2020人教版八年级数学下册期中试卷含答案
人教版2020-2021学年初二数学下册期中考试试卷 (含答案)

2020-2021学年八年级(下)期中数学试卷一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣34.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.45.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12 8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.49.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣110.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是岁、岁.13.(3分)化简:=.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC 2,使得△ABC2为轴对称图形,且=3S△ABC.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.参考答案与试题解析一、选择题(本大题有10个小题,每小题3分,共30分)1.(3分)下列四个交通标志图案中,是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义进行判断.【解答】解:四个交通标志图案中,只有第2个为中心对称图形.故选:B.2.(3分)下列方程中,属于一元二次方程的是()A.x+1=0B.x2=2x﹣1C.2y﹣x=1D.x2+3=【分析】利用一元二次方程的定义进行分析即可.【解答】解:A、x+1=0是一元一次方程,故此选项不合题意;B、x2=2x﹣1是一元二次方程,故此选项符合题意;C、含有2个未知数,2y﹣x=1不是一元二次方程,故此选项不合题意;D、含有分式,x2+3=不是一元二次方程;故此选项不合题意.故选:B.3.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣3【分析】二次根式的被开方数是非负数.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.4.(3分)八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7B.6C.5D.4【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【解答】解:∵5,7,6,x,7的平均数是6,∴(5+7+6+x+7)=6,解得:x=5;故选:C.5.(3分)已知▱ABCD中,∠B+∠D=130°,则∠A的度数是()A.125°B.105°C.135°D.115°【分析】根据平行四边形的对角相等、邻角互补,即可得出∠A的度数.【解答】解:∵在▱ABCD中,∠B+∠D=130°,∠B=∠D,∴∠B=∠D=65°,又∵∠A+∠B=180°,∴∠A=180°﹣65°=115°.故选:D.6.(3分)用反证法证明“四边形中至少有一个内角大于或等于90°”时,应先假设()A.有一个内角小于90°B.有一个内角小于或等于90°C.每一个内角都小于90°D.每一个内角都大于90°【分析】至少有一个角不小于90°的反面是每个角都小于90°,据此即可假设.【解答】解:用反证法证明:在四边形中,至少有一个角不小于90°,应先假设:四边形中的每个角都小于90°.故选:C.7.(3分)下列选项中,运算正确的是()A.3=3B.=7C.=5D.=12【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的除法法则对B进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项错误;D、原式=2×3=12,所以D选项正确.故选:D.8.(3分)如图,▱ABCD的周长是24cm,对角线AC与BD交于点O,BD⊥AD,E是AB 中点,△COD的周长比△BOC的周长多4cm,则DE的长为()A.5B.5C.4D.4【分析】根据平行四边形的性质得到OB=OD,AD+AB=CD+BC=12,根据三角形的周长公式得到CD﹣BC=4,解方程组求出CD,得到AB的长,根据直角三角形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,四边形ABCD的周长是24,∴AB=CD,AD=BC,OB=OD,AD+AB=CD+BC=12,∵△COD的周长比△BOC的周长多4,∴(CD+OD+OC)﹣(CB+OB+OC)=4,即CD﹣BC=4,,解得,CD=8,BC=4,∴AB=CD=8,∵BD⊥AD,E是AB中点,∴DE=AB=4,故选:C.9.(3分)若一元二次方程x(kx+1)﹣x2+3=0无实数根,则k的最小整数值是()A.2B.1C.0D.﹣1【分析】由根的判别式与方程根的情况,可得△<0,从而求出k的取值范围,再确定k 的最小整数.要保证二次项系数不为0.【解答】解:∵一元二次方程x(kx+1)﹣x2+3=0,即(k﹣1)x2+x+3=0无实数根,∴△=b2﹣4ac=1﹣4×(k﹣1)×3<0且k﹣1≠0,解得k>且k≠1.k最小整数=2.故选:A.10.(3分)如图,在矩形ABCD中,AB=6,AD=8,顺次连接各边中点得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点得到四边形A2B2C2D2…依此类推,则四边形A9B9C9D9的周长为()A.B.C.D.【分析】连接AC、BC,根据勾股定理求出A1B1,根据三角形中位线定理、菱形的判定定理得到四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,总结规律,根据规律解答.【解答】解:连接AC、BC,由题意得,AB1=×6=3,AA1=×8=4,由勾股定理得,A1B1==5,∵四边形ABCD为矩形,∴AC=BD,∵顺次连接四边形ABCD各边中点得到四边形A1B1C1D1,∴A1B1=BD,A1B1∥BD,C1B1=AC,C1B1∥AC,A1D1=AC,A1D1∥AC,∴A1B1=C1D1,A1B1∥C1D1,A1B1∥B1C1,∴四边形A1B1C1D1是菱形,且菱形的周长=5×4=20,同理,四边形A3B3C3D3是菱形,且菱形的周长=20×=10,……四边形A9B9C9D9是菱形,且菱形的周长=20×=,故选:B.二、填空题(本大题有6小题,每小题3分,共18分)11.(3分)一个多边形的内角和是720°,这个多边形的边数是6.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.12.(3分)某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是15岁、16岁.【分析】根据中位数和众数的定义求解.【解答】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故填16,15.13.(3分)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.14.(3分)若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=2020.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2020=0得:a+b﹣2020=0,即a+b=2020.故答案是:2020.15.(3分)某公园准备围建一个矩形花园ABCD,其中一边靠墙,其他三边用长为54米的篱笆围成,已知墙EF长为28米,并且与墙平行的一面BC上要预留2米宽的入口(如图MN所示,不用围篱笆),若花园的面积为320平方米,则AB=20.【分析】根据54米的篱笆,即总长度是54m,BC=xm,则AB=(54﹣x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【解答】解:设矩形花园BC的长为x米,则其宽为(54﹣x+2)米,依题意列方程得:(54﹣x+2)x=320,x2﹣56x+640=0,解这个方程得:x1=16,x2=40,∵28<40,∴x2=40(不合题意,舍去),∴x=16,∴AB=(54﹣x+2)=20.答:当矩形的长AB为16米时,矩形花园的面积为320平方米;故答案为:20.16.(3分)在矩形ABCD中,AB=4,AD=9,点E在BC上,CE=4,点F是AD上的一个动点,连接BF,若将四边形ABEF沿EF折叠,点A、B分别落在点A′、B'处,则当点B恰好落在矩形ABCD的一边上时,AF的长为3或.【分析】分两种情况讨论,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,推出∠BFE=∠B'FE,进一步推BF=BE=5,在Rt△ABF中,通过勾股定理求出AF的长;当点B'落在CD边上时,在Rt△ECB'中,利用勾股定理求出CB'的长,进一步求出DB'的长,分别在Rt△F A'B'和Rt△FDB'中,利用勾股定理求出含x的FB'的长度,联立构造方程,求出x的值,即AF的长度.【解答】解:如图1,当点B'落在AD边上时,由折叠知,△BEF≌△B'EF,∴∠BFE=∠B'FE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠B'EF,∴∠FEB=∠BFE,∴BF=BE,∵BE=BC﹣EC=9﹣4=5,∴BF=5,在Rt△ABF中,AF===3;如图2,当点B'落在CD边上时,由折叠知,△BEF≌△B'EF,△ABF≌△A'B'F,∴EB'=EB=5,A'B'=AB=CD=4,∵四边形ABCD是矩形,∴∠D=∠C=90°,在Rt△ECB'中,CB'===3,∴DB'=CD﹣CB'=4﹣3=1,设AF=A'F=x,在Rt△F A'B'中,FB'2=F A'2+A'B'2=x2+42,在Rt△FDB'中,FB'2=FD2+DB'2=(9﹣x)2+12,∴x2+42=(9﹣x)2+12,解得,x=,∴AF=;故答案为:3或.三、解答题(本大题有7小题,共52分)17.(6分)计算:(1);(2).【分析】(1)利用二次根式的性质计算;(2)利用二次根式的乘除法则运算.【解答】解:(1)原式=3﹣8+3=﹣2;(2)原式=﹣2=﹣2=﹣.18.(6分)解下列方程:(1)x2=4x;(2)2x2﹣7x﹣4=0.【分析】利用因式分解法求解可得.【解答】解:(1)∵x2=4x,∴x2﹣4x=0,∴x(x﹣4)=0,则x=0或x﹣4=0,解得x1=0,x2=4;(2)∵2x2﹣7x﹣4=0,∴(x﹣4)(2x+1)=0,则x﹣4=0或2x+1=0,解得x1=4,x2=﹣0.5.19.(6分)如图,在7×6的正方形网格中,点A,B,C,D都在格点上,请你按要求画出图形.(1)在图甲中作出△A1B1C1,使△A1B1C1和△ABC关于点D成中心对称;(2)在图乙中以AB为三角形一边画出△ABC2,使得△ABC2为轴对称图形,且=3S△ABC.【分析】(1)利用网格特点和中心对称的性质画出A、B、C的对应点即可;(2)利用勾股定理作出AC2=5,则△ABC2为等腰三角形,此三角形满足条件.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△ABC2为所作.20.(8分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)小张的期末评价成绩为=80(分);(2)①小张的期末评价成绩为=80(分);②设小王期末考试成绩为x分,根据题意,得:≥80,解得x≥84.2,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.21.(8分)如图,在四边形ABCD中,AB∥CD,∠BAD的平分线AE交CD于点F,交BC 的延长线于点E,且AB=BE.(1)求证:四边形ABCD是平行四边形;(2)连结BF,若BF⊥AE,∠E=60°,AB=6,求四边形ABCD的面积.【分析】(1)由角平分线的性质和等腰三角形的性质可得∠DAF=∠E,可证AD∥BE,可得结论;(2)先证△ABE是等边三角形,可求S△ABF的面积,即可求解.【解答】证明:(1)∵AB=BE,∴∠E=∠BAE,∵AF平分∠BAD,∴∠DAF=∠BAE,∴∠DAF=∠E,∴AD∥BE,又∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵AB=BE,∠E=60°,∴△ABE是等边三角形,∴BA=AE=6,∠BAE=60°,又∵BF⊥AE,∴AF=EF=3,∴BF===3,∴S△ABF=AF×BF=×3×3=,∴▱ABCD的面积=2×S△ABF=9.22.(8分)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率;(2)该网店五月降价促销,经调查发现,若该农产品每袋降价2元,销售量可增加10袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)【分析】(1)直接利用二月销量×(1+x)2=四月的销量进而求出答案.(2)首先设出未知数,再利用每袋的利润×销量=总利润列出方程,再解即可.【解答】解:(1)设三、四这两个月的月平均增长率为x.由题意得:192(1+x)2=300,解得:x1=,x2=﹣(不合题意,舍去),答:三、四这两个月的月平均增长率为25%.(2)设当农产品每袋降价m元时,该淘宝网店五月份获利3250元.根据题意可得:(40﹣25﹣m)(300+5m)=3250,解得:m1=5,m2=﹣50(不合题意,舍去).答:当农产品每袋降价5元时,该淘宝网店五月份获利3250元.23.(10分)如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=3;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.【分析】(1)把(4,0)代入y=﹣x+b即可求得b的值;(2)过点D作DE⊥x轴于点E,证明△OAB≌△EDA,即可求得AE和DE的长,则D 的坐标即可求得;(3)分当OM=MB=BN=NO时;当OB=BN=NM=MO=3时两种情况进行讨论.【解答】解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,∴ON的解析式是y=x.根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).1、三人行,必有我师。
2020-2021学年人教版八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.如果b>a>0,那么()A.−1a>−1b B.1a<1bC.−1a<−1b D.﹣b>﹣a2.下列图形中,不是中心对称图形的是()A.B.C.D.3.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.x2+1=x(x+1 x)4.在三角形内部,且到三角形三边距离相等的点是()A.三角形三条中线的交点B.三角形三条高线的交点C.三角形三条角平分线的交点D.三角形三边垂直平分线的交点5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD 6.如果点P(m,1﹣2m)在第一象限,那么m的取值范围是()A.0<m<12B.−12<m<0C.m<0D.m>127.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.108.如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD9.如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为()A.x<2B.x<3C.x>2D.x>310.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,下列结论正确的有()个.①△BED是等边三角形;②AE∥BC;③△ADE的周长等于BD+BC;④∠ADE=∠DBC.A .1B .2C .3D .4二.填空题(共4小题,满分16分,每小题4分)11.(4分)若√x −3在实数范围内有意义,则x 的取值范围是 .12.(4分)把多项式﹣16x 3+40x 2y 提出一个公因式﹣8x 2后,另一个因式是 .13.(4分)若不等式组{x >a x >3的解集为x >3,则a 的取值范围是 . 14.(4分)如图,在△ABC 中,∠ABC =90°,AB =BC =2,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 .三.解答题(共6小题,满分54分)15.(10分)因式分解:(1)m 2﹣4n 2;(2)2a 2﹣4a +2.16.(12分)解不等式组{2(x −2)+1≥−5x 3−x+12>−1,并把解集在数轴上表示出来. 17.(6分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AE 的度数;(3)求证:CD =2BF +DE .18.(6分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,1),C(1,2).(1)把△ABC绕原点O旋转,使点C与点C1(2,﹣1)重合,画出旋转后的△A1B1C1,并写出点A1,B1的坐标;̂(2)在(1)的条件下,若△ABC是按顺时针方向旋转的,求点A到点A1经过的路径AA1的长.19.(10分)在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?20.(10分)思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=√2,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.四.填空题(共5小题,满分20分,每小题4分)21.(4分)若x=√2−1,则x2+2x+1=.22.(4分)若x2+2(m﹣3)x+36是完全平方式,则m的值等于.恰有3个整数解,则a的取值范围是.23.(4分)已知关于x的不等式组{2a+3x>03a−2x≥024.(4分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.25.(4分)如图,已知Rt △ABC 中,∠B =90°,∠A =60°,AB =3,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,若△DCM 为直角三角形时,则AM 的长为 .五.解答题(共3小题,满分30分)26.(8分)甲、乙两人同时解方程组{mx +y =5①2x −ny =13②甲解题看错了①中的m ,解得{x =72y =−2,乙解题时看错②中的n ,解得{x =3y =−7,试求原方程组的解. 27.(10分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲 乙进价(元/双)m m ﹣20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?28.(12分)一次函数y=kx+b(k≠0)的图象与x轴、y轴分别相交于点A(﹣8,0)和点B(0,6).点C在线段AO上.如图,将△CBO沿BC折叠后,点O恰好落在AB边上点D处.(1)求一次函数的解析式;(2)求AC的长;(3)点P为y轴上一点.且满足△ABP是以AB为腰的等腰三角形,请直接写出P点坐标.2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.如果b>a>0,那么()A.−1a>−1b B.1a<1bC.−1a<−1b D.﹣b>﹣a【解答】解:∵b>a>0,∴1b <1a,故选项B错误∴−1b>−1a,故选项A错误、C正确;∵b>a,∴﹣b<﹣a,故选项D错误.故选:C.2.下列图形中,不是中心对称图形的是()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.3.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.x2+1=x(x+1 x)【解答】解:A、是因式分解,故本选项符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、不是因式分解,故本选项不符合题意;故选:A.4.在三角形内部,且到三角形三边距离相等的点是()A.三角形三条中线的交点B.三角形三条高线的交点C.三角形三条角平分线的交点D.三角形三边垂直平分线的交点【解答】解:在三角形内部,且到三角形三边距离相等的点是三角形三条角平分线的交点.故选:C.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.6.如果点P(m,1﹣2m)在第一象限,那么m的取值范围是()A.0<m<12B.−12<m<0C.m<0D.m>12【解答】解:∵点P(m,1﹣2m)在第一象限,∴{m>0①1−2m>0②,由②得,m<1 2,所以,m的取值范围是0<m<1 2.故选:A.7.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.10【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.8.如图,锐角三角形ABC中,BC>AB>AC,小靖依下列方法作图:(1)作∠A的角平分线交BC于D点.(2)作AD的中垂线交AC于E点.(3)连接DE.根据他画的图形,判断下列关系何者正确?()A.DE⊥AC B.DE∥AB C.CD=DE D.CD=BD 【解答】解:依据题意画出右图可得知∠1=∠2,AE=DE,∴∠2=∠3,∴∠1=∠3,即DE∥AB.故选:B.9.如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为()A.x<2B.x<3C.x>2D.x>3【解答】解:∵一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),∴当x<2时,﹣x+5>kx+b,即关于x的不等式﹣x+5>kx+b的解集为x<2.故选:A.10.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,下列结论正确的有()个.①△BED是等边三角形;②AE∥BC;③△ADE的周长等于BD+BC;④∠ADE=∠DBC.A.1B.2C.3D.4【解答】解:∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴BE=BD,∠EBD=60°,AE=CD,∠EAB=∠C=60°,∴△BED是等边三角形,故①正确;∵∠BAE=∠C=∠ABC=60°,∴AE ∥BC ,故②正确;∵△BED 是等边三角形,∴DE =BD ,∠EDB =60°,∴△ADE 的周长=AE +AD +DE =CD +AD +DE =AC +BD =BC +BD ,故③正确;∵∠ADB =∠C +∠DBC ,∴∠ADE +60°=∠DBC +60°,∴∠ADE =∠DBC ,故④正确.故选:D .二.填空题(共4小题,满分16分,每小题4分)11.(4分)若√x −3在实数范围内有意义,则x 的取值范围是 x ≥3 .【解答】解:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3.12.(4分)把多项式﹣16x 3+40x 2y 提出一个公因式﹣8x 2后,另一个因式是 2x ﹣5y .【解答】解:﹣16x 3+40x 2y=﹣8x 2•2x +(﹣8x 2)•(﹣5y ) =﹣8x 2(2x ﹣5y ),所以另一个因式为2x ﹣5y .故答案为:2x ﹣5y .13.(4分)若不等式组{x >a x >3的解集为x >3,则a 的取值范围是 a ≤3 . 【解答】解:不等式组{x >a x >3的解集为x >3,则a ≤3. 故答案为:a ≤3.14.(4分)如图,在△ABC 中,∠ABC =90°,AB =BC =2,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 2−√2 .【解答】解:过E作EG∥AB,交AC于G,则∠BAE=∠AEG,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠CAE=∠AEG,∴AG=EG,同理可得,EF=CF,∵AB∥GE,BC∥EF,∴∠BAC=∠EGF,∠BCA=∠EFG,∴△ABC∽△GEF,∵∠ABC=90°,AB=BC=2,∴AC=2√2,∴EG:EF:GF=AB:BC:AC=1:1:√2,设EG=k=AG,则EF=k=CF,FG=√2k,∵AC=2√2,∴k+k+√2k=2√2,∴k=√2(2−√2),∴EF=k=2−√2.故答案为:2−√2.三.解答题(共6小题,满分54分)15.(10分)因式分解:(1)m 2﹣4n 2;(2)2a 2﹣4a +2.【解答】解:(1)m 2﹣4n 2=m 2﹣(2n )2=(m +2n )(m ﹣2n );(2)2a 2﹣4a +2=2(a 2﹣2a +1)=2(a ﹣1)2.16.(12分)解不等式组{2(x −2)+1≥−5x 3−x+12>−1,并把解集在数轴上表示出来. 【解答】解:{2(x −2)+1≥−5x 3−x+12>−1, 解第一个不等式得x ≥﹣1,解第二个不等式得x <3,则不等式组的解集为﹣1≤x <3,将解集表示在数轴上如下:17.(6分)如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AE 的度数;(3)求证:CD =2BF +DE .【解答】证明:(1)∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,∴∠BAC =∠DAE ,在△BAC 和△DAE 中,{AB =AD ∠BAC =∠DAE AC =AE,∴△BAC ≌△DAE (SAS );(2)∵∠CAE =90°,AC =AE ,∴∠E =45°,由(1)知△BAC ≌△DAE ,∴∠BCA =∠E =45°,∵AF ⊥BC ,∴∠CF A =90°,∴∠CAF =45°,∴∠F AE =∠F AC +∠CAE =45°+90°=135°;(3)延长BF 到G ,使得FG =FB ,∵AF ⊥BG ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,{BF =GF ∠AFB =∠AFG AF =AF,∴△AFB ≌△AFG (SAS ),∴AB =AG ,∠ABF =∠G ,∵△BAC ≌△DAE ,∴AB =AD ,∠CBA =∠EDA ,CB =ED ,∴AG =AD ,∠ABF =∠CDA ,∴∠G =∠CDA ,∵∠GCA =∠DCA =45°,在△CGA 和△CDA 中,{∠GCA =∠DCA ∠CGA =∠CDA AG =AD,∴△CGA ≌△CDA (AAS ),∴CG =CD ,∵CG =CB +BF +FG =CB +2BF =DE +2BF ,∴CD=2BF+DE.18.(6分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,1),C(1,2).(1)把△ABC绕原点O旋转,使点C与点C1(2,﹣1)重合,画出旋转后的△A1B1C1,并写出点A1,B1的坐标;̂(2)在(1)的条件下,若△ABC是按顺时针方向旋转的,求点A到点A1经过的路径AA1的长.【解答】解:(1)如图所示,△A1B1C1即为所求,由图知,将△ABC绕原点O顺时针旋转90°时,得到△A1B1C1,∴点A 1的坐标为(3,3),B 1的坐标为(1,2),(2)∵AO =√32+32=3√2,∠AOA 1=90°,∴点A 到点A 1经过的路径AA 1̂的长为90⋅π⋅3√2180=3√22π. 19.(10分)在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y (米)与施工时间x (时)之间关系的部分图象.请解答下列问题:(1)求乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?【解答】解:(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , 由图可知,函数图象过点(2,30),(6,50),∴{2k +b =306k +b =50, 解得{k =5b =20, ∴y =5x +20;(2)由图可知,甲队速度是:60÷6=10(米/时),设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得z−6010=z−5012,解得z =110,答:甲队从开始到完工所铺设彩色道砖的长度为110米.20.(10分)思维启迪:(1)如图①,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是200米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=√2,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为PC⊥PE,PC=PE.③当α=135°时,直接写出PC的值.【解答】(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,{∠ABP=∠CPB=PC∠APB=∠DPC,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P 是线段BD 的中点,∴PB =PD ,在△FBP 和△EDP 中,{∠FBP =∠EDP∠BFP =∠DEP PB =PD,∴△FBP ≌△EDP (AAS ),∴PF =PE ,BF =DE ,∵AC =BC ,AE =DE ,∴FC =EC ,又∵∠ACB =90°,∴△EFC 是等腰直角三角形,∵PE =PF ,∴PC ⊥EF ,PC =12EF =PE ;②解:PC ⊥PE ,PC =PE ;理由如下: 延长ED 交BC 于H ,如图③所示: 由旋转的性质得:∠CAE =90°, ∵∠AED =∠ACB =90°,∴四边形ACHE 是矩形,∴∠BHE =∠CHE =90°,AE =CH , ∵AE =DE ,∴CH =DE ,∠ADE =45°,∴∠EDP =135°,∵∠ACB =90°,AC =BC ,∴∠ABC =45°,∵∠BHE =90°,点P 是线段BD 的中点, ∴PH ⊥BD ,PH =12BD =PD ,△BPH 是等腰直角三角形, ∴∠BHP =45°,∴∠CHP =135°=∠EDP ,在△CPH 和△EPD 中,{CH =ED∠CHP =∠EDP PH =PD,∴△CPH ≌△EPD (SAS ), ∴PC =PE ,∠CPH =∠EPD , ∴∠CPE =∠HPD =90°, ∴PC ⊥PE ;故答案为:PC ⊥PE ,PC =PE ; ③解:当α=135°时,AD ⊥AC , 延长CP ,交AD 延长线于点H , 则AH ∥BC ,∴△BCP ∽△DHP ,∴DH BC =PH PC =PD PB ,∵P 是BD 的中点,∴PD =PB ,∴DH =BC =4,PH =PC , ∵AD =√2AE =2,∴AH =DH +AD =6,∴CH =√AC 2+AH 2=√42+62=2√13, ∴PC =12CH =√13.四.填空题(共5小题,满分20分,每小题4分)21.(4分)若x =√2−1,则x 2+2x +1= 2 .【解答】解:原式=(x +1)2,当x =√2−1时,原式=(√2)2=2.22.(4分)若x 2+2(m ﹣3)x +36是完全平方式,则m 的值等于 9或﹣3 .【解答】解:∵x 2+2(m ﹣3)x +36是完全平方式,∴2(m ﹣3)x =±2•x •6,解得:m =9或﹣3,故答案为:9或﹣3.23.(4分)已知关于x 的不等式组{2a +3x >03a −2x ≥0恰有3个整数解,则a 的取值范围是 43≤a ≤32. 【解答】解:解不等式①得:x >−23a ,解不等式②得:x ≤32a ,则不等式组的解集为−23a <x ≤32a ,由于不等式组有解,则−23a <x ≤32a 必定有整数解0,∵|32a |>|−23a |, ∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则{1≤32a <2−2≤−23a <−1,此不等式组无解; 若三个整数解为0,1,2,则{2≤32a <3−1≤−23a <0,解得43≤a ≤32, 所以a 的取值范围是43≤a ≤32.故答案为:43≤a ≤32. 24.(4分)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的底角度数是 (12) n ﹣1×75° .【解答】解:∵在△CBA 1中,∠B =30°,A 1B =CB ,∴∠BA 1C =180°−∠B 2=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×75°; 同理可得∠EA 3A 2=(12)2×75°,∠F A 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的内角度数是(12) n ﹣1×75°. 故答案为:(12) n ﹣1×75°. 25.(4分)如图,已知Rt △ABC 中,∠B =90°,∠A =60°,AB =3,点M ,N 分别在线段AC ,AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,若△DCM 为直角三角形时,则AM 的长为 2或3√3−3 .【解答】解:分两种情况:①如图,当∠CDM =90°时,△CDM 是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AB=3,∴AC=2AB=6,∠C=30°,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=12DN=12AN,∴BN=13AB=1,∴AN=2BN=2,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AM=AN=2;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=12DN=12AN,BN=√3BD,又∵AB =3,∴AN =6(2−√3),BN =6√3−9,过N 作NH ⊥AM 于H ,则∠ANH =30°,∴AH =12AN =3(2−√3),HN =6√3−9,由折叠可得,∠AMN =∠DMN =45°,∴△MNH 是等腰直角三角形,∴HM =HN =6√3−9,∴AM =AH +HM =3(2−√3)+6√3−9=3√3−3,故答案为:2或3√3−3.五.解答题(共3小题,满分30分)26.(8分)甲、乙两人同时解方程组{mx +y =5①2x −ny =13②甲解题看错了①中的m ,解得{x =72y =−2,乙解题时看错②中的n ,解得{x =3y =−7,试求原方程组的解. 【解答】解:(1)把{x =72y =−2代入②得:7+2n =13, 解得:n =3,把{x =3y =−7代入①得:3m ﹣7=5, 解得:m =4;把m =4,n =3代入方程组得:{4x +y =5①2x −3y =13②, ①×3+②得:14x =28,即x =2,把x =2代入①得:y =﹣3,则方程组的解为{x =2y =−3. 27.(10分)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲 乙进价(元/双) m m ﹣20售价(元/双) 240 160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,3000m =2400m−20,整理得,3000(m ﹣20)=2400m ,解得m =100,经检验,m =100是原分式方程的解,所以,m =100;(2)设购进甲种运动鞋x 双,则乙种运动鞋(200﹣x )双,根据题意得,{(240−100)x +(160−80)(200−x)≥21700①(240−100)x +(160−80)(200−x)≤22300②, 解不等式①得,x ≥95,解不等式②得,x ≤105,所以,不等式组的解集是95≤x ≤105,∵x 是正整数,105﹣95+1=11,∴共有11种方案;(3)设总利润为W ,则W =(240﹣100﹣a )x +80(200﹣x )=(60﹣a )x +16000(95≤x ≤105),①当50<a <60时,60﹣a >0,W 随x 的增大而增大,所以,当x =105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a =60时,60﹣a =0,W =16000,(2)中所有方案获利都一样;③当60<a <70时,60﹣a <0,W 随x 的增大而减小,所以,当x =95时,W 有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.28.(12分)一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于点A (﹣8,0)和点B (0,6).点C 在线段AO 上.如图,将△CBO 沿BC 折叠后,点O 恰好落在AB 边上点D 处.(1)求一次函数的解析式;(2)求AC 的长;(3)点P 为y 轴上一点.且满足△ABP 是以AB 为腰的等腰三角形,请直接写出P 点坐标.【解答】解:(1)由题意可得:{b =6−8k +b =0, ∴{k =34b =6, ∴一次函数的解析式为:y =34x +6;(2)∵点A 的坐标为(﹣8,0),点B 的坐标为(0,6),∴OA =8,OB =6,∵∠AOB =90°,∴AB =√OA 2+OB 2=√36+64=10,由折叠的性质,可知:OC =CD ,OB =BD =6,∠CDB =∠BOC =90°,∴AD =AB ﹣BD =4,∠ADC =90°.设CD =OC =x ,则AC =8﹣x ,在Rt △ADC 中,∠ADC =90°,∴AD 2+CD 2=AC 2,即42+x 2=(8﹣x )2,解得:x =3,∴OC =3,∴AC=OA﹣OC=8﹣3=5;(3)设点P(0,y),当BA=BP=10时,则|y﹣6|=10,∴y=16或﹣4,∴点P(0,16)或(0,﹣4),当AB=AP时,又∵AO⊥BO,∴BO=OP=6,∴点P(0,﹣6),综上所述:点P(0,16)或(0,﹣4)或(0,﹣6).。
2020-2021学年人教版八年级下期中数学试卷及答案

2020-2021学年八年级下期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形:①平行四边形;②菱形;③圆;④线段;⑤等边三角形;⑥直角三角形,是中心对称图形的有( ) A .1种B .2种C .3种D .4种【解答】解:中心对称图形有:平行四边形、菱形、圆、线段,共4个. 故选:D . 2.使分式x−2(x−1)(x−2)有意义,x 应满足的条件是( ) A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠2【解答】解:根据题意得,(x ﹣1)(x ﹣2)≠0, 解得x ≠1且x ≠2. 故选:D .3.若a <b ,则下列不等式正确的是( ) A .3a >3bB .﹣2a >﹣2bC .a2>b2D .3﹣a <3﹣b【解答】解:A .不等式两边都乘以一个正数,不等号方向不改变,则A 错误; B .不等式两边都乘以一个负数,不等号方向改变,则B 正确; C .不等式两边都除以一个正数,不等号方向不改变,则C 错误; D .因a <b ,则﹣a >﹣b ,于是3﹣a >3﹣b ,则D 错误. 故选:B .4.下列式子中,从左到右的变形是因式分解的是( ) A .(x ﹣1)(x ﹣2)=x 2﹣3x +2 B .x 2﹣3x +2=(x ﹣1)(x ﹣2) C .x 2+4x +4=x (x ﹣4)+4D .x 2+y 2=(x +y )(x ﹣y )【解答】解:根据因式分解的概念,A ,C 答案错误; 根据平方差公式:(x +y )(x ﹣y )=x 2﹣y 2所以D 错误; B 答案正确. 故选:B .5.等腰三角形一边长等于5,一边长等于9,则它的周长是( ) A .14B .23C .19D .19或23【解答】解:当腰长为5时,则三角形的三边分别为5、5、9,满足三角形的三边关系,其周长为19;当腰长为9时,则三角形的三边分别为9、9、5,满足三角形的三边关系,其周长为23;综上可知三角形的周长为19或23,故选:D.6.在△ABC中,∠C=90°,∠BAC和∠ABC的平分线相交于点P,且PE⊥AB于点E.若BC=3,AC=4,则PE的长为()A.1B.2C.3D.4【解答】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,过点P作PE⊥AB、PF⊥BC、PG⊥AC,垂足分别为E、F、G,∵AP和BP分别是∠BAC和∠ABC的平分线,∴PE=PF=PG,∴S△ABC=12AC•BC=12(AB+BC+AC)•PE,即12×3×4=12(5+4+3)•PE,解得PE=1.故选:A.7.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6B.7C.8D.10【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.8.如图,在△ABC中,AB=AC,BD=12BC,等边△BEF的顶点F在BC上,边EF交AD于点P,若BE=10,BC=14,则PE的长为()A .1B .2C .3D .4【解答】解:∵AB =AC ,BD =12BC =7, ∴AD ⊥BC ,∵△△BEF 为等边三角形,∴∠BFE =60°,BF =BE =EF =10, ∴DF =BF ﹣BD =10﹣7=3, 在Rt △PDF 中,∵∠PFD =60°, ∴∠DPF =30°, ∴PF =2DF =6,∴PE =EF ﹣PF =10﹣6=4. 故选:D .9.下列分式约分正确的是( ) A .2x+y x+y =2 B .x 2+y 2x+y =x +y C .x+m x+n=m nD .−x+y x−y=−1【解答】解:A 、2x+y x+y是最简分式,不能约分,故本选项错误;B 、x 2+y 2x+y 是最简分式,不能约分,故本选项错误;C 、x+m x+n 是最简分式,不能约分,故本选项错误;D 、−x+y x−y=−1,故本选项正确;故选:D .10.如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)若a>b,且c为有理数,则ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.12.(4分)分解因式:9m2﹣n2=(3m+n)(3m﹣n).【解答】解:原式=(3m)2﹣n2=(3m+n)(3m﹣n),故答案为:(3m+n)(3m﹣n).13.(4分)把命题“等角的补角相等”改写成“如果…那么…”的形式是如果两个角是等角的补角,那么它们相等.【解答】解:题设为:两个角是等角,结论为:它们的补角相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等.故答案为:如果两个角是等角的补角,那么它们相等.14.(4分)△ABC中,三条中位线围成的三角形周长是15cm,则△ABC的周长是30cm.【解答】解:设△ABC三边的中点分别为E、F、G,如图,∵D、E、F分别为AB、BC、AC的中点,∴AB=2EF,BC=2DF,AC=2DE,∴AB+BC+AC=2(EF+DF+DE),∵△DEF的周长为15cm,∴EF+DF+DE=15cm,∴AB+BC+AC=2×15cm=30cm,即△ABC的周长为30cm,故答案为:30.15.(4分)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移7个单位长度,得到点B,则点B的坐标为(6,﹣2).【解答】解:将点A(﹣1,﹣2)向右平移了7个单位长度得到点B,则点B的坐标为(﹣1+7,﹣2),即(6,﹣2),故答案为:(6,﹣2).16.(4分)已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=0.【解答】解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.17.(4分)如图,在△ABC中,∠BAC=90°,AB=AC=4√6cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE交AC于点F,则CF的长为2√6cm.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°, ∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°, 在Rt △ADG 中,AG =DG =2=3√2cm , 在Rt △AFG 中,GF =AG3=√6cm ,AF =2FG =2√6cm , ∴CF =AC ﹣AF =4√6−2√6=2√6cm , 故答案为:2√6.三.解答题(共3小题,满分18分,每小题6分)18.(6分)解不等式组{x −3(x −2)≤8x −1<5−2x并写出它的整数解.【解答】解:{x −3(x −2)≤8①x −1<5−2x②,由①得:x ≥﹣1, 由②得:x <2,∴不等式组的解集为﹣1≤x <2, 则不等式组的整数解为﹣1,0,1.19.(6分)先化简,再求值:(x ﹣2+8x x−2)÷x+22x−4,其中x =−12. 【解答】解:原式=(x 2−4x+4x−2+8x x−2)•2(x−2)x+2=(x+2)2x−2•2(x−2)x+2=2(x +2) =2x +4, 当x =−12时, 原式=2×(−12)+4 =﹣1+4 =3.20.(6分)如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点.求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=CF=12AD,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).四.解答题(共3小题,满分24分,每小题8分)21.(8分)如图,在每个小正方形的边长均为1的方格纸中有一条线段AB,线段AB的两个端点均在小正方形的顶点上,请按要求画出图形,使得它们的顶点均在小正方形的顶点上(1)在图中画一个以AB为边的菱形ABCD,使得菱形ABCD的面积为24;(2)以B为旋转中心,将线段BA顺时针方向旋转90°得到线段BE.(3)连接CE,则线段CE的长为√2.【解答】解:(1)如图,四边形ABCD即为所求.(2)如图,线段BE即为所求.(3)EC=2+12=√2.22.(8分)在防疫新冠状病毒期间,市民对医用口罩的需求越来越大.某药店第一次用3000元购进医用口罩若干个,第二次又用3000元购进该款口罩,但第二次每个口罩的进价是第一次进价的1.25倍,购进的数量比第一次少200个﹒(1)求第一次和第二次分别购进的医用口罩数量为多少个?(2)药店第一次购进口罩后,先以每个4元的价格出售,卖出了a个后购进第二批同款口罩,由于进价提高了,药店将口罩的售价也提升至每个4.5元继续销售卖出了b个后﹒因当地医院医疗物资紧缺,将其已获得口罩销售收入6400元和剩余全部的口罩捐赠给了医院﹒请问药店捐赠口罩至少有多少个?(销售收入=售价×数量)【解答】解:(1)设第一次购进医用口罩的数量为x个,∴第二次购进医用口罩的数量为(x﹣200)个,∴由题意可知:3000x−200=1.25×3000x,解得:x=1000,经检验,x=1000是原方程的解,∴x﹣200=800,答:第一次和第二次分别购进的医用口罩数量为1000和800个.(2)由(1)可知两次购进口罩共1800个,由题意可知:4a+4.5b=6400,∴a=1600−98 b,∴1800﹣a﹣b=1800﹣(1600−98b)﹣b=200+b8,∵a≤1000,∴1600−98b ≤1000, ∴b ≥53313,∵a ,b 是整数, ∴b 是8的倍数, ∴b 的最小值是536, ∴1800﹣a ﹣b ≥267,答:药店捐赠口罩至少有267个23.(8分)如图,分别以△ABC 的三边为边长,在BC 的同侧作等边三角形ABD ,等边三角形BCE ,等边三角形ACF ,连接DE ,EF .求证:四边形ADEF 是平行四边形.【解答】证明:∵△BCE 、△ACF 、△ABD 都是等边三角形, ∴AB =AD ,AC =CF ,BC =CE ,∠BCE =∠ACF , ∴∠BCE ﹣∠ACE =∠ACF ﹣∠ACE , 即∠BCA =∠FCE , 在△BCA 和△ECF 中, {BC =CE∠BCA =∠ECF AC =CF, ∴△BCA ≌△ECF (SAS ), ∴AB =EF , ∵AB =AD , ∴AD =EF , 同理DE =AF ,∴四边形ADEF 是平行四边形.五.解答题(共2小题,满分20分,每小题10分) 24.(10分)按图中程序进行计算:规定:程序运行到“结果是否大于10”为一次运算. (1)若运算进行一次就停止,求出x 的取值范围; (2)若运算进行二次才停止,求出x 的取值范围. 【解答】解:(1)根据题意可得:3x ﹣2>10, ∴x >4,(2)根据题意可得:{3x −2≤103(3x −2)−2>10解得:2<x ≤425.(10分)△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =2√3.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点. (1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论; (3)连接BN ,在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.【解答】解:(1)如图1中,连接BE ,CF .∵△ABC是等边三角形,AD⊥BC,∴AB=BC=AC=8,BD=CD=4,∠BAD=∠CAD=30°,∴AD=√3BD=4√3,∵△AEF是等边三角形,∴∠EAF=60°,∴∠EAG=∠GAF=30°,∴EG=GF,∵AE=2√3,∴DE=AE=2√3,∴BE=√BD2+DE2=√42+(2√3)2=2√7,∵△ABC,△AEF是等边三角形,∴AB=AC,AE=AF,∠BAC=∠EAF=60°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2√7,∵EN=CN,EG=FG,∴GN=12CF=√7.(2)结论:∠DNM=120°是定值.理由:连接BE,CF.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC﹣∠ABE+∠ACB+∠ACF=120°,∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.(3)如图3﹣1中,取AC的中点,连接BJ,BN.∵AJ=CJ,EN=NC,∴JN=12AE=√3,∵BJ=AD=4√3,∴BN≤BJ+JN,∴BN≤5√3,∴当点N在BJ的延长线上时,BN的值最大,如图3﹣2中,过点N作NH⊥AD于H,设BJ交AD于K,连接AN.∵KJ=AJ•tan30°=4√33,JN=√3,∴KN=7√3 3,在Rt△HKN中,∵∠NHK=90°,∠NKH=60°,∴HN=NK•sin60°=7√33×√32=72,∴S△ADN=12•AD•NH=12×4√3×72=7√3.。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
人教版2020-2021学年初二数学下学期期中检测试题 ( 含答案)

2020-2021学年八年级第二学期期中数学试卷一、选择题(共10小题).1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±33.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠24.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13 5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=18.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.129.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣510.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个条件(只需填写一种)可以使得四边形ABCD为平行四边形.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是.16.(4分)若是整数,则满足条件的最小正整数n为.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是.三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是米,小红在商店停留了分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=.②参照(三)式化简=.(2)化简:+++…+.25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.参考答案一、选择题(本大题10小题,每小题3分,共30分)每小题给出4个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)下列式子中,属于最简二次根式的是()A.B.C.D.解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.2.(3分)下列计算正确的是()A.﹣B.3C.﹣D.=±3解:A、﹣,无法计算,故此选项错误;B、3=,故此选项错误;C、﹣=,正确;D、=3,故此选项错误;故选:C.3.(3分)函数y=的自变量x的取值范围为()A.x>2B.x<2C.x≤2D.x≠2解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选:D.4.(3分)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5B.6、8、10C.、2、D.5、12、13解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选:C.5.(3分)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.6.(3分)如图,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°解:在▱ABCD中,∵AD∥BC,∴∠DAB=180°﹣∠B=180°﹣100°=80°.∵AE平分∠DAB,∴∠AED=∠DAB=40°.故选:D.7.(3分)关于正比例函数y=﹣3x,下列结论正确的是()A.图象不经过原点B.y随x的增大而增大C.图象经过第二、四象限D.当x=时,y=1解:A.图象经过原点,错误;B.y随x的增大而减小,错误;C、图象经过第二、四象限,正确;D.当x=时,y=﹣1,错误;故选:C.8.(3分)已知直角三角形斜边上的中线长为3,则斜边长为()A.3B.6C.9D.12解:∵直角三角形斜边上的中线长为3,∴斜边长是6.故选:B.9.(3分)已知﹣2<m<3,化简+|m+2|的结果是()A.5B.1C.2m﹣1D.2m﹣5解:∵﹣2<m<3,∴m﹣3<0,m+2>0,∴+|m+2|=3﹣m+m+2=5.故选:A.10.(3分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1B.1.3C.1.2D.1.5解:∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点.∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP•BC=AB•AC,∴AP•BC=AB•AC.∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=2.4,∴AM=1.2;故选:C.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)要使有意义,则x的取值范围是x≥4.解:由题意得:x﹣4≥0,解得:x≥4.故答案为:x≥4.12.(4分)已知,如图在四边形ABCD中,AB=CD,则添加一个AD=BC条件(只需填写一种)可以使得四边形ABCD为平行四边形.解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.13.(4分)已知函数y=x+m﹣2020(m常数)是正比例函数,则m=2020.解:∵函数y=x+m﹣2020(m常数)是正比例函数,∴m﹣2020=0,解得m=2020,故答案为:2020.14.(4分)已知直角三角形的两边的长分别是3和4,则第三边长为5或.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.15.(4分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是24.解:∵AC是菱形ABCD的对角线,E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=3,∴BC=6,∴菱形ABCD的周长是4×6=24.故答案为24.16.(4分)若是整数,则满足条件的最小正整数n为7.解:∵28=4×7,4是平方数,∴若是整数,则n的最小值为7.故答案为:7.17.(4分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是(0,21009).解:由已知,点A每次旋转转动45°,则转动一周需转动8次,每次转动点A到原点的距离变为转动前的倍∵2018=252×8+2∴点A2018的在y轴正半轴上,OA2018==21009故答案为:(0,21009)三、解答题(本大题3小题,每小题6分,共18分)18.(6分)计算:÷﹣×+.解:原式=﹣+2=4+19.(6分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点E,F分别是BC,AD的中点,∴,,∴AF∥EC,AF=EC,∴四边形AECF是平行四边形.20.(6分)小红星期天从家里出发骑自行车去舅舅家,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是她本次去舅舅家所用的时间与小红离家的距离的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是1500米,小红在商店停留了4分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.四、解答题(本大题3小题,每小题8分,共24分)21.(8分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.【解答】证明:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°.∴∠A+∠C=360°﹣180°=180°.22.(8分)已知:如图,过矩形ABCD的顶点C作CE∥BD,交AB的延长线于点E.(1)求证:∠CAE=∠CEA;(2)若AD=1,∠E=30°,求△ACE的周长.【解答】证明:(1)∵四边形ABCD是矩形,∴DC∥BE,AC=BD.又EC∥BD,∴四边形DBEC是平行四边形.∴CE=DB.∴AC=EC.∴∠CAE=∠CEA;(2)由(1)得∠DBA=∠E=30°,∴BD=2AD=2,AB=.∴AC=CE=BD=2,AE=2AB=2.所以△ACE周长为4+2.23.(8分)已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点M,使△AOM是等腰三角形?若存在,求点M的坐标;若不存在,请说明理由.解:(1)∵点A的横坐标为3,△AOH的面积为3,点A在第四象限,∴点A的坐标为(3,﹣2).将A(3,﹣2)代入y=kx,﹣2=3k,解得:k=﹣,∴正比例函数的表达式为y=﹣x.(2)①当OM=OA时,如图1所示,∵点A的坐标为(3,﹣2),∴OH=3,AH=2,OA==,∴点M的坐标为(﹣,0)或(,0);②当AO=AM时,如图2所示,∵点H的坐标为(3,0),∴点M的坐标为(6,0);③当OM=MA时,设OM=x,则MH=3﹣x,∵OM=MA,∴x=,解得:x=,∴点M的坐标为(,0).综上所述:当点M的坐标为(﹣,0)、(,0)、(6,0)或(,0)时,△AOM是等腰三角形.五、解答题(本大题2小题,每小题10分,共20分)24.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一)==;(二)===﹣1;(三)====﹣1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=﹣.②参照(三)式化简=﹣.(2)化简:+++…+.解:(1)①==﹣;②===﹣;(2)原式=+++…+==.故答案为:(1)①﹣;②﹣25.(10分)已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图(1),连接AF、CE.①四边形AFCE是什么特殊四边形?说明理由;②求AF的长;(2)如图(2),动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵EF⊥AC,∴四边形AFCE为菱形.②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.1、三人行,必有我师。
2020人教版八年级数学下册期中试卷含答案

2020人教版八年级数学下册期中试卷含答案八年级数学下册期中测试一、选择题1.若 $\frac{1}{2x-1}$ 在实数范围内有意义,则 $x$ 的取值范围是()A。
$x\geq \frac{1}{2}$ B。
$x\geq \frac{1}{2}$ C。
$x。
\frac{1}{2}$ D。
$x\neq \frac{1}{2}$2.一直角三角形的两直角边长为12和16,则斜边长为()A。
12 B。
16 C。
18 D。
203.如图,在▱ABCD 中,已知 $AD=5$ cm,$AB=3$ cm,$AE$ 平分∠$BAD$ 交 $BC$ 边于点 $E$,则 $EC$ 等于()A。
1 cm B。
2 cm C。
3 cm D。
4 cm4.下列计算错误的是()A。
$14\times 7=98$ B。
$60\div 5=12$ C。
$9a+25a=34a$ D。
$32-2=30$5.如图,点 $P$ 是平面直角坐标系内一点,则点 $P$ 到原点的距离是()A。
3 B。
2 C。
7 D。
56.下列根式中,是最简二次根式的是()A。
$0.2b$ B。
$12a-12b$ C。
$x^2-y^2$ D。
$5ab^2$7.如图,已知四边形 $ABCD$ 是平行四边形,下列结论中不正确的是()A。
当$AB=BC$ 时,它是菱形B。
当$AC\perp BD$ 时,它是菱形C。
当∠$ABC=90°$ 时,它是矩形 D。
当 $AC=BD$ 时,它是正方形8.已知菱形 $ABCD$ 中,对角线 $AC$ 与 $BD$ 交于点$O$,∠$BAD=120°$,$AC=4$,则该菱形的面积是()A。
16√3 B。
16 C。
8√3 D。
89.如图,在四边形 $ABCD$ 中,$AB=BC$,∠$ABC=\angle CDA=90°$,$BE\perp AD$ 于点 $E$,且四边形 $ABCD$ 的面积为8,则 $BE$ =()A。
人教版2020年八年级下册期中数学试卷(含答案)
八年级(下)期中数学试卷一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.42.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.48.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1259.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<112.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A.2B.3C.D.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b=.14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.19.解不等式组,并将解集在数轴上表示出来.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)八年级(下)期中数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数,根据定义即可作出判断.【解答】解:=3是整数,是有理数;是分数,是有理数;是无理数;()0=1是整数,是有理数.则无理数只有1个.故选A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2015•株洲)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数;差的绝对值是大数减小数,开方运算,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、﹣3的绝对值是3﹣,故B正确;C、2是4的平方根,故C错误;D、﹣是﹣3的立方根,故D正确;故选:C.【点评】本题考查了实数的性质,只有符号不同的两个数互为相反数;注意差的绝对值是大数减小数.4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b【考点】不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点评】本题考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【专题】数形结合.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形【考点】命题与定理.【分析】根据矩形的性质对A进行判断;根据平行四边形的性质对B进行判断;根据矩形的判定方法对C 进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、矩形的对角线相等,所以A为真命题;B、平行四边形的对角线互相平分,所以B为真命题;C、对角线相等的平行四边形是矩形,所以C为假命题;D、对角线互相垂直平分的四边形是菱形,所以D为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.8.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.125【考点】勾股定理.【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选B.【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在【考点】平方根.【专题】计算题.【分析】由于=x,表示一个数的算术平方根等于它本身,根据算术平方根的定义即可解决问题.【解答】解:∵=x,∴x=1或0.故选C.【点评】此题主要考查了算术平方根性质,解题注意:0的平方根是0,1的算术平方根也还是它本身.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【考点】不等式的解集.【分析】根据题意结合不等式解集的确定方法得出答案.【解答】解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.【点评】此题主要考查了不等式的解集,正确利用不等式解集确定方法是解题关键.12.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF 的长为()A.2B.3C.D.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.【点评】本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b=8.【考点】估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出的范围.14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是m<2.【考点】不等式的解集.【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式(m﹣2)x>2﹣m的解集为x<﹣1,∴m﹣2<0,m<2,故答案为:m<2.【点评】本题考查了不等式的解集,由不等号方向改变,得出未知数的系数小于0.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是±2.【考点】立方根;平方根;算术平方根.【专题】计算题;实数.【分析】利用平方根、立方根定义求出a与b的值,即可确定出a+2b的平方根.【解答】解:根据题意得:2a﹣1=27,3a+b﹣1=36,解得:a=14,b=﹣5,则a+2b=14﹣10=4,4的平方根是±2,故答案为:±2【点评】此题考查了立方根、平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为4.【考点】三角形中位线定理;菱形的性质.【分析】根据EF是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【解答】解:∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴AC=2EF=2,=AC•BD=×2×4=4.则S菱形ABCD故答案是:4.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt△A1BB1中,由勾股定理可求得正方形A1B1C1D1的面积=,然后再在Rt△A2B1B2中,由勾股定理求得正方形A2B2C2D2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=…∴正方形A n B n C n D n的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.【考点】解一元一次不等式;实数的运算;零指数幂.【分析】(1)根据零指数幂,二次根式的性质,绝对值分别求出每一部分的值,再代入求出即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)原式=1×6﹣4+π﹣2=π;(2)去分母得:2x>6﹣(x﹣3),去括号得:2x>6﹣x+3,移项得:2x+x>6+3,合并同类项得:3x>9,系数化成1得:x>3.【点评】本题考查了解一元一次不等式,零指数幂,二次根式的性质,绝对值的应用,能熟记知识点是解此题的关键.19.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:【点评】本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【专题】计算题.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD 为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1=S△ABC+S△DAC,而S四边形ABCD∴S=2.四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.【考点】矩形的判定.【分析】(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,则矩形的面积=长×宽=AD•BD,即可得出结果.【解答】(1)证明:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=5,BD=CD=BC=3,∴AD==4.∴四边形AEBD的面积=BD•AD═3×4=12.【点评】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:,①+②得:3x=6a+3,即x=2a+1,把x=2a+1代入①得:y=a﹣2,代入不等式得:2a+1>a﹣2>0,解得:a>2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?【考点】一元一次不等式的应用.【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买的金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x的最大值为7,答:孔明应该买7个球拍.【点评】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.【考点】菱形的性质;平行四边形的判定.【专题】证明题.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.【解答】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.【点评】本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)【考点】正方形的判定;全等三角形的判定与性质;矩形的判定.【分析】(1)证明△AEF≌△DEC可得AF=DC,再根据条件AF=BD可利用等量代换可得BD=CD;(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠ECD.∵E是AD的中点,∴DE=AE,在△AEF与△DEC中,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)答:四边形AFBD为矩形;解:∵AF=BD,AF∥BD,∴四边形AFBD为平行四边形,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDA=90°,∴四边形AFBD为矩形;精品资料(3)AB=AC,且∠BAC=90°;∵AB=AC,且∠BAC=90°,∴∠ABC=45°,∵AD⊥BC,∴∠BAD=45°,∴AD=DB,∴四边形AFBD为正方形.【点评】此题主要考查了正方形的判定,矩形的判定,以及全等三角形的判定与性质,关键是掌握邻边相等的矩形是正方形.。
新人教版2020学年八年级(下)期中数学试卷(含解析)
2020学年八年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣32.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.3.(3分)下列各组数能构成勾股数的是()A.2,,B.12,16,20C.,,D.32,42,524.(3分)下列选项中,不能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB∥CD B.AB∥CD,AB=CDC.AD∥BC,AB=DC D.AB=DC,AD=BC5.(3分)如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.6.(3分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=6,则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题(本大题共6小题,每小题3分,共18分)20n7.(3分)已知是整数,则满足条件的最小正整数n为.8.(3分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.9.(3分)如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则AB的长为.10.(3分)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…请写出下一数组:.11.(3分)如图,四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,AB=4,CD=4,则该四边形的面积是.12.(3分)如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=8cm,动点P,Q分别从点A、C同时出发,点P以3cm/S的速度向B移动,一直到达B为止;点Q以2cm/s的速度向D移动.当P、Q两点从出发开始到秒时,点P和点Q的距离是10cm.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:(1)+﹣﹣;(2)(3﹣2+)÷2.14.(6分)已知a=+2,b=﹣2,求下列代数式的值:(1)a2﹣2ab+b2;(2)a2﹣b2.15.(6分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.17.(6分)矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,求BE的长.四、(本大题共3小题,每小题8分,共24分)18.(8分)如图方式摆放矩形纸片ABCD和矩形纸片ECGF,其中B,C,G三点共线,CE在CD上,连接AF,若M为AF的中点,连接DM,ME.(1)DM与ME的数量关系是.(2)请证明上面的结论.19.(8分)阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当a>0,b>0时,∵(﹣)2=a﹣2+b≥0,∴a+b≥2,当且仅当a=b时取等号.请利用上述结论解决以下问题:(1)当x>0时,求x+的最小值;(2)当x<0时,求x+的最大值;(3)当x>0时,求y=的最小值.20.(8分)已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.五、(本大题共2小题,每小题9分,共18分)21.(9分)阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:===方法二:====(1)请用两种不同的方法化简:;(2)化简:.22.(9分)某超市分两次购进A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A商品以每件45元出售,B商品以每件75元出售.为满足市场需求,需购进A、B两种商品共1000件,且A商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.购进数量(件)购进所需费用(元)A B第一次30402900第二次40302700六、(本大题共12分)23.(12分)直线EF分别平行四边形ABCD边AB、CD于直E、F,将图形沿直线EF对折,点A、D分別落在点A′、D′处.(1)如图1,当点A′与点C重合时,连接AF.求证:四边形AECF是菱形;(2)若∠A=60°,AD=4,AB=8,①如图2,当点A′与BC边的中点G重合时,求AE的长;②如图3,当点A′落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+P A′的最小值.参考答案一、选择题(本大题共6小题,每小题3分,共18分每小题只有一个正确选项)1.【解答】解:依题意得x+3≥0,解得x≥﹣3.故选:A.2.【解答】解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.3.【解答】解:A、22+()2=()2,但不是正整数,故选项错误;B、122+162=202,能构成直角三角形,是整数,故选项正确;C、()2+()2≠()2,不能构成直角三角形,故选项错误;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故选项错误.故选:B.4.【解答】解:A、由AD∥BC,AB∥CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;B、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;故本选项不符合题意;C、由AD∥BC,AB=DC不能判断四边形ABCD是平行四边形;故本选项符合题意;D、由AB=DC,AD=BC可以判断四边形ABCD是平行四边形;故本选项不符合题意;故选:C.5.【解答】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM﹣DM=﹣1,∵四边形EDGF是正方形,∴DG=DE=﹣1.故选:D.6.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∵MP=AE=2∴S△DFP=S△PBE=×2×6=6,∴S阴=6+6=12,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)20n7.【解答】解:∵==2,且是整数;∴2是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案是:5.8.【解答】解:如下图,∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),∴BC=DE(如上图),根据勾股定理的几何意义,∵AB2+BC2=AC2,∴b的面积=a的面积+c的面积=5+11=16.9.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.10.【解答】解:∵(3,4,5):3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;(5,12,13):5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;(7,24,25):7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;(9,40,41):9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;∴下一组数为:11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,故答案为:(11,60,61).11.【解答】解:如图,延长CA、DB交于点E,∵四边形ABDC中,∠ABD=120°,AB⊥AC,BD⊥CD,∴∠C=60°,∴∠E=30°.在Rt△ABE中,∵AB=4,∠E=30°,∴BE=2AB=8,∴AE==4.在Rt△DEC中,∵∠E=30°,CD=4,∴CE=2CD=8,∴DE==12,∴S△ABE=×4×4=8,S△CDE=×4×12=24,∴S四边形ABDC=S△CDE﹣S△ABE=16.故答案为16.12.【解答】解:设当P、Q两点从出发开始到x秒时,点P和点Q的距离是10cm,此时AP=3xcm,DQ=(16﹣2x)cm,根据题意得:(16﹣2x﹣3x)2+82=102,解得:x1=2,x2=.答:当P、Q两点从出发开始到2秒或秒时,点P和点Q的距离是10cm.故答案为:2或.三、(本大题共5小题,每小题6分,共30分)13.【解答】解:(1)原式=3+2﹣2﹣3=﹣;(2)原式=(6﹣+4)÷2=÷2=.14.【解答】解:∵a=+2,b=﹣2,∴a+b=+2+﹣2=2,a﹣b=(+2)﹣(﹣2)=4,(1)a2﹣2ab+b2=(a﹣b)2=42=16;(2)a2﹣b2=(a+b)(a﹣b)=2×4=8.15.【解答】证明:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO.16.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.17.【解答】解:如图1,当∠BC′E=90°时,如图1,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BC′E=90°,∴B,C′,D三点共线,∴DC′=DC=6,∴BC′=4,BE=8﹣C′E,∵BC′2+EC′2=BE2,∴42+C′E2=(8﹣C′E)2,解得C′E=3,∴BE=8﹣3=5;如图2,当∠BEC′=90°时,矩形ABCD中,AB=6,AD=BC=8,∴BD=10,∵把△DCE沿DE折叠,使点C落在点C′处,∴∠DC′E=∠C=90°,∵∠BEC′=90°,∴∠CEC′=90°,∴四边形ECDC′是正方形,∴C′E=CE=CD=6,∴BE=2.综上所述,当△BEC′为直角三角形时,BE的长为2或5.四、(本大题共3小题,每小题8分,共24分)18.【解答】(1)解:猜想:DM=ME;故答案为:DM=ME;(2)证明:延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,∴在△FME和△AMH中,,∴△FME≌△AMH(ASA)∴HM=EM,在Rt△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.19.【解答】解:(1)当x>0时,x+≥2=2,∴当x>0时,x+的最小值是2;(2)当x<0时,x+=﹣(﹣x﹣),﹣x﹣≥2=2,∴﹣(﹣x﹣)≤﹣2,∴当x<0时,x+的最大值是﹣2;(3)y==x+3+,x+≥2=8,∴x+的最小值是8,∴x+3+的最小值是11,∴当x>0时,y=的最小值是11.20.【解答】解:过P作PM⊥OA于M.(1)当OP=OD时,OP=5,CO=4,∴易得CP=3,∴P(3,4);(2)当OD=PD时,PD=DO=5,PM=4,∴易得MD=3,从而CP=2或CP′=8,∴P(2,4)或(8,4);(3)当OP=PD时,P(,4),此时腰长为:≠5,故这种情况不合题意,舍去.综上,满足题意的点P的坐标为(3,4)、(2,4)、(8,4).五、(本大题共2小题,每小题9分,共18分)21.【解答】解:(1)方法一:原式==﹣;方法二:原式==﹣;(2)原式=(﹣+﹣+…+﹣)=(﹣)=﹣.22.【解答】解:设A、B两种商品每件的进价分别是x元,y元根据题意得:解得:答:A、B两种商品每件的进价分别是30元,50元.(2)设A商品a件,B商品(1000﹣a)件,利润为m元根据题意得:解得:800≤a≤1000m=(45﹣30)a+(75﹣50)(1000﹣a)=25000﹣10a∵k=﹣10<0,∴m随a的增大而减小∴a=800时,m的最大值为17000元.∴A商品800件,B商品200件.六、(本大题共12分)23.【解答】(1)证明:如图1,连接AC,AC交EF于点O,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△OBF≌△ODE,∴AE=CF,∵AE∥CF∴四边形AFCE是平行四边形,由翻折得,AF=CF,∴四边形AFCE是菱形.(2)解:①如图2中,作A′H⊥AB交AB的延长线于H.在Rt△GBH中,GB=2,∠GBH=60°,∴BH=BG=1,GH==,设AE=EG=x,在Rt△EGH中,∵EG2=EH2+GH2,∴x2=(9﹣x)2+()2,∴x=,∴AE=.②如图3中,连接AC交EF于P′,连接P′A′,作CH⊥AB交AB的延长线于H.∵A、A′关于直线EF对称,∴P′A′=P′A,∴P′A′+P′C=P′A+P′C=AC,∴当点P与P′重合时,P A′+PC的值最小,最小值=AC的长.在Rt△BCH中,∵BC=4,∠CBH=60°,∴BH=2,CH=2,∴AH=10,在Rt△ACH中,AC===4.∴PC+P A′的最小值为4,故答案为4.。
北京市2020〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析
北京市2020年〖人教版〗八年级数学下册复习试卷期中试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题:(每小题2分,共20分)1.(2分)若分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x>﹣2 D.x >2考点:分式有意义的条件..分析:分式有意义的条件是分母不为0,解答:解:分式有意义,则x﹣2≠0,∴x≠2.故选A.点评:本题比较简单,考查了分式有意义的条件:分母不能为0.2.(2分)在式子,,,+,中,分式的个数是()A.5B.4C.3D.2考点:分式的定义..分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选C.点评:本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.3.(2分)下列函数是反比例函数的是()A.y=B.y=C.y=D.y=考点:反比例函数的定义..分析:此题应根据反比例函数的定义,解析式符合y=(k≠0)的形式为反比例函数.解答:解:A、y=是正比例函数,错误;B、y=是反比例函数,正确;C、y=不符合反比例函数的定义,错误;D、y=不符合反比例函数的定义,错误.故选B.点评:本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式(k≠0).4.(2分)现修建一座既是中心对称图形又是轴对称图形的花坛,征集到设计方案有平行四边形、正三角形、等腰三角形、矩形、菱形、正方形等图案,你认为符合条件的有()A.3个B.4个C.5个D.6个考点:中心对称图形;轴对称图形..分析:根据轴对称图形与中心对称图形的概念并分析各图形的特征求解.解答:解:平行四边形是中心对称图形,但不是轴对称图形;正三角形是轴对称图形,但不是中心对称图形;等腰三角形是轴对称图形,但不是中心对称图形;矩形是轴对称图形,也是中心对称图形;菱形是轴对称图形,也是中心对称图形;正方形是轴对称图形,也是中心对称图形;综上可得符合条件的有3个.故选A.点评:本题考查了轴对称及中心对称的知识,掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2分)如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.扩大2倍考点:分式的基本性质..分析:依题意,分别用3x和3y去代换原分式中的x和y,利用分式的基本性质化简即可.解答:解:分别用3x和3y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选B.点评:解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.(2分)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米考点:勾股定理的应用..专题:应用题.分析:根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.解答:解:由题意得BC=9,在直角三角形ABC中,根据勾股定理得:AB==15米.所以大树的高度是15+9=24米.故选D.点评:本题考查了勾股定理.熟记9,12,15这组勾股数,计算的时候较快.7.(2分)(•哈尔滨)直角三角形的两条直角边长分别为6cm和8cm,则连接这两条直角边中点线段的长为()A.3cm B.4cm C.5cm D.12cm考点:三角形中位线定理;勾股定理..分析:由题意可知:BC=6,AC=8.根据勾股定理得:BA=10.D、E是两直角边的中点,即为三角形中位线,根据中位线性质即可解答.解答:解:如图所示,在RT△ABC中,BC=6,AC=8,根据勾股定理得:AB==10,又D、E是两直角边的中点,所以DE=AB=5故选C.点评:此题不但考查了勾股定理,还考查了三角形中位线定理,所以学生要把学过的知识融合起来.要培养整体思维的能力.8.(2分)下列命题中不正确的是()A.直角三角形斜边中线等于斜边的一半B.矩形的对角线相等C.矩形的对角线互相垂直D.矩形是轴对称图形考点:命题与定理..分析:根据直角三角形斜边上的性质对A进行判断;根据矩形的性质对B、C、D进行判断.解答:解:A、直角三角形斜边中线等于斜边的一半,所以A选项的命题正确;B、矩形的对角线相等,所以B选项的命题正确;C、矩形的对角线相等且互相平分,所以C选项的命题不正确;D、矩形是轴对称图形,有两条对称轴,所以D选项的命题正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.(2分)顺次连结矩形各边的中点,所成的四边形一定是()A.平行四边形B.矩形C.菱形D.梯形考点:中点四边形..分因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都析:相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.10.(2分)如图,过四边形ABCD的各顶点作对角线BD,AC的平行线围成四边形EFGH,若四边形EFGH 是菱形,则原四边形一定是()A.菱形B.平行四边形C.矩形D.对角线相等的四边形考点:菱形的性质..分析:推出四边形EFGH、HGCA\DGFB是平行四边形,推出GH=GF,则可求解.解答:解:∵EH∥BD,GF∥BD,∴EH∥GF,∵EF∥AC,GH∥AC,∴EF∥GH,∴四边形EFGH是平行四边形,∵GH∥AC,EH∥CG,∴四边形HACG是平行四边形,∴GH=AC,同理GF=BD,∴GH=GF,∴平行四边形EFGH是菱形,故选D.点评:此题主要考查平行四边形和菱形的判定.二、填空题:(每空3分,共30分)11.(3分)1纳米=0.000000001米,则7.5纳米用科学记数表示为7.5×10﹣9米.考点:科学记数法—表示较小的数..分析:首先把7.5纳米化为0.0000000075米,再用科学记数法表示,绝对值小于1的正数利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:7.5纳米=0.0000000075米=7.5×10﹣9米,故答案为:7.5×10﹣9米.点评:本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)若反比例函数y=的图象分布在第一、三象限,则k的取值范围是k>﹣2 .考点:反比例函数的性质..专题:计算题.分析:让反比例函数的比例系数大于0列式求值即可.解答:解:∵反比例函数y=的图象分布在第一、三象限,∴k+2>0,解得k>﹣2.故答案为:k>﹣2.点评:考查反比例函数的性质;用到的知识点为:反比例函数的图象在一、三象限,比例系数大于0.13.(3分)已知正方形的边长为10cm,则对角线的长为10cm.考点:正方形的性质..分析:作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AD2=AB2+BD2,求出AD的值即可.解答:解:如图所示:四边形ABCD是边长为4cm的正方形,在Rt△ABD中,由勾股定理得:AD===10cm.所以对角线的长:AD=10cm.点评:本题主要考查勾股定理的应用,应先构造一个直角三角形,在直角三角形中斜边的平方等于两直角边的平方和,作图可以使整个题变得简洁明了14.(3分)已知反比例函数的图象经过A(2,6),那么点B(﹣3,一4)是否在这个函数的图象上在(填“在”或“不在).考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征..分析:计算点B的横纵坐标的积与点A的横纵坐标的积是否相等即可.解答:解:∵反比例函数的图象经过A(2,6),∴k=2×6=12.又∵﹣3×(一4)=12=k,∴点B(﹣3,一4)在这个函数的图象上.故答案为:在.点评:考查反比例函数的图象上的点的坐标的特征.用到的知识点为:反比例函数图象上点的横纵坐标的积相等.15.(3分)(•资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB=5 .考点:含30度角的直角三角形;矩形的性质..分析:根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AB的长.解答:解:∵四边形ABCD是矩形,∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴AB=OA=AC=5,故答案是:5.点评:本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.16.(3分)若方程=无解,则m= ﹣1 .考点:分式方程的解..专题:计算题.分析:分式方程无解,即化成整式方程时无解,或者求得的x的值使最简公分母为0,据此进行解答.解答:解:方程两边同乘x﹣2,得x﹣1=﹣m,∴x=1﹣m.由于此整式方程一定有解,则此解使最简公分母为0.当x﹣2=0时,x=2,∴1﹣m=2时,m=﹣1.故若方程=无解,则m=﹣1.点评:分式方程无解分两种情况:整式方程本身无解;分式方程产生增根.本题将分式方程化成整式方程以后,发现是一元一次方程,一定有解,则只能是整式方程的根使最简公分母为0.17.(3分)若菱形两条对角线长分别为6cm和8cm,则它的周长为20cm,面积是24cm2.考点:菱形的性质..专题:计算题.分析:根据菱形的对角线互相平分且垂直,可得菱形的周长为20cm;根据菱形的面积等于对角线积的一半,可得菱形的面积为24cm2.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD,∵AC=8cm,BD=6cm,∴AD=5cm,S菱形ABCD=AC•BD=24cm2.故答案为:20cm、24cm2.点评:此题考查了菱形的性质:菱形的对角线互相平分且垂直;菱形的四条边都相等.解题的关键注意菱形面积的求解方法:底乘以高或对角线积的一半.18.(3分)(•杭州)当m= 3 时,分式的值为零.考点:分式的值为零的条件..专题:计算题.分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解答:解:要使分式由分子(m﹣1)(m﹣3)=0.解得:m=1或3;而m=3时,分母m2﹣3m+2=2≠0;当m=1时分母m2﹣3m+2=1﹣3+2=0,分式没有意义.所以m的值为3.故答案为3.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.(3分)如图所示,一个梯子AB长5m,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3m梯子滑动后停在DE位置上,如图,测得DB的长为1m,则梯子顶端A下落了1 m.考点:勾股定理的应用..专题:应用题.分析:根据梯子、墙、地面构成直角三角形,利用勾股定理解答即可.解答:解:在Rt△ABC中,AB=5m,BC=3m,根据勾股定理得AC==4米,Rt△CDE中,ED=AB=5m,CD=BC+DB=3+1=4米,根据勾股定理得CE==3,所以AE=AC﹣CE=1米,即梯子顶端下滑了1m.点评:连续运用两次勾股定理,分别求得AC和CE的长,进一步求得AE的长.20.(3分)(•莆田)如图,在x轴的正半轴上依次截取OA1=A1A2=A2A3=A3A4=A4A5,过点A1、A2、A3、A4、A5分别作x轴的垂线与反比例函数y=(x≠0)的图象相交于点P1、P2、P3、P4、P5,得直角三角形OP1A1、A1P2A2、A2P3A3、A3P4A4、A4P5A5,并设其面积分别为S1、S2、S3、S4、S5,则S5的值为.考点:反比例函数系数k的几何意义..专题:压轴题;规律型.分析:根据反比例函数中k的几何意义再结合图象即可解答.解答:解:∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴S1=1,S△OA2P2=1,∵OA1=A1A2,∴S△OA2P2=,同理可得,S2=S1=,S3=S1=,S4=S1=,S5=S1=.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.三、解答题:(共50分)21.(5分)已知y是x的反比例函数,当x=2时,y=6.(1)写出y与x的函数关系式;(2)求当x=4时y的值.考点:待定系数法求反比例函数解析式..专题:待定系数法.分析:(1)因为函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值,从而求得反比例函数的解析式.(2)把x=4代入函数的解析式,求出y的值.解答:解:(1)设∵当x=2时,y=6∴解得k=12∴(2)把x=4代入,得.点评:本题考查的是用待定系数法求反比例函数的解析式,比较简单.22.(5分)(•武汉)解方程:.考点:解分式方程..分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.23.(6分)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.考点:勾股定理的逆定理..分析:根据两小边的平方和等于最长边的平方就是直角三角形,否则就不是,分别进行判断,即可求出答案.解答:解:(1)∵152+82=172,即a2+b2=c2,则是直角三角形;(2)132+142≠152,则不是直角三角形.点评:此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.24.(6分)先化简,然后选取一个你喜欢的x的值代入计算.考点:分式的化简求值..专题:计算题;开放型.分析:先对x2﹣2x+1分解因式,再进行通分化简,最后求值.解答:解:==,(x≠1)当x=2时,原式=2.点评:主要考查分式的化简求值比较简单,不过选择喜欢的值时,一定要使分母有意义.25.(6分)某空调厂的装配车间计划组装9000台空调:(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间有怎样的函数关系?(2)原计划用2个月时间,(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前10天上市,那么原装配车间每天至少要组装多少空调?考点:反比例函数的应用..专题:应用题.分析:首先根据题意,因总工作量为9000台空调,故每天组装的台数m与生产时间t之间成反比例关系,即m•t=9000;进一步求解可得答案.解答:解:(1)每天组装的台数m(单位:台/天)与生产时间t(单位:天)之间的函数关系:;(2)当t=50时,.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调.点评:本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.26.(6分)如图,在海上观察所A,我边防海警发现正北6km的B处有一可疑船只正在向东方向8km的C处行驶.我边防海警即刻派船前往C处拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?考点:勾股定理的应用..分析:首先利用勾股定理求得线段AC的长,然后利用行驶时间相等求得边防海警船的速度.解答:解:∵AB=6,BC=8∴AC==10km,∵可疑船只的行驶速度为40km/h,∴可疑船只的行驶时间为8÷40=0.2小时,∴我边防海警船的速度为10÷0.2=50km/小时,∴我边防海警船的速度为50km/h时,才能恰好在C处将可疑船只截住.点评:本题考查了勾股定理在实际生活中的应用,本题中正确的找到OB,AB的等量关系,并且根据该等量关系在直角△OAB中求解是解题的关键.27.(6分)(•黔南州)已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.考点:全等三角形的判定;平行四边形的性质;菱形的性质;矩形的判定..专题:几何综合题.分析:(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED与△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴四边形AGBD是矩形.点评:主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.28.(10分)如图,已知反比例函数的图象经过第二象限内的点A(﹣2,m),AB⊥x轴于B,△AOB的面积为3,(1)求k,m的值;(2)若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点.①求直线y=ax+b的解析式;②设直线y=ax+b与x轴交于点M,求AM的长;③根据图象写出使反比例函数>y=ax+b的值x的取值范围.考点:反比例函数综合题..专题:综合题.分析:(1)利用△AOB的面积可求出点A的坐标,把点A的坐标代入反比例函数解析式即可求得k的值;(2)把C坐标代入反比例函数就能求得C完整的坐标:①把A、C代入一次函数解析式就能求得解析式;②求出M的坐标,利用勾股定理即可求得AM长;③应从A、C两点入手,判断出反比例函数的值>y=ax+b的值x的取值范围.解答:解:(1)∵点A(﹣2,m)在第二象限内∴AB=m,OB=2∴即:∴,解得m=3∴A(﹣2,3)∵点A(﹣2,3)在反比例函数的图象上,∴,解得:k=﹣6;(2)由(1)知,反比例函数为,又∵反比例函数的图象经过∴,解得:n=4.∴①∵直线y=ax+b过点A(﹣2,3)、∴∴解方程组得∴直线y=ax+b的解析式为.②当y=0时,即,解得:x=2,即点M(2,0)在Rt△ABM中,∵AB=3,BM=BO+OM=2+2=4由勾股定理得:AM=5.③由图象知:当﹣2<x<0或x>4时,反比例函数的值>的值.点评:过某个点,这个点的坐标应适合这个函数解析式.求一次函数的解析式需知道它上面的两个点的坐标;求自变量的取值范围应该从交点入手思考;需注意反比例函数的自变量不能取0.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。
2020-2021学年人教版八年级下期中考试数学试题及答案解析
2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列计算中正确的是()A.√3+√2=√5B.√(−3)2=−3C.√24÷√6=4D.√8−√2=√2【解答】解:A、√3+√2无法计算,故此选项不合题意;B、√(−3)2=3,故此选项不合题意;C、√24÷√6=2,故此选项不合题意;D、√8−√2=√2,正确.故选:D.2.设√7的小数部分为b,那么(4+b)b的值是()A.1B.是一个有理数C.3D.无法确定【解答】解:∵√7的小数部分为b,∴b=√7−2,把b=√7−2代入式子(4+b)b中,原式=(4+b)b=(4+√7−2)×(√7−2)=3.故选:C.3.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4【解答】解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是√1×√42=√42,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是√2×√32=√62; 当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形; 当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是√2×√22=√42, ∵√62>√42, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .4.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm ,则这个矩形的一条较短边的长度为( )A .10cmB .8cmC .6cmD .5cm【解答】解:∵四边形ABCD 是矩形, ∴OA =OC =12AC ,OD =OB =12BD ,AC =BD , ∴OA =OB , ∵AC +BD =20, ∴AC =BD =10cm , ∴OA =OB =5cm ,∵OA =OB ,∠AOB =60°, ∴△OAB 是等边三角形, ∴AB =OA =5cm , 故选:D .5.如图,▱ABCD 的对角线相交于点O ,且AB ≠AD ,过点O 作OE ⊥BD 交BC 于点E ,若△CDE 的周长为10,则▱ABCD 的周长为( )A .14B .16C .20D .18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.6.下列各图能表示y是x的函数是()A.B.C.D.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x 的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.7.如图,在▱ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=2.故选:D.8.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线y=12x+b与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1B.−12≤b≤1C.−12≤b≤12D.﹣1≤b≤12【解答】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=−1 2;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是−12≤b≤1.故选:B.9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2B.3C.4D.5【解答】解:C点所有的情况如图所示:故选:C.10.直线y=﹣x+4不可能经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由于﹣1<0,4>0,故函数过一、二、四象限,不过第三象限.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.计算√48−9√13的结果是√3.【解答】解:√48−9√1 3=4√3−3√3=√3.故答案为:√3.12.如果在▱ABCD中,∠A=40°,那么∠B=50°.×(判断对错)【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=40°,∴∠B=140°≠50°,故答案为:×.13.如图,△ABC中,∠ACB=90°,D为AB中点,BC=6,CD=5,则AB=10,AC =8.【解答】解:∵∠ACB=90°,D为AB中点,∴AB=2CD=10,由勾股定理得:AC=√AB2−BC2=√102−62=8;故答案为:10,8.14.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值=﹣2.【解答】解:两个解析式的k值应互为相反数,即k=﹣2.15.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=√2或7√2.【解答】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=12AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=DGBD=ACAB,∴DG 5=810,∴DG =4,由翻折得:∠DA ′E =∠A ,A ′D =AD =5, ∴sin ∠DA ′E =sin ∠A =BCAB =DF A′D, ∴610=DF 5,∴DF =3, ∴FG =4﹣3=1, ∵A ′E ⊥AC ,BC ⊥AC , ∴A ′E ∥BC ,∴∠HFG +∠DGB =180°, ∵∠DGB =90°, ∴∠HFG =90°, ∵∠EHB =90°, ∴四边形HFGB 是矩形, ∴BH =FG =1,同理得:A ′E =AE =8﹣1=7, ∴A ′H =A ′E ﹣EH =7﹣6=1,在Rt △AHB 中,由勾股定理得:A ′B =√12+12=√2;②如图2,过D 作MN ∥AC ,交BC 与于N ,过A ′作A ′F ∥AC ,交BC 的延长线于F ,延长A ′E 交直线DN 于M , ∵A ′E ⊥AC ,∴A ′M ⊥MN ,A ′E ⊥A ′F , ∴∠M =∠MA ′F =90°, ∵∠ACB =90°, ∴∠F =∠ACB =90°, ∴四边形MA ′FN 是矩形, ∴MN =A ′F ,FN =A ′M , 由翻折得:A ′D =AD =5,Rt △A ′MD 中,∴DM =3,A ′M =4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B=√72+72=7√2;综上所述,A′B的长为√2或7√2.故答案为:√2或7√2.16.小明用同一副七巧板先后拼成了正方形和“船形”两幅图案(如图1,2所示).若图1的正方形的边长为8cm,则图2的“船形”中阴影部分的面积为8cm2.【解答】解:∵图1的正方形的边长为8cm,∴正方形对角线长为8√2cm,∴阴影三角形的斜边长为4√2cm,∴S =12×4√2×2√2=8cm 2, 故答案为8.三.解答题(共9小题,满分86分) 17.(12分)计算:(1)√12×(√75+3√13−√48); (2)(√2−1)2+√3×(√3−√6)+√8. 【解答】解:(1)√12×(√75+3√13−√48 =2√3×(5√3+√3−4√3) =12;(2)(√2−1)2+√3×(√3−√6)+√8 =2﹣2√2+1+3﹣3√2+2√2 =6﹣3√2.18.(7分)如图,已知AB ∥CF ,D 是AB 上一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE .【解答】证明:∵AB =BD +CF , 又∵AB =BD +AD , ∴CF =AD ∵AB ∥CF ,∴∠A =∠ACF ,∠ADF =∠F 在△ADE 与△CFE 中 {∠A =∠ACF CF =AD ∠ADF =∠F, ∴△ADE ≌△CFE (ASA ).19.(7分)已知一次函数y =3x +3的图象与x 轴交于点A ,与y 轴交于点B .(1)求A,B两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3的图象.【解答】解:(1)在y=3x+3中,令y=0,则x=﹣1;令x=0,则y=3,所以,点A的坐标为(﹣1,0),点B的坐标为(0,3);(2)如图:.20.(8分)如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE ⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.【解答】(1)证明:∵AE ⊥BD ,CF ⊥BD ,∴AM ∥CN ,∵四边形ABCD 是平行四边形,∴CM ∥AN∴四边形CMAN 是平行四边形;(2)解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADE =∠CBF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在△ADE 与△CBF 中,∠ADE =∠CBF ,∠AED =∠CFB ,AD =BC ,∴△ADE ≌△CBF (AAS );∴DE =BF =8,∵FN =6,∴BN =√82+62=10.21.(8分)【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为(x 1+x 22,y 1+y 22)【运用】(1)已知O 为▱ABCD 的对角线AC 与BD 交点,点B 的坐标为(4,3),则点D 的坐标为(﹣1,1),则O 的坐标为 (32,2) ; (2)在直角坐标系中,有A (﹣1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.(提示:运用阅读材料完成)【解答】解:(1)∵O 为▱ABCD 的对角线AC 与BD 交点,∴OB =OD ,即O 为BD 的中点,∴点O 的横坐标为4−12=32,纵坐标为3+12=2,∴点O 的坐标为(32,2); 故答案为:(32,2); (2)如图所示:①当AC 和BC 为平行四边形的边时,连接对角线AB 、CD 1交于E ,∴AE =EB ,CE =ED 1,∵A (﹣1,2),B (3,1),∴E (1,32), ∵C (1,4),∴D 1(1,﹣1);②当BC 和CD 2为平行四边形的边时,连接对角线BD 2和AC 交于G ,同理可得D 2(﹣3,5);③当AC 和AB 为平行四边形的边时,连接 AD 3和BC 交于F ,同理可得D 3(5,3);综上所述,点D 的坐标为(1,﹣1)或(﹣3,5)或(5,3).22.(8分)如图,在矩形ABCD 中,AB =1,BC =3.(1)在图①中,P 是BC 上一点,EF 垂直平分AP ,分别交AD 、BC 边于点E 、F ,求证:四边形AFPE 是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接标出菱形的边长.(保留作图痕迹,不写作法)【解答】(1)证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠APB =∠EAP ,∵EF 垂直平分AP ,∴AF =PF ,AE =PE ,∴∠EAP =∠P AF ,∴∠APB =∠P AF ,∴AE =AF ,∴AF =PF =AE =PE ,∴四边形AFPE 是菱形.(2)如图2中,菱形AMCN 即为所求.23.(10分)某学校准备购进A 、B 两种型号的实验用品,已知1个A 型实验用品和3个B型实验用品共需45元;3个A 型实验用品和2个B 型实验用品共需51元.(1)求1个A 型实验用品和1个B 型实验用品的售价各是多少元;(2)学校准备购进这两种型号的实验用品共70个,并且A 型实验用品的数量不多于B 型实验用品数量的2倍,怎样购买最省钱?【解答】解:(1)设1个A 型实验用品的售价是x 元,1个B 型实验用品的售价是y 元,依题意,得:{x +3y =453x +2y =51, 解得:{x =9y =12.答:1个A型实验用品的售价是9元,1个B型实验用品的售价是12元.(2)设购进A型实验用品m个,则购进B型实验用品(70﹣m)个,依题意,得:m≤2(70﹣m),解得:m≤140 3,又∵m为正整数,∴m的最大值为46.设购买这批实验用品所需总费用为w元,则w=9m+12(70﹣m)=﹣3m+840,∵k=﹣3<0,∴w随m的增大而减小,∴当m=46时,w取得最小值,此时70﹣m=24,∴当购进A型实验用品46个,B型实验用品24个时,购买总费用最少.24.(12分)如图,平面直角坐标系中,直线y=−√3x+√3与坐标轴交于点A、B.点C在x轴的负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)对于直线y=−√3x+√3,当y=0 时,−√3x+√3=0,解得:x=1,∴A(1,0),∴OA=1,当x=0 时,y=√3,∴OB =√3,∵∠AOB =90°,∴AB =√OA 2+OB 2=√1+3=2,∵AB :AC =1:2,∴AC =4,∴OC =3,∴C (﹣3,0);(2)如图所示,∵OA =1,OB =√3,AB =2,∴∠ABO =30°,同理:BC =2√3,∠OCB =30°,∴∠OBC =60°,∴∠ABC =90°,分两种情况考虑:①若M 在线段BC 上时,BC =2√3,CM =t ,可得BM =BC ﹣CM =2√3−t ,此时S △ABM =12BM •AB =12×(2√3−t )×2=2√3−t (0<t <2√3); ②若M 在BC 延长线上时,BC =2√3,CM =t ,可得BM =CM ﹣BC =t ﹣2√3,此时S △ABM =12BM •AB =12×(t ﹣2√3)×2=t ﹣2√3(t >2√3);综上所述,S ={2√3−t(0<t <2√3)t −2√3(t >2√3);若AB是菱形的边,如图2所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),综上,满足题意的点Q的坐标为(1,2)或(1,﹣2)或(﹣1,0).25.(14分)如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.【解答】解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,−32)代入表达式y=kx+b,{4k +b =03k +b =−32,解得:{k =32b =−6, ∴直线l 2的解析表达式为y =32x ﹣6.(2)当y =﹣3x +3=0时,x =1,∴D (1,0).联立y =﹣3x +3和y =32x ﹣6,解得:x =2,y =﹣3,∴C (2,﹣3),∴S △ADC =12×3×|﹣3|=92.(3)∵△ADP 与△ADC 底边都是AD ,△ADP 与△ADC 的面积相等, ∴两三角形高相等.∵C (2,﹣3),∴点P 的纵坐标为3.当y =32x ﹣6=3时,x =6,∴点P 的坐标为(6,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册期中测试
(时间:90分钟 满分:120分)
一、选择题(每小题3分,共30分) 1.(南通中考)若
1
2x -1
在实数范围内有意义,则x 的取值范围是( ) A .x ≥12 B .x ≥-12 C .x >12 D .x ≠1
2
2.一直角三角形的两直角边长为12和16,则斜边长为( )
A .12
B .16
C .18
D .20
3.如图,在▱ABCD 中,已知AD =5 cm ,AB =3 cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cm B .2 cm C .3 cm D .4 cm
4.下列计算错误的是( )
A.14×7= 7 2
B.60÷5=2 3
C.9a +25a =8 a D .32-2=3
5.如图,点P 是平面坐标系内一点,则点P 到原点的距离是( ) A .3 B. 2 C.7 D.53
6.下列根式中,是最简二次根式的是( )
A.0.2b
B.12a -12b
C.x 2-y 2
D.5ab 2 7.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )
A .当A
B =B
C 时,它是菱形 B .当AC ⊥B
D 时,它是菱形 C .当∠ABC =90°时,它是矩形 D .当AC =BD 时,它是正方形
8.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD =120°,AC =4,则该菱形的面积是( ) A .16 3 B .16 C .8 3 D .8
9.如图,在四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( )
A .2
B .3
C .2 2
D .2 3
10.如图所示,A(-3,0),B(0,1)分别为x 轴,y 轴上的点,△ABC 为等边三角形,点P(3,a)在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )
A.7
4
B. 2
C. 3 D .2
二、填空题(每小题4分,共24分)
11.已知(x -y +3)2+2-y =0,则x +y =____________.
12.如图,已知△ABC 中,AB =5 cm ,BC =12 cm ,AC =13 cm ,那么AC 边上的中线BD 的长为____________cm.
13.(郴州中考)如图,在矩形ABCD 中,AB =8,BC =10,E 是AB 上一点,将矩形ABCD 沿CE 折叠后,点B 落在AD 边的点F 上,则DF 的长为____________.
14.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,
则S 1+S 2等于____________.
15.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过顶点B ,D 作DE ⊥a 于点E ,BF ⊥a 于点F ,若DE =4,BF =3,则EF 的长为____________.
16.如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有____________个.
三、解答题(共66分) 17.(8分)计算: (1)212+3113
-513-2348; (2)48-54÷2+(3-3)(1+13
).
18.(8分)在解答“判断由长为65,2,8
5的线段组成的三角形是不是直角三角形”一题中,小明是这样做的:
解:设a =65,b =2,c =85.又因为a 2+b 2=(65)2+22=13625≠64
25
=c 2,
所以由a ,b ,c 组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由.
19.(8分)如图,铁路上A ,B 两点相距25 km ,C ,D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15 km ,CB =10 km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
20.(10分)如图,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点. (1)判断四边形EFGH 的形状,并证明你的结论;
(2)当BD ,AC 满足什么条件时,四边形EFGH 是正方形.(不要求证明)
21.(10分)如图,四边形ABCD是一个菱形绿地,其周长为40 2 m,∠ABC=120°,在其内部有一个四边形花
坛EFGH,其四个顶点恰好在菱形ABCD各边的中点,现在准备在花坛中种植茉莉花,其单价为10元/m2,请问需投资金多少元?(结果保留整数)
22.(10分)如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.
23.(12分)如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒
的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案
1.C 2.D 3.B 4.D 5.A 6.C 7.D 8.C 9.C 10.C 11.1 12.13
2 13.6 14.2π 15.7 16.3n
17.(1)原式=43+23-433-83
3
=2 3.
(2)原式=43-362+3+3-3-1=43-36
2
+2.
18.小明的解答是错误的.设a =65,b =2,c =85.因为a<c<b ,且a 2+c 2=(65)2+(8
5)2=b 2,所以由a ,b ,c 组成的三
角形是直角三角形.
19.设AE =x km ,则BE =(25-x)km ,∵DE =CE ,又∵在△DAE 和△EBC 中,DA ⊥AB 于点A ,CB ⊥AB 于点B ,∴x 2+152=102+(25-x)2.解得x =10.∴E 站应建在离A 站10 km 处. 20.解:(1)四边形EFGH 是平行四边形.
证明:∵E ,F 分别是边A B ,B C 的中点,∴EF ∥AC ,且EF =AC 2.同理:HG ∥AC ,且HG =AC
2.∴EF ∥HG ,且
EF =HG .∴四边形EFGH 是平行四边形.
(2)当BD =AC 且BD ⊥AC 时,四边形EFGH 是正方形.
21.连接BD ,AC.∵菱形ABCD 的周长为40 2 m ,∴菱形ABCD 的边长为10 2 m .∵∠ABC =120°,∴△ABD ,△BCD 是等边三角形.∴对角线BD =10 2 m ,AC =10 6 m .∵E ,F ,G ,H 是菱形ABCD 各边的中点,∴四边形EFGH 是矩形,矩形的边长分别为52 m ,5 6 m .∴矩形EFGH 的面积为52×56=503(m 2),即需投资金为503×10=5003≈866(元).答:需投资金为866元. 22.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥DF.∴∠BAF =∠CFA.∵E 为BC 的中点,∴BE =CE.又∵∠AEB =∠FEC ,∴△AEB ≌△FEC(AAS).∴AB =CF.
(2)当BC =AF 时,四边形ABFC 是矩形.理由如下:由(1),得AB =CF ,∵AB ∥CF ,∴四边形ABFC 是平行四边形.∵BC =AF ,∴四边形ABFC 是矩形.
23.(1)证明:在△DFC 中,∠DFC =90°,∠C =30°,DC =4t ,∴DF =2t.又∵AE =2t ,∴AE =DF.
(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF.又∵AE =DF ,∴四边形AEFD 为平行四边形.当四边形AEFD 为菱形时,AE =AD =AC -DC 即60-4t =2t ,解得t =10.∴当t =10秒时,四边形AEFD 为菱形.
(3)①当∠DEF =90°时,由(2)知四边形AEFD 为平行四边形,∴EF ∥AD ,∴∠ADE =∠DEF =90°.∵∠A =60°,∴∠AED =30°.∴AD =1
2AE =t.又AD =60-4t ,即60-4t =t ,解得t =12;②当∠EDF =90°时,四边形EBFD
为矩形,在Rt △AED 中,∠A =60°,则∠ADE =30°,∴AD =2AE ,即60-4t =4t ,解得t =15
2;③若∠EFD =
90°,则E 与B 重合,D 与A 重合,此种情况不存在.故当t =15
2或12秒时,△DEF 为直角三角形.。