轴于点Q,交AB于点M,求PM+AM的最大值及此时点P的坐标;(3)在(2)的条件下,点P′与点P关于抛物线y=﹣x2+bx+c的对称轴对称.将抛物线y=﹣x2+bx+c向右平移,使新抛物线的对称轴l经过点A.点C在新抛物线上,点D在l上,直接写出所有使得以点A、P′、C、D为顶点的四边形是平行四边形的点D的坐标,并把求其中一个点D的坐标的过程写出来.25.(10分)(2022•重庆)在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.2022年重庆市中考数学试卷(B卷)参考答案与试题解析一.选择题(共12个小题,每小题4分,共48分)在每个小题的下面,都给出了序号为A、B、C、D的四个选项,其中只有一个正确的,请将答题卡上题号右侧的正确答案所对应的方框涂黑.1.(4分)(2022•重庆)﹣2的相反数是()A.﹣2B.2C.﹣D.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2022•重庆)下列北京冬奥会运动标识图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.是轴对称图形,故此选项符合题意;D.不是轴对称图形,故此选项不合题意.故选:C.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2022•重庆)如图,直线a∥b,直线m与a,b相交,若∠1=115°,则∠2的度数为()A.115°B.105°C.75°D.65°【分析】根据平行线的性质,可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=115°,∴∠2=115°,故选:A.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)(2022•重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为()A.3时B.6时C.9时D.12时【分析】直接由图形可得出结果.【解答】解:由图形可知,在这一时段内心跳速度最快的时刻约为9时,故选:C.【点评】本题主要考查了折线统计图的意义,理解横纵轴表示的意义是解题的关键.5.(4分)(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2B.1:4C.1:3D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.【点评】本题考查了位似三角形的性质,明确两三角形位似,周长比等于相似比是解题的关键.6.(4分)(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【分析】根据前面三个图案中菱形的个数,得出规律,第n个图案中菱形有(2n﹣1)个,从而得出答案.【解答】解:由图形知,第①个图案中有1个菱形,第②个图案中有3个菱形,即1+2=3,第③个图案中有5个菱形即1+2+2=5,……则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,∴第⑥个图案中有2×6﹣1=11个菱形,故选:C.【点评】本题主要考查了图形的变换规律,归纳出第n个图案中菱形的个数为2n﹣1,是解题的关键.,体现了从特殊到一般的数学思想.7.(4分)(2022•重庆)估计﹣4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【分析】用夹逼法估算无理数的大小即可得出答案.【解答】解:∵49<54<64,∴7<<8,∴3<﹣4<4,故选:D.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.(4分)(2022•重庆)学校连续三年组织学生参加义务植树,第一年共植树400棵,第三年共植树625棵.设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1﹣x)2=400B.400(1+x)2=625C.625x2=400D.400x2=625【分析】第三年的植树量=第一年的植树量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:根据题意得:400(1+x)2=625,故选:B.【点评】考查列一元二次方程解决实际问题,读懂题意,找到等量关系列方程是解决本题的关键.9.(4分)(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠F AO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠F AO=∠EOB=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.10.(4分)(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.3【分析】连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC=PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tan P=求出⊙O的半径r即可得出答案.【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90°+x=180°,∴x=30°,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.故选:D.【点评】本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P=30°是解题的关键.11.(4分)(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是()A.13B.15C.18D.20【分析】解分式方程得得出x=a﹣2,结合题意及分式方程的意义求出a>2且a≠5,解不等式组得出,结合题意得出a≤7,进而得出2<a≤7且a≠5,继而得出所有满足条件的整数a的值之和,即可得出答案.【解答】解:解分式方程得:x=a﹣2,∵x>0且x≠3,∴a﹣2>0且a﹣2≠3,∴a>2且a≠5,解不等式组得:,∵不等式组的解集为y≥5,∴<5,∴a<7,∴2<a<7且a≠5,∴所有满足条件的整数a的值之和为3+4+6=13,故选:A.【点评】本题考查了分式方程的解,解一元一次不等式组,解一元一次不等式,一元一次不等式的整数解,正确求解分式方程,一元一次不等式组,一元一次不等式是解决问题的关键.12.(4分)(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y ﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3【分析】根据括号前是“+”,添括号后,各项的符号都不改变判断①;根据相反数判断②;通过例举判断③.【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z﹣m﹣n,故①符合题意;②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;③第1种:结果与原多项式相等;第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;正确的个数为3,故选:D.【点评】本题考查了整式的加减,解题的关键是注意可以添加1个括号,也可以添加2个括号.二.填空题(共4个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)(2022•重庆)|﹣2|+(3﹣)0=3.【分析】根据绝对值的性质和零指数幂的性质计算可得答案.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查实数的运算,熟练掌握实数的运算性质是解题关键.14.(4分)(2022•重庆)在不透明的口袋中装有2个红球,1个白球,它们除颜色外无其他差别,从口袋中随机摸出一个球后,放回并摇匀,再随机摸出一个球,两次摸出的球都是红球的概率为.【分析】画树状图,共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,再由概率公式求解即可.【解答】解:画树状图如下:共有9种等可能的结果,其中两次摸出的球都是红球的结果有4种,∴两次摸出的球都是红球的概率为,故答案为:.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2022•重庆)如图,在矩形ABCD中,AB=1,BC=2,以B为圆心,BC的长为半径画弧,交AD于点E.则图中阴影部分的面积为π.(结果保留π)【分析】先根据锐角三角函数求出∠AEB=30°,再根据扇形面积公式求出阴影部分的面积.【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB==,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S==π,故答案为:π.【点评】本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.16.(4分)(2022•重庆)特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1:3:2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为4:3.【分析】先根据比例设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由三种特产的总利润是总成本的25%列方程可得=,从而解答此题.【解答】解:设该店五月份销售桃片、米花糖、麻花的数量分别为x,3x,2x,每包麻花的成本为y元,每包米花糖的成本为a元,则每包桃片的成本是2y元,由题意得:20%•2y•x+30%•a•3x+20%•y•2x=25%(2xy+3ax+2xy),15a=20y,∴=,则每包米花糖与每包麻花的成本之比为4:3.故答案为:4:3.【点评】本题考查三元高次方程的应用,解本题要理解题意,通过找出等量关系即可求解.三.解答题(共2个小题,每小题8分,共16分)17.(8分)(2022•重庆)计算:(1)(x+y)(x﹣y)+y(y﹣2);(2)(1﹣)÷.【分析】(1)根据平方差公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)(x﹣y)+y(y﹣2)=x2﹣y2+y2﹣2y=x2﹣2y;(2)原式=÷=•=.【点评】本题考查分式的混合运算、平方差公式和单项式乘多项式,解答本题的关键是明确它们各自的计算方法.18.(8分)(2022•重庆)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S=ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CF A中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①∠ADC=∠F.∵EF∥BC,∴②∠1=∠2.又∵③AC=AC,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS).S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.【分析】根据矩形的性质、垂直的定义得出∠F=∠ADC=90°,再根据EF∥BC,推出∠1=∠2,进而证明△ADC≌△CF A(AAS),同理可得:④△ADB≌△BEA(AAS),最后得出三角形的面积公式为S=ah.【解答】证明:∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴∠ADC=∠F,∵EF∥BC,∴∠1=∠2,∵AC=AC,在△ADC与△CF A中,∴△ADC≌△CF A(AAS).同理可得:④△ADB≌△BEA(AAS),∴S△ABC=S△ADC+S△ABD=S矩形ADCF+S矩形AEBD=S矩形BCFE=ah.故答案为:①∠ADC=∠F,②∠1=∠2,③AC=AC,④△ADB≌△BEA(AAS).【点评】本题主要考查了基本作图、全等三角形、矩形的判定与性质,掌握5种基本作图,全等三角形、矩形的判定与性质的应用,其中全等的证明是解题关键.三.解答题(共7个小题,每小题10分,共70分)19.(10分)(2022•重庆)在“世界读书日”到来之际,学校开展了课外阅读主题周活动,活动结束后,经初步统计,所有学生的课外阅读时长都不低于6小时,但不足12小时,从七,八年级中各随机抽取了20名学生,对他们在活动期间课外阅读时长(单位:小时)进行整理、描述和分析(阅读时长记为x,6≤x<7,记为6;7≤x<8,记为7;8≤x<9,记为8;…以此类推),下面分别给出了抽取的学生课外阅读时长的部分信息,七年级抽取的学生课外阅读时长:6,7,7,7,7,8,8,8,8,8,8,8,9,9,9,9,9,10,10,11,七、八年级抽取的学生课外阅读时长统计表年级七年级八年级平均数8.38.3众数a9中位数8b 8小时及以上所占百分比75%c根据以上信息,解答下列问题:(1)填空:a=8,b=8.5,c=65%.(2)该校七年级有400名学生,估计七年级在主题周活动期间课外阅读时长在9小时及以上的学生人数.(3)根据以上数据,你认为该校七,八年级学生在主题周活动中,哪个年级学生的阅读积极性更高?请说明理由.(写出一条理由即可)【分析】(1)根据众数的定义可求出七年级学生的课外阅读时长的众数,即a的值;根据中位数的定义可求出八年级学生的课外阅读时长的中位数,即b的值,根据频率=可求出八年级学生的课外阅读时长在8小时及以上所占百分比,即C的值;(2)求出样本中七年级学生课外阅读时长在9小时及以上的学生所占的百分比,即可估计总体中所占的百分比,进而求出相应人数;(3)由中位数、众数的比较得出结论.【解答】解:(1)七年级学生的课外阅读时长出现次数最多的是8小时,因此七年级学生的课外阅读时长的众数是8小时,即a=8;将八年级学生的课外阅读时长从小到大排列,处在中间位置的两个数的平均数为=8.5,因此中位数是8.5小时,即b=8.5;c=×100%=65%,故答案为:8,8.5,65%;(2)400×=160(人),答:七年级在主题周活动期间课外阅读时长在9小时及以上的大约有160人;(3)八年级参与的积极性更高,理由:八年级学生课外阅读时长的中位数,众数均比七年级的高.【点评】本题考查中位数、众数、平均数以及样本估计总体,理解中位数、众数的定义是正确解答的前提.20.(10分)(2022•重庆)反比例函数y=的图象如图所示,一次函数y=kx+b(k≠0)的图象与y=的图象交于A(m,4),B(﹣2,n)两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出该函数的图象;(2)观察图象,直接写出不等式kx+b<的解集;(3)一次函数y=kx+b的图象与x轴交于点C,连接OA,求△OAC的面积.【分析】(1)将A,B两坐标先代入反比例函数求出m,n,然后由待定系数法求函数解析式.(2)根据直线在曲线下方时x的取值范围求解.(3)由直线解析式求得C点的坐标,然后根据三角形面积公式即可求解.【解答】解:(1)∵(m,4),(﹣2,n)在反比例函数y=的图象上,∴4m=﹣2n=4,解得m=1,n=﹣2,∴A(1,4),B(﹣2,﹣2),把(1,4),(﹣2,﹣2)代入y=kx+b中得,解得,∴一次函数解析式为y=2x+2.画出函数y=2x+2图象如图;(2)由图象可得当0<x<1或x<﹣2时,直线y=﹣2x+6在反比例函数y=图象下方,∴kx+b<的解集为x<﹣2或0<x<1.(3)把y=0代入y=2x+2得0=2x+2,解得x=﹣1,∴点C坐标为(﹣1,0),∴S△AOC==2.【点评】本题考查反比例函数与一次函数的交点问题,解题关键是掌握函数与方程及不等式的关系.21.(10分)(2022•重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【分析】(1)根据题意可知:甲原来工作5天的工作量+后来2天的工作量=600,可以列出相应的方程,然后求解即可;(2)根据题意可知:甲、乙施工的长度都是900米,再根据题意可知,两个工程队施工天数相同,即可列出相应的分式方程,然后求解即可,注意分式方程要检验.【解答】解:(1)设甲施工队增加人员后每天修建灌溉水渠x米,则原计划每天施工(x ﹣20)米,由题意可得:5(x﹣20)+2x=600,解得x=100,答:甲施工队增加人员后每天修建灌溉水渠100米;(2)设乙施工队原来每天修建灌溉水渠m米,则技术更新后每天修建水渠m(1+20%)=1.2m米,由题意可得:,解得m=90,经检验,m=90是原分式方程的解,答:乙施工队原来每天修建灌溉水渠90米.【点评】本题考查一元一次方程的应用、分式方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程和一元一次方程.22.(10分)(2022•重庆)湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B 点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C 在A的北偏东30°方向上,B在A的北偏东60°方向上,且在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:≈1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快。

2020年重庆市中考数学试卷(b卷)含答案解析

2020年重庆市中考数学试卷(b卷)含答案解析

2020年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的倒数是()A.5B.C.﹣5D.﹣2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体3.计算a•a2结果正确的是()A.a B.a2C.a3D.a44.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣16.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.011.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:()﹣1﹣=.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.20.(10分)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的倒数是()A.5B.C.﹣5D.﹣解:5得倒数是,故选:B.2.围成下列立体图形的各个面中,每个面都是平的是()A.长方体B.圆柱体C.球体D.圆锥体解:A、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选:A.3.计算a•a2结果正确的是()A.a B.a2C.a3D.a4解:a•a2=a1+2=a3.故选:C.4.如图,AB是⊙O的切线,A为切点,连接OA,OB.若∠B=35°,则∠AOB的度数为()A.65°B.55°C.45°D.35°解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故选:B.5.已知a+b=4,则代数式1++的值为()A.3B.1C.0D.﹣1解:当a+b=4时,原式=1+(a+b)=1+×4=1+2=3,故选:A.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:5解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故选:C.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.2解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故选:B.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.21解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故选:C.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故选:D.10.若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1B.﹣2C.﹣3D.0解:不等式组整理得:,由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.11.如图,在△ABC中,AC=2,∠ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A.B.3C.2D.4解:如图,延长BC交AE于H,∵∠ABC=45°,∠BAC=15°,∴∠ACB=120°,∵将△ACB沿直线AC翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=AC=,AH=CH=,∴AE=2,∵AB=BE,∠ABE=90°,∴BE==2,故选:C.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为()A.B.8C.10D.解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∵点D(﹣2,3),AD=5,∴DE=3,∴AE==4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠P AO=∠BAF+∠P AO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴,∴=,∴BF=,∴B(4,),∴k=,故选:D.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:()﹣1﹣=3.解:原式=5﹣2=3,故答案为:3.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为9.4×107.解:94000000=9.4×107,故答案为:9.4×107.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为3﹣π.(结果保留π)解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2,∠ABD=∠ADB=60°,∴BO=DO=,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(×12﹣×3﹣×3﹣)=3﹣π,故答案为:3﹣π.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚12分钟到达B地.解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250×=400(米/分).由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴=12(分钟).故答案为12.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为1230元.解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤,∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=④,∵x为非负整数,∴≥0,∴y≥,∴≤y≤,∵y为非负整数,∴y=2,34,当y=2时,x=,不符合题意,当y=3时,x=,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)(x+y)2+y(3x﹣y);(2)(+a)÷.解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)(+a)÷,=(+)×,=×,=﹣.20.(10分)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=,∠DCF=,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.47.4中位数a b众数7c合格率85%90%根据以上信息,解答下列问题:(1)填空:a=7.5,b=8,c=8;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.解:(1)由图表可得:a==7.5,b==8,c=8,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.解:(1)x=﹣3、0分别代入y=﹣,得a=﹣=﹣,b=﹣=﹣6,故答案为﹣,﹣6;画出函数的图象如图:,故答案为﹣,﹣6;(2)根据函数图象:①函数y=﹣的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)由图象可知:不等式﹣<﹣x﹣的解集为x<﹣4或﹣2<1.24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a=0.1,答:a的值为0.1.25.(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.解:(1)直线BC的解析式为y=﹣x+2,令y=0,则x=3,令x=0,则y=2,故点B、C的坐标分别为(3,0)、(0,2);则y=ax2+bx+2=a(x+)(x﹣3)=a(x2﹣2x﹣6)=ax2﹣2a﹣6a,即﹣6a=2,解得:a=,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=﹣(x+)②,联立①②并解得:x=4,故点D(4,﹣),由点C、D的坐标得,直线CD的表达式为:y=﹣x+2,当x=3时,y BC=﹣x+2=﹣2,即点H(3,﹣2),故BH=2,设点E(x,﹣x2+x+2),则点F(x,﹣x+2),则四边形BECD的面积S=S△BCE+S△BCD=×EF×OB+×(x D﹣x C)×BH=×(﹣x2+x+2+x﹣2)×3+×4×2=﹣x2+3x+4,∵<0,故S有最大值,当x=时,S的最大值为,此时点E(,);(3)存在,理由:y=﹣x2+x+2=﹣(x)2+,抛物线y=ax2+bx+2(a≠0)向左平移个单位,则新抛物线的表达式为:y=﹣x2+,点A、E的坐标分别为(﹣,0)、(,);设点M(,m),点N(n,s),s =﹣n2+;①当AE是平行四边形的边时,点A向右平移个单位向上平移个单位得到E,同样点M(N)向右平移个单位向上平移个单位得到N(M),即±=n,则s=﹣n2+=﹣或,故点N的坐标为(,﹣)或(﹣,);②当AE是平行四边形的对角线时,由中点公式得:﹣+=n+,解得:n=﹣,s=﹣n2+=,故点N的坐标(﹣,);综上点N的坐标为:(,﹣)或(﹣,)或(﹣,).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)△ABC为等边三角形,AB=8,AD⊥BC于点D,E为线段AD上一点,AE=2.以AE为边在直线AD右侧构造等边三角形AEF,连接CE,N为CE的中点.(1)如图1,EF与AC交于点G,连接NG,求线段NG的长;(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α,M为线段EF的中点,连接DN,MN.当30°<α<120°时,猜想∠DNM的大小是否为定值,并证明你的结论;(3)连接BN,在△AEF绕点A逆时针旋转过程中,当线段BN最大时,请直接写出△ADN的面积.解:(1)如图1中,连接BE,CF.∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∴AD=BD=4,∵AE=2,∴DE=AE=2,∴BE===2,∵△ABC,△AEF答等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EN=CN,EG=FG,∴GN=CF=.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECM,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠ACB,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACN+∠ECM=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=,∵BJ=AD=4,∴BN≤BJ+JN,∴BN≤5,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=,JN=,∴KN=,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=×=,∴S△ADN=•AD•NH=×4×=7.。

安徽省芜湖市2021版中考数学试卷B卷(新版)

安徽省芜湖市2021版中考数学试卷B卷(新版)

安徽省芜湖市2021版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016七上·端州期末) 下列各组数中,互为相反数的是()A . -(-1)与1B . (-1)2与1C . 与1D . -12与12. (2分) (2020七上·吉州期末) 年年底通车的吉安西站,它的修建可以促进原中央苏区的振兴发展和吉泰走廊的建设发展,预计总投资约亿元,亿用科学记数法可表示为()A .B .C .D .3. (2分) (2019·成都模拟) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,∠ADE=35°,∠C=120°,则∠A为()A . 60°B . 45°C . 35°D . 25°4. (2分)(2020·襄州模拟) 下列各式计算正确的是()A . x2+x2=2x4B . (2x2)3=6x6C . x6÷x2=x3D . x•x2=x35. (2分)(2019·秦安模拟) 一组数据、、、、;它们的平均数为,则这组数据的方差为()A .B .C .D .6. (2分)超市货架上摆放着一些桶装红烧牛肉方便面,它们的三视图如图所示,则货架上的红烧牛肉方便面至多有()桶.A . 8B . 9C . 10D . 117. (2分)(2017·海口模拟) 如图,在菱形ABCD中,AC=4,BD=6,P是BD上的任意一点,过点P作EF∥AC,与菱形的两条边分别交于点E、F.设BP=x,EF=y,则下列图象能大致反映y与x的函数关系的是()A .B .C .D .8. (2分)如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A . (1,3)B . (4,3)C . (1,4)D . (2,4)9. (2分) (2017八下·河北期末) 下列计算结果正确的是()A . + =B . 3 ﹣ =3C . × =D . =510. (2分)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0, ②a+b+c>0, ③当﹣2<x<0时,y<0.正确的个数是()A . 0个B . 1个C . 2个D . 3个二、填空题 (共5题;共5分)11. (1分)(2020·麻城模拟) 计算: ________.12. (1分) (2019九上·宁波期末) 如图,,,是上三点,若,的半径为2,则劣弧的长为________.13. (1分)(2019·石景山模拟) 我国古代数学著作《算法统宗》中记载了“绳索量竿”问题,其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索和竿的长度.设绳索长x尺,竿长y尺,可列方程组为________.14. (1分)(2017·苍溪模拟) 如图,在平面直角坐标系xOy中,平行四边形OABC的顶点A,B的坐标分别为(6,0),(7,3),将平行四边形OABC绕点O逆时针方向旋转得到平行四边形OA′B′C′,当点C′落在BC的延长线上时,线段OA′交BC于点E,则线段C′E的长度为________.15. (1分) (2019八上·郑州开学考) 如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.三、解答题 (共7题;共57分)16. (5分) (2018八上·新乡期末) 解分式方程:17. (10分) (2019九上·南关期中) 已知关于x的方程.(1)若此方程的一个根为,求k的值.(2)求证:不论k取何实数,此方程都有两个不相等的实数根.18. (8分) (2016八上·河源期末) 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是________;(2)这次调查获取的样本数据的中位数是________;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有________人.19. (10分)(2014·贺州) 如图,一艘海轮在A点时测得灯塔C在它的北偏东42°方向上,它沿正东方向航行80海里后到达B处,此时灯塔C在它的北偏西55°方向上.(1)求海轮在航行过程中与灯塔C的最短距离(结果精确到0.1);(2)求海轮在B处时与灯塔C的距离(结果保留整数).(参考数据:sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)20. (10分)(2018·贵阳) 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.21. (11分)(2019·润州模拟) 某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现原来买这批牛肉32千克的钱,现在可买33千克.(1)现在实际购进这批牛肉每千克多少元?(2)若这批牛肉的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.求y与x之间的函数关系式;(3)这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)22. (3分) (2019七下·梅江月考) 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02 , 12=42﹣22 , 20=62﹣42 ,因此4,12,20都是“神秘数”(1) 28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共57分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、第11 页共11 页。

2020年重庆市中考数学试卷(B卷)及答案 (解析版)

2020年重庆市中考数学试卷(B卷)及答案 (解析版)

2020年重庆市中考数学试卷(B 卷)一、选择题(共12小题). 1.(4分)5的倒数是( ) A .5B .15C .5-D .15-2.(4分)围成下列立体图形的各个面中,每个面都是平的是( )A .长方体B .圆柱体C .球体D .圆锥体3.(4分)计算2a a 结果正确的是( ) A .aB .2aC .3aD .4a4.(4分)如图,AB 是O 的切线,A 为切点,连接OA ,OB .若35B ∠=︒,则AOB ∠的度数为( )A .65︒B .55︒C .45︒D .35︒5.(4分)已知4a b +=,则代数式122a b++的值为( ) A .3B .1C .0D .1-6.(4分)如图,ABC ∆与DEF ∆位似,点O 为位似中心.已知:1:2OA OD =,则ABC ∆与DEF ∆的面积比为( )A.1:2B.1:3C.1:4D.1:57.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A.5B.4C.3D.28.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为()A.18B.19C.20D.219.(4分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE 方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43︒,悬崖BC的高为144.5米,斜坡DE的坡度(或坡比)1:2.4i=,则信号塔AB的高度约为()(参考数据:sin430.68︒≈︒≈,tan430.93)︒≈,cos430.73A.23米B.24米C.24.5米D.25米10.(4分)若关于x 的一元一次不等式组213(2),12x x x a --⎧⎪⎨->⎪⎩的解集为5x ,且关于y 的分式方程122y ay y+=---有非负整数解,则符合条件的所有整数a 的和为( )A .1-B .2-C .3-D .011.(4分)如图,在ABC ∆中,22AC =,45ABC ∠=︒,15BAC ∠=︒,将ACB ∆沿直线AC 翻折至ABC ∆所在的平面内,得ACD ∆.过点A 作AE ,使DAE DAC ∠=∠,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A .6B .3C .23D .412.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点(2,3)D -,5AD =,若反比例函数(0,0)ky k x x=>>的图象经过点B ,则k 的值为( )A .163B .8C .10D .323二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:11()45-= .14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为 .15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,120ABC∠=︒,23AB=,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留)π17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚分钟到达B地.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为元.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算: (1)2()(3)x y y x y ++-;(2)22416()11a a a a a --+÷--. 20.(10分)如图,在平行四边形ABCD 中,AE ,CF 分别平分BAD ∠和DCB ∠,交对角线BD 于点E ,F .(1)若60BCF ∠=︒,求ABC ∠的度数; (2)求证:BE DF =.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10. 七、八年级抽取的学生的竞赛成绩统计表年级 七年级 八年级 平均数 7.4 7.4 中位数 ab 众数 7 c合格率85%90%根据以上信息,解答下列问题:(1)填空:a = ,b = ,c = ;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数-- “好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且426+=,6能被6整除; 643不是“好数”,因为6410+=,10不能被3整除. (1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122y x =-+的图象并探究该函数的性质. x⋯ 4- 3- 2- 1- 0 1 2 3 4 ⋯ y⋯23- a2-4-b4-2-1211-23- ⋯(1)列表,写出表中a ,b 的值:a = ,b = ; 描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“⨯”作答): ①函数2122y x =-+的图象关于y 轴对称; ②当0x =时,函数2122y x =-+有最小值,最小值为6-; ③在自变量的取值范围内函数y 的值随自变量x 的增大而减小.(3)已知函数21033y x =--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233x x -<--+的解集.24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A ,B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元. (1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨%a ,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收入将增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(2-,0),直线BC 的解析式为223y =+. (1)求抛物线的解析式;(2)过点A 作//AD BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线22(0)y ax bx a =++≠向左平移2个单位,已知点M 为抛物线22(0)y ax bx a =++≠的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)ABC ∆为等边三角形,8AB =,AD BC ⊥于点D ,E 为线段AD 上一点,23AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将AEF ∆绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想DNM ∠的大小是否为定值,并证明你的结论;(3)连接BN ,在AEF ∆绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出ADN ∆的面积.2020年重庆市中考数学试卷(B 卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分)5的倒数是( ) A .5B .15C .5-D .15-解:5得倒数是15,故选:B .2.(4分)围成下列立体图形的各个面中,每个面都是平的是( )A .长方体B .圆柱体C .球体D .圆锥体解:A 、六个面都是平面,故本选项正确; B 、侧面不是平面,故本选项错误; C 、球面不是平面,故本选项错误;D 、侧面不是平面,故本选项错误;故选:A .3.(4分)计算2a a 结果正确的是( ) A .aB .2aC .3aD .4a解:2123a a a a +==. 故选:C .4.(4分)如图,AB 是O 的切线,A 为切点,连接OA ,OB .若35B ∠=︒,则AOB ∠的度数为( )A .65︒B .55︒C .45︒D .35︒解:AB 是O 的切线,OA AB ∴⊥, 90OAB ∴∠=︒,9055AOB B ∴∠=︒-∠=︒,故选:B .5.(4分)已知4a b +=,则代数式122a b++的值为( ) A .3B .1C .0D .1-解:当4a b +=时, 原式11()2a b =++1142=+⨯12=+ 3=,故选:A .6.(4分)如图,ABC ∆与DEF ∆位似,点O 为位似中心.已知:1:2OA OD =,则ABC ∆与DEF ∆的面积比为( )A .1:2B .1:3C .1:4D .1:5解:ABC ∆与DEF ∆是位似图形,:1:2OA OD =,ABC ∴∆与DEF ∆的位似比是1:2.ABC ∴∆与DEF ∆的相似比为1:2,ABC ∴∆与DEF ∆的面积比为1:4,故选:C .7.(4分)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为( )A .5B .4C .3D .2解:设还可以买x 个作业本,依题意,得:2.27640x ⨯+, 解得:1410x . 又x 为正整数,x ∴的最大值为4.故选:B .8.(4分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A .18B .19C .20D .21解:第①个图形中实心圆点的个数5213=⨯+,第②个图形中实心圆点的个数8224=⨯+,第③个图形中实心圆点的个数11235=⨯+,⋯⋯∴第⑥个图形中实心圆点的个数为26820⨯+=,故选:C .9.(4分)如图,垂直于水平面的5G 信号塔AB 建在垂直于水平面的悬崖边B 点处,某测量员从山脚C 点出发沿水平方向前行78米到D 点(点A ,B ,C 在同一直线上),再沿斜坡DE 方向前行78米到E 点(点A ,B ,C ,D ,E 在同一平面内),在点E 处测得5G 信号塔顶端A 的仰角为43︒,悬崖BC 的高为144.5米,斜坡DE 的坡度(或坡比)1:2.4i =,则信号塔AB 的高度约为( )(参考数据:sin 430.68︒≈,cos 430.73︒≈,tan 430.93)︒≈A .23米B .24米C .24.5米D .25米解:过点E 作EF DC ⊥交DC 的延长线于点F ,过点E 作EM AC ⊥于点M ,斜坡DE 的坡度(或坡比)1:2.4i =,78BE CD ==米,∴设EF x =,则 2.4DF x =.在Rt DEF ∆中,222EF DF DE +=,即222(2.4)78x x +=,解得30x =,30EF ∴=米,72DF =米,7278150CF DF DC ∴=+=+=米.EM AC ⊥,AC CD ⊥,EF CD ⊥,∴四边形EFCM 是矩形,150EM CF ∴==米,30CM EF ==米.在Rt AEM ∆中,43AEM ∠=︒,tan 431500.93139.5AM EM ∴=︒≈⨯=米,139.530169.5AC AM CM ∴=+=+=米.169.5144.525AB AC BC ∴=-=-=米.故选:D .10.(4分)若关于x 的一元一次不等式组213(2),12x x x a --⎧⎪⎨->⎪⎩的解集为5x ,且关于y 的分式方程122y a y y+=---有非负整数解,则符合条件的所有整数a 的和为( ) A .1- B .2- C .3- D .0解:不等式组整理得:52x x a ⎧⎨>+⎩, 由解集为5x ,得到25a +,即3a ,分式方程去分母得:2y a y -=-+,即22y a -=,解得:12a y =+, 由y 为非负整数,且2y ≠,得到0a =,2-,之和为2-,故选:B .11.(4分)如图,在ABC ∆中,22AC =,45ABC ∠=︒,15BAC ∠=︒,将ACB ∆沿直线AC 翻折至ABC ∆所在的平面内,得ACD ∆.过点A 作AE ,使DAE DAC ∠=∠,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A .6B .3C .23D .4解:如图,延长BC 交AE 于H ,45ABC ∠=︒,15BAC ∠=︒,120ACB ∴∠=︒,将ACB ∆沿直线AC 翻折,15DAC BAC ∴∠=∠=︒,45ADC ABC ∠=∠=︒,120ACB ACD ∠=∠=︒,DAE DAC ∠=∠,15DAE DAC ∴∠=∠=︒,30CAE ∴∠=︒,ADC DAE AED ∠=∠+∠,451530AED ∴∠=︒-︒=︒,AED EAC ∴∠=∠,AC EC ∴=,又360120BCE ACB ACE ACB ∠=︒-∠-∠=︒=∠,BC BC =,()ABC EBC SAS ∴∆≅∆,AB BE ∴=,45ABC EBC ∠=∠=︒,90ABE ∴∠=︒,AB BE =,ABC EBC ∠=∠,AH EH ∴=,BH AE ⊥,30CAE ∠=︒,12CH AC ∴==AH ==,AE ∴=,AB BE =,90ABE ∠=︒,BE ∴==,故选:C .12.(4分)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点(2,3)D -,5AD =,若反比例函数(0,0)k y k x x=>>的图象经过点B ,则k 的值为( )A .163B .8C .10D .323解:过D 作DE x ⊥轴于E ,过B 作BF x ⊥轴,BH y ⊥轴,90BHC ∴∠=︒,点(2,3)D -,5AD =,3DE ∴=,224AE AD DE ∴=-=,四边形ABCD 是矩形,AD BC ∴=,90BCD ADC ∴∠=∠=︒,90DCP BCH BCH CBH ∴∠+∠=∠+∠=︒,CBH DCH ∴∠=∠,90DCG CPD APO DAE ∠+∠=∠+∠=︒,CPD APO ∠=∠,DCP DAE ∴∠=∠,CBH DAE ∴∠=∠,90AED BHC ∠=∠=︒,()ADE BCH AAS ∴∆≅∆,4BH AE ∴==,2OE =,2OA ∴=,2AF ∴=,90APO PAO BAF PAO ∠+∠=∠+∠=︒,APO BAF ∴∠=∠,APO BAF ∴∆∆∽,∴OP OA AF BF =, ∴13222BF⨯=, 83BF ∴=, 8(4,)3B ∴, 323k ∴=, 故选:D .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:11()45-= 3 . 解:原式523=-=,故答案为:3.14.(4分)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为 79.410⨯ .解:7940000009.410=⨯,故答案为:79.410⨯.15.(4分)盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是 23. 解:列表如下1 2 3 1 3 42 3 5 3 4 5由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果, 所以两次抽出的卡片上的数字之和为奇数的概率为4263=, 故答案为:23. 16.(4分)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,120ABC ∠=︒,23AB =,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为33π- .(结果保留)π解:如图,设连接以点O 为圆心,OB 长为半径画弧,分别与AB ,AD 相交于E ,F ,连接EO ,FO ,四边形ABCD 是菱形,120ABC ∠=︒,AC BD ∴⊥,BO DO =,OA OC =,AB AD =,60DAB ∠=︒,ABD ∴∆是等边三角形,23AB BD ∴==,60ABD ADB ∠=∠=︒,3BO DO ∴==以点O 为圆心,OB 长为半径画弧,BO OE OD OF ∴===,BEO ∴∆,DFO ∆是等边三角形,60DOF BOE ∴∠=∠=︒,60EOF ∴∠=︒,∴阴影部分的面积()33360322123333444360ABD DFO BEO OEF S S S S ππ∆∆∆⎛⎫︒⨯⨯=⨯---=⨯⨯-⨯-⨯-=- ⎪ ⎪︒⎝⎭扇形, 故答案为:33π-.17.(4分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则乙比甲晚 12 分钟到达B 地.解:由题意乙的速度为15005300÷=(米/分),设甲的速度为x 米/分.则有:7500202500x -=,解得250x =,25分钟后甲的速度为82504005⨯=(米/分). 由题意总里程250206140029400=⨯+⨯=(米),86分钟乙的路程为8630025800⨯=(米),∴294002580012300-=(分钟). 故答案为12.18.(4分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为 1230 元. 解:设第一时段摸到红球x 次,摸到黄球y 次,摸到绿球z 次,(x ,y ,z 均为非负整数),则第一时段返现金额为(503010)x y z ++,第二时段摸到红球3x 次,摸到黄球2y 次,摸到绿球4z 次,则第二时段返现金额为(503302104)x y z ⨯+⨯+⨯,第三时段摸到红球x 次,摸到黄球4y 次,摸到绿球2z 次,则第三时段返现金额为(50304102)x y z +⨯+⨯,第三时段返现金额比第一时段多420元,(50304102)(503010)420x y z x y z ∴+⨯+⨯-++=,429z y ∴=-①, z 为非负整数,4290y ∴-, 429y ∴, 三个时段返现总金额为2510元,(503010)(50304102)(50304102)2510x y z x y z x y z ∴++++⨯+⨯++⨯+⨯=,25217251x y z ∴++=②,将①代入②中,化简整理得,254243x y =-,424325y x -∴=④, x 为非负整数,∴4243025y -, 4342y ∴, ∴4342429y , y 为非负整数,2y ∴=,34,当2y =时,4125x =,不符合题意, 当3y =时,8325x =,不符合题意,当4y =时,5x =,则6z =,∴第二时段返现金额为50330210410(1556446)1230x y z ⨯+⨯+⨯=⨯+⨯+⨯=(元), 故答案为:1230.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10分)计算:(1)2()(3)x y y x y ++-;(2)22416()11a a a a a --+÷--. 解:(1)2()(3)x y y x y ++-,22223x xy y xy y =+++-,25x xy =+;(2)22416()11a a a a a --+÷--, 2241()11(4)(4)a a a a a a a a ---=+⨯--+-, 411(4)(4)a a a a a --=⨯-+-, 14a =-+. 20.(10分)如图,在平行四边形ABCD 中,AE ,CF 分别平分BAD ∠和DCB ∠,交对角线BD 于点E ,F .(1)若60BCF ∠=︒,求ABC ∠的度数;(2)求证:BE DF =.解:(1)四边形ABCD 是平行四边形,//AB CD ∴,180ABC BCD ∴∠+∠=︒,CF 平分DCB ∠, 2BCD BCF ∴∠=∠, 60BCF ∠=︒, 120BCD ∴∠=︒,18012060ABC ∴∠=︒-︒=︒;(2)四边形ABCD 是平行四边形, //AB CD ∴,AB CD =,BAD DCB ∠=∠, ABE CDF ∴∠=∠,AE ,CF 分别平分BAD ∠和DCB ∠, 12BAE BAD ∴∠=∠,12DCF BCD ∠=∠, BAE DCE ∴∠=∠,()ABE CDF ASA ∴∆≅∆, BE CF ∴=.21.(10分)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10. 七、八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a = 7.5 ,b = ,c = ;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.解:(1)由图表可得:787.52a+==,8882b+==,8c=,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数5580020040+=⨯=(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且426+=,6能被6整除;643不是“好数”,因为6410+=,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.解:(1)312是“好数”,因为3,1,2都不为0,且314+=,6能被2整除,675不是“好数”,因为6713+=,13不能被5整除;(2)611,617,721,723,729,831,941共7个,理由:设十位数数字为a ,则百位数字为5(04a a +<的整数), 525a a a ∴++=+,当1a =时,257a +=, 7∴能被1,7整除,∴满足条件的三位数有611,617,当2a =时,259a +=, 9∴能被1,3,9整除,∴满足条件的三位数有721,723,729,当3a =时,2511a +=, 11∴能被1整除,∴满足条件的三位数有831,当4a =时,2513a +=, 13∴能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.23.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122y x =-+的图象并探究该函数的性质.(1)列表,写出表中a ,b 的值:a = b = ; 描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“⨯”作答): ①函数2122y x =-+的图象关于y 轴对称; ②当0x =时,函数2122y x =-+有最小值,最小值为6-; ③在自变量的取值范围内函数y 的值随自变量x 的增大而减小.(3)已知函数21033y x =--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233x x -<--+的解集.解:(1)3x =-、0分别代入2122y x =-+,得12129211a =-=-+,12602b =-=-+, 故答案为1211-,6-; 画出函数的图象如图:,故答案为1211-,6-; (2)根据函数图象: ①函数2122y x =-+的图象关于y 轴对称,说法正确; ②当0x =时,函数2122y x =-+有最小值,最小值为6-,说法正确; ③在自变量的取值范围内函数y 的值随自变量x 的增大而减小,说法错误. (3)由图象可知:不等式212210233x x -<--+的解集为4x <-或21-<. 24.(10分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A ,B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元. (1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨%a ,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收入将增加20%9a .求a 的值. 解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.(10分)如图,在平面直角坐标系中,抛物线22(0)y ax bx a =++≠与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(,0),直线BC 的解析式为2y =+. (1)求抛物线的解析式;(2)过点A 作//AD BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线22(0)y ax bx a =++≠向左平移个单位,已知点M 为抛物线22(0)y ax bx a =++≠的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.解:(1)直线BC 的解析式为223y x =-+,令0y =,则32x =,令0x =,则2y =, 故点B 、C 的坐标分别为(32,0)、(0,2);则2222(2)(32)(226)226y ax bx a x x a x x ax a a =++=+-=--=--, 即62a -=,解得:13a =, 故抛物线的表达式为:2122233y x x =-++①;(2)如图,过点B 、E 分别作y 轴的平行线分别交CD 于点H ,交BC 于点F ,//AD BC ,则设直线AD 的表达式为:22)3y x =+②, 联立①②并解得:42x =(42D 10)3-, 由点C 、D 的坐标得,直线CD 的表达式为:2223y x =+, 当32x =时,2223BC y x =+=-,即点(32H ,2)-,故2BH =, 设点2122(,2)33E x x -+,则点2(,2)3F x +,则四边形BECD 的面积2211111()(22)2322232BCE BCD D C S S S EF OB x x BH x x ∆∆=+=⨯⨯+⨯-⨯=⨯-+-⨯⨯=++,<,故S 有最大值,当x =S ,此时点E 5)2;(3)存在,理由:221182(333y x x =-+=--+,抛物线22(0)y ax bx a =++≠个单位,则新抛物线的表达式为:21833y x =-+,点A 、E 的坐标分别为(,0)、,5)2;设点M )m ,点(,)N n s ,21833s n =-+; ①当AE 是平行四边形的边时,点A 个单位向上平移52个单位得到E ,同样点()M N 个单位向上平移52个单位得到()N M ,n =, 则21811332s n =-+=-或56,故点N 的坐标为,11)2-或(,5)6; ②当AE 是平行四边形的对角线时,由中点公式得:n +=,解得:n =, 21815336s n =-+=,故点N 的坐标(15)6;综上点N 的坐标为:,11)2-或(5)6或(15)6. 四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)ABC ∆为等边三角形,8AB =,AD BC ⊥于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将AEF ∆绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30120α︒<<︒时,猜想DNM ∠的大小是否为定值,并证明你的结论;(3)连接BN ,在AEF ∆绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出ADN ∆的面积.解:(1)如图1中,连接BE ,CF .ABC ∆是等边三角形,AD BC ⊥, 8AB BC AC ∴===,4BD CD ==,343AD BD ∴==, 23AE =, 23DE AE ∴==,22224(23)27BE BD DE ∴=+=+= ABC ∆,AEF ∆答等边三角形,AB AC ∴=,AE AF =,60BAC EAF ∠=∠=︒, BAE CAF ∴∠=∠,()BAE CAF SAS ∴∆≅∆, 27CF BE ∴==, EN CN =,EG FG =,172GN CF ∴==.(2)结论:120DNM ∠=︒是定值.理由:连接BE ,CF .同法可证()BAE CAF SAS ∆≅∆, ABE ACF ∴∠=∠,6060120ABC ACB ∠+∠=︒+︒=︒,120EBC BCF ABC ABE ACB ACF ∴∠+∠=∠-∠+∠+∠=︒, EN NC =,EM MF =, //MN CF ∴, ENM ECM ∴∠=∠, BD DC =,EN NC =, //DN BE ∴, CDN EBC ∴∠=∠, END NDC ACB ∠=∠+∠,120DNM DNE ENM NDC ACN ECM EBC ACB ACF EBC BCF ∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒.(3)如图31-中,取AC 的中点,连接BJ ,BN .AJ CJ =,EN NC =,132JN AE ∴==, 43BJ AD ==,BN BJ JN ∴+, 53BN ∴,∴当点N 在BJ 的延长线上时,BN 的值最大,如图32-中,过点N 作NH AD ⊥于H ,设BJ 交AD 于K ,连接AN .43tan 303KJ AJ =︒=,3JN =, 733KN ∴=, 在Rt HKN ∆中,90NHK ∠=︒,60NKH ∠=︒, 7337sin 60322HN NK ∴=︒==,117222ADN S AD NH ∆∴==⨯=.。

中考数学真题试题B卷,含答案试题

中考数学真题试题B卷,含答案试题

2021年初中毕业曁高中招生考试创 作人:历恰面 日 期: 2020年1月1日数学试题〔B 卷〕〔全卷一共五个大题,满分是150分,考试时间是是120分钟〕一、选择题:1.4的倒数是 〔 D 〕 A.-4 B.4 C.41-D.41 2.以下交通指示标识中,不是轴对称图形的是〔 C 〕3.据商报2021年5月23日报道,第HY 中国〔〕国际驼子曁全球采购会〔简称渝洽会〕集中签约86个工程,HY 总额1636亿元人民币,将数1636用科学记数法表示是〔 B 〕 ×104B.×103C.×102D.×104.如图,直线a ,b 被直线c 所截,且a//b ,假设∠1=55°,那么∠2等于〔 C 〕°°°°5.计算〔x 2y 〕3的结果是〔 A 〕6y 3 5y 3 5y 32y36.以下调查中,最合适采用全面调查〔普查〕方式的是 〔 D 〕“天天630〞栏目收视率的调查D.对某校九年级〔1〕班同学的身高情况的调查2-a 有意义,那么a 的取值范围是〔 A 〕≥≤≠28.假设m=-2,那么代数式m 2-2m-1的值是〔 B 〕9.观察以下一组图形,其中图形1中一共有2颗星,图形2中一共有6颗星,图形3中一共有11颗星,图形4中一共有17颗星,。

,按此规律,图形8中星星的颗数是〔 C 〕10.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,那么图形阴影局部的面积是〔 A 〕 A.π9-318 B.π3-18 C.29-39πD.π3-31811.如下图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的间隔 DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,那么大楼AB 的高度约为〔准确到0.1米,参考数据:45.2673.1341.12≈≈≈,,〕 〔 D 〕1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 〔 D 〕二、填空题21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫ ⎝⎛+π=____8______.15.如图,CD 是○O 的直径,假设AB ⊥CD ,垂足为B ,∠OAB=40°,那么∠C=__25__度.16.点P 的坐标是〔a,b 〕,从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,那么点P 〔a,b 〕在平面直角坐标系中第二象限内的概率是_51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学试卷B卷新版
一、单选题 (共10题;共20分)
1. (2分) (2019七下·岑溪期末) 已知a+b=3,则a2﹣b2+6b的值为()
A . 6
B . 9
C . 12
D . 15
2. (2分) (2019九上·珠海开学考) 如图,在菱形中,分别垂直平分,垂足分别为,则的度数是()
A . 90°
B . 60°
C . 45°
D . 30°
3. (2分)(2018·苍南模拟) 如图所示,该圆柱体的左视图是()
A .
B .
C .
D .
4. (2分) (2019八上·陕西期末) 下列命题的逆命题不是真命题的是()
A . 两直线平行,内错角相等
B . 直角三角形两直角边的平方之和等于斜边的平方
C . 全等三角形的面积相等
D . 线段垂直平分线上的点到这条线段两端点的距离相等
5. (2分)(2019·邹平模拟) 一元二次方程mx2+mx- =0有两个相等实数根,则m 的值为()
A . 0
B . 0或-2
C . -2
D . 2
6. (2分) (2018八上·惠来月考) 在直角坐标系中A(2,0)、B(-3,-4)、O(0,0),则△AOB的面积()
A . 4
B . 6
C . 8
D . 3
7. (2分) (2019八上·哈尔滨月考) 小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()
A . 21:10
B . 10:21
C . 10:51
D . 12:01
8. (2分)(2019·桥东模拟) 2022年将在北京一张家口举办冬季奥运会,很多学校为此开设了相关的课程。

下表记录了某校4名同学短道速滑成绩的平均数和方差S2 ,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择()
队员1队员2队员3队员4
平均数51505150
方差S2 3.5 3.57.58.5
A . 队员1
B . 队员2
C . 队员3
D . 队员4
9. (2分) (2018八上·颍上期中) 下列命题中,是真命题的是()
A . 若|a|=|b|,那么a=b
B . 如果ab>0,那么a,b都是正数
C . 两条平行线被第三条直线所截,同旁内角互补
D . 两条直线与第三条直线相交,同位角相等
10. (2分)(2019·太原期中) 如图,在△ABC中,DE是AC的垂直平分线,AC=6cm,且△ABD的周长为13cm,则△ABC的周长为()cm.
A . 19
B . 13
C . 10
D . 16
二、填空题 (共8题;共8分)
11. (1分) (2019七上·徐州月考) 和中较大的是________.
12. (1分) (2019八下·江北期中) 使代数式有意义的x的取值范围是________.
13. (1分)(2019·乐清模拟) 分解因式: ________.
14. (1分)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为________.
15. (1分) (2018七上·江阴期中) “十一”黄金周期间无锡市共接待游客约5349000人,该数据用科学记数法表示为________.
16. (1分) (2018七上·哈尔滨月考) 若与3(x+a)=a-5x有相同的解,
那么a-1=________.
17. (1分) (2018七上·黄石月考) 设[x]表示不超过x的整数中最大的整数,如:[1.99]=1,[﹣1.02]=﹣2,根据此规律计算:[﹣3.4]﹣[﹣0.6]=________.
18. (1分)(2019·十堰) 对于实数,定义运算“◎”如下:◎
.若◎ ,则 ________.
三、解答题 (共8题;共76分)
19. (5分)(2019·湘西) 计算:+2sin30°﹣(3.14﹣π)0
20. (5分)(2019·宁波模拟) 解不等式组:,并将其解集在数轴上表示出来.
21. (10分)(2019·洞头模拟) 如图,在▱ABCD中,CF⊥AB于点F,过点D作DE⊥BC 的延长线于点E,且CF=DE.
(1)求证:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的长.
22. (11分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数频数频率
0≤x<40008a
4000≤x<8000150.3
8000≤x<1200012b
12000≤x<16000c0.2
16000≤x<2000030.06
20000≤x<24000d0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
23. (10分)(2019·泉州模拟) 在平面直角坐标系中,反比例函数y= (k>0,x>0)图象上的两点(n,3n)、(n+1,2n).
(1)求n的值;
(2)如图,直线l为正比例函数y=x的图象,点A在反比例函数y= (k>0,x>0)图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC于点D,记△△BOC 的面积为S1,△ABD的面积为S2,求S1-S2的值.
24. (5分) (2019八上·莎车期末) 甲、乙两地相距50千米,李明骑自行车从甲地到乙地,出发3小时20分钟后,张杰骑摩托车也从甲地去乙地.已知骑摩托车的速度是骑自行车速度的3倍,结果两人同时到达乙地.求两人的速度.
25. (10分) (2019七下·宜兴期中) 如图,直角△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.
(1)求证:CD∥EF;
(2)若∠FEC=25°,求∠A的度数.
26. (20分) (2019九上·武汉月考) 已知抛物线y=x2-4x+3
(1)直接写出它的开口方向、对称轴、顶点坐标
(2)当y<0时,直接写出x的取值范围
参考答案
一、单选题 (共10题;共20分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
10、答案:略
二、填空题 (共8题;共8分)
11、答案:略
12、答案:略
13、答案:略
14、答案:略
15、答案:略
16、答案:略
17、答案:略
18、答案:略
三、解答题 (共8题;共76分)
19、答案:略
20、答案:略
21、答案:略
22、答案:略
23、答案:略
24、答案:略
25、答案:略
26、答案:略。

相关文档
最新文档