解斜三角形教案
高三数学一轮复习---解斜三角形(复习)公开课教案

解斜三角形(复习)公开课教案[教学目标]一:巩固对正弦、余弦、面积公式的掌握,并能熟练地运用公式解决问题。
二:培养学生分析、演绎和归纳的能力。
[教学重点]正弦、余弦、面积公式的应用。
[教学难点]选择适当的方法解斜三角形。
[教学过程]一:基本知识回顾:1.1、正弦定理及其变形;正弦定理:2sin sin sin a b cR A B C===(R 是三角形外接圆的半径) 变式一:sin 2a A R =、sin 2b B R =、sin 2cC R=变式二:sin :sin :sin A B C ::a b c =1.2、余弦定理及其变形;余弦定理:2222cos a b c bc A =+-,变式:222cos 2b c a A bc+-=2222cos b a c ac B =+-, 222cos 2a c b B ac+-=2222cos c a b ab C =+-。
222cos 2a b c C ab+-=1.3、面积公式二:例题分析:1、正弦定理(1)在△ABC 中,已知,则 sin B= ( ) (2)在△ABC 中,若a = 2 ,b =030A = , 则B 等于60︒或120︒111sin sin sin 222S ab C bc A ac B===4,303a b A ===︒2、余弦定理(1)在△ABC 中,满足 ,则A = 60°(2)已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为A .41-B .41C .32-D .32 3、三角形解的个数(1)在△ABC 中,已知 ,这个三角形解的情况是:( C )A.一解B.两解C.无解D.不能确定(2)△ABC 中,∠A ,∠B 的对边分别为a ,b ,且∠A=60°,4,6==b a ,那么满 足条件的△ABC( )A .有一个解B .有两个解C .无解D .不能确定4、判断三角形形状 (1)若cCb B a A cos cos sin ==则△ABC 为( ) A .等边三角形 B .等腰三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形(2)关于x 的方程02cos cos cos 22=-⋅⋅-CB A x x 有一个根为1,则△ABC 一定是 A .等腰三角形 B .直角三角形 C .锐角三角形D .钝角三角形5、正余弦定理的实际应用(1)有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要 伸长( ) A .1公里 B .sin10°公里 C .cos10°公里 D .cos20°公里 (2)10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。
高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
解斜三角形 教案

授课主要内容或板书设计
例题变式解:在∆ABC中,∠ABC=180︒- 75︒+ 32︒=137︒,
根据余弦定理,
AC=ABC
BC
AB
BC
AB∠
⨯
⨯
-
+cos
2
2
2
=
︒
⨯
⨯
⨯
-
+137
cos
0.
54
5.
67
2
0.
54
5.
672
2
≈113.15
根据正弦定理,
CAB
BC
∠
sin
=
ABC
AC
∠
sin
sin∠CAB =
AC
ABC
BC∠
sin
=
15
.
113
137
sin
0.
54︒
≈0.3255,
所以∠CAB =19.0︒
75︒- ∠CAB =56.0︒
答:此船应该沿北偏东56.1︒的方向航行,需
要航行113.15n mile
练习:(对例3的变式)
在某点B处测得建筑物AE的顶端A的仰角为θ,
沿BE方向前进30m,至点C处测得顶端A的仰角
为2θ,再继续前进103m至D点,测得顶端A
的仰角为4θ,求θ的大小和建筑物AE的高。
解法一:(用正弦定理求解)由已知可得在∆ACD
中,
实际问题中需要
掌握
近似估计、运算
通过变式,让学生
体会该数学模型
的在不同问题中
的应用。
斜边直角边-华东师大版八年级数学上册教案

斜边直角边-华东师大版八年级数学上册教案一、知识点概述•斜边直角三角形定义及性质•勾股定理的应用二、教学目标1.掌握斜边直角三角形,以及勾股定理的概念2.能够灵活应用勾股定理解决实际问题三、教学重点1.斜边直角三角形定义与性质2.勾股定理的应用四、教学难点勾股定理的运用五、教学步骤5.1 热身引入观察直角三角形,我们知道:•直角的两条边叫做直角边•斜边是直角边对的斜边请大家谈一谈直角三角形的性质有哪些?5.2 知识讲解1.斜边直角三角形定义与性质所谓斜边直角三角形,是指有一个直角,且除直角以外的另外两边的长度不相等的三角形。
其性质:•斜边是直角边对的斜边•直角边上的高是另一直角边的中线•直角边间的夹角互为补角•斜边上切割出的两个直角三角形,相似2.勾股定理的应用勾股定理的公式为:a2+b2=c2,其中a,b,c分别表示斜边,直角边1,直角边2的长度。
5.3 练习与讲评请同学们完成如下练习:练习1:如图,是一张房间的平面图,其中AB为一面墙的长度,BC为此面墙下方地面一段路的长度,AC为立柱的高度。
请问此房间的斜边长度是多少?A|\\| \\| \\| CB-----解答:根据勾股定理,有:AB2+BC2=AC2,代入数据得:32+42=x2,解得斜边长度x=5,所以此房间的斜边长度是5米。
5.4 总结归纳请同学们总结斜边直角三角形定义与性质、以及勾股定理的应用。
六、作业布置请同学们完成华东师大版八年级数学上册P45-46的练习题1、2、4、6、9、10。
七、教学反思通过本节课的教学,同学们对斜边直角三角形的定义、性质、勾股定理的应用等知识点有了更深刻的认识,并且能够灵活运用所学知识解决实际问题。
不过,在课堂教学中,教师应该加强同学们的练习机会,让他们能在实践中感受到知识的实用性。
5.6正弦定理、余弦定理和解斜三角形(3)教案案

课题:5.6正弦定理、余弦定理和解斜三角形(3)教案教学目的:1、进一步巩固利用正弦定理及余弦定理解任意三角形的方法 2、掌握正弦定理扩充公式的推导 3、掌握三角形面积公式的推导4、掌握边到角的转化方法,和角到边的转化方法,解决三角形形状的判断问题和恒等式的证明问题。
教学重点:正弦定理的扩充公式的推导和边角之间的转化 教学过程: (一)、引入 复习引入:1、正弦定理:A a sin =B b sin =Ccsin 2、正弦定理的变形:a :b :c =C B A sin :sin :sin3、余弦定理:在ABC ∆中有:A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+=.2cos ,2cos ,2cos 222222222abc b a C ac b a c B bc a c b A -+=-+=-+=4、正弦定理的两个应用:(1)已知三角形中两角及一边,求其他元素;(2)已知三角形中两边和其中一边所对的角,求其他元素. 5、余弦定理的两个应用:(1)已知两边和它们的夹角,求其他的边和角; (2)已知三边,求三个内角.(二)、新课 一、(新课教学,注意情境设置) 由正弦定理我们知道,在ABC ∆中,A a sin 、B b sin 、Ccsin 都等于同一个比值k ,这个k 到底有没有什么特殊几何意义呢? 二、概念或定理或公式教学(推导)1、当ABC ∆是直角三角形时,若90=∠C ,我们知道A a s i n =B b sin =Ccsin =c,此时c 可看成Rt ABC ∆外接接圆的直 径,即R k c 2== 。
2、若ABC ∆是任意三角形,作ABC ∆的外接圆O ,O 为圆心, 连接BO 并延长交圆D ,连接CD ,把一般三角形转化为直角三 角形。
证明:连续BO 并延长交圆于D90=∠∴DCB ,A D ∠=∠ ,R BD 2= ,a BC ===∴BC a A R A BD D BD sin 2sin sin == ,即:R Aa2sin = 由正弦定理,得A a sin =B b sin =Ccsin =2R结论:从刚才的证明过程中, A a sin =B b sin =Ccsin =2R ,显示正弦定理的比值等于三角形外接圆的直径R 2。
5.6正弦定理、余弦定理和解斜三角形(1)教案

课题:正弦定理、余弦定理和解斜三角形(1)教案教学目的:1、通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明。
2、掌握三角形面积公式的证明3、会运用正弦定理解决一些简单的三角形度量问题。
教学重点:正弦定理的发现和证明 教学过程: (一)、引入 一、(设置情境)复习提问:1、三角形有哪六个元素?2、在直角三角形中,这六个元素有哪些关系?3、在直角三角形中有哪些解三角形问题?(1)已知两边,可以求第三边及两个角。
(2)已知一边和一角,可以求另两边及第三个角。
二、(双基回顾)直角三角形边角关系和面积公式 (二)、新课 一、(新课教学,注意情境设置)如图,设A 、B 两点在河的两岸,要测量两点之间的距离。
测量者在A 的同侧,所在的河岸边选定一点C ,测出AC 的距离是20米,60=∠BAC ,45=∠ACB , 求A 、B 两点间的距离。
(精确到0.1米)转化为数学问题:在ABC ∆中,已知 60=∠BAC ,45=∠ACB ,20=AC 米,求AB 的长。
(在三角形中,已知两角以及一边,如何求出另外一边?)二、概念或定理或公式教学(推导)在ABC ∆中,内角A 、B 、C 对边的边长分别为a,b,c 问题1:若C ∠=90,则A ∠的正弦与B ∠的正弦有何关系?在ABC Rt ∆中,︒=∠90C ,锐角A 的正弦:ca A =sin ,cbB =sin .由上两式可求得:A a sin =B b sin =c ,即A a sin =B b sin =1cCc sin =问题2:对于一般的三角形,问题1中所找到的关系是否成立?A CB方法一:在一般三角形中构造直角三角形,按问题1的方法发现正弦定理。
(1)如果ABC ∆为锐角三角形,过点 A 作BC AD ⊥,垂足D 在BC 边上.在ABD Rt ∆中,B c AD sin =,在ADC Rt ∆,C b AD sin =,所以B c sin =C b sin ,即B b sin =C c sin .同理,在ABC ∆中,A a sin =B bsinABC ∆中,总有A a sin =B b sin =Cc sin(2)如果ABC ∆为钝角三角形(不妨设90C ∠>︒),过点 A 作BC AD ⊥,垂足D 在BC 边上.在ABD Rt ∆中,B c AD sin =,在A D C Rt ∆,ACD b AD ∠=sin ,所以B c s i n =C b sin ,即B b s i n =Ccsin .同理,在ABC ∆中,A a s i n =Bbsin 从而,在锐角三角形ABC ∆中, 总有A a sin =B b sin =Cc sin .结论:在刚才的证明过程中大家是否发现三角形高C b AD sin =,三角形的面积:C ab AD a S ABC sin 2121=⋅=∆,能否得到新面积公式?三角形面积公式111sin sin sin 222ABCS ab C ca B bc A ∆===方法二:(建立坐标系)以ABC ∆的顶点B 为坐标原点,BC 边所在直线为x 轴,建立直角坐标系,设a,b,c 分别为C B A ∠∠∠,,所对的边长,AD 为边BC 上的高,则点C 、A 的坐标分别为.sin ),sin ,cos (),0,(B c AD B c B c a = B ac AD BC S ABC sin 2121=⋅=∆ 同理得:bc S C ab S ABC ABC sin 21,sin 21==∆∆三、(1)三角形面积:等于任意两边与它们夹角正弦值的积的一半。
《解三角形》教学设计-优秀教案

45,C∠.求边长能够很好地激发学生的求知欲望。
在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。
探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。
通过这样的一些实验, 我们可以猜想。
学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。
让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。
多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。
环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。
在这个过程中, 也进一步促进学生数学思维思维品质的提升。
7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。
使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 解三角形课时1 §11.1正弦定理(一) 教学目标掌握正弦定理的推导过程,并利用正弦定理,解决以下两类解斜三角形的问题: (1)已知两角与任一边,求其他两边和一角;(2)已知两边与其中一边的对角,求另一边的对角(从而进一步求出其他的边和角). 教学重点三角形的各边和它所对角的正弦之比相等,即正弦定理(sinetheorem):CcB b A a sin sin sin == 教学难点已知两边与其中一边的对角,求另一边的对角时解的个数的讨论. 教学过程:通过下面的途径尝试证明正弦定理: (1)转化为直角三角形中的边角关系;(2)建立直角坐标系,利用三角函数的定义;(3)通过三角形的外接圆,将任意三角形问题转化为直角三角形问题; (4)利用向量的投影或向量的数量积(产生三角函数).举一反三 1. 在中,三个内角之比,那么相对应的三边之比等于( ).A .B .C .D .2. 在△ABC 中,B=1350,C=150,a=5,则此三角形的最大边长为 .3.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .举一反三1.、 不确定 二解 一解 无解 是 ( ),此三角形的解的情况,中,在D .C .B .A 45A ,32b 22a ABC 0===∆ 2、根据下列情况,解三角形时,有两组解的是 ( )A. A =300,c =20 a=10B. A =300,c =20 a=28C. A =300,c =20 a=12D. A =300,c =20 a=3113.在△ABC 中,已知a =x cm ,b =2 cm ,B =45°,如果利用正弦定理解三角形有两解,则x 的取值范围是( ) A .2<x <22B .2<x ≤22C .x >2D .x <2拓展与延伸例3.在△ABC 中,∠C =60°,BC =a ,AC =b ,a +b =16. (1)试写出△ABC 的面积S 与边长a 的函数关系式.(2)当a 等于多少时,S 有最大值?并求出这个最大值.例4.在ABC ∆中,c b a ,,分别是ABC ∆的三边长,若31cos =A . (1)求A CB 2cos 2sin 2++的值; (2)若3=a ,求bc 的最大值.教材练习布置作业 一.选择题1. 在△ABC 中,已知︒︒===75,60,8C B a ,则b 等于( ) A.24 B.34 C.64 D.332 2. 在△ABC 中,已知1,45,2===︒c B b ,则a 等于( )A.226- B. 226+ C.12+ D.23-3. 在ABC ∆中,根据下列条件解三角形,则其中有两个解的是( ) A.︒=︒==75,45,10C A b B .︒===60,48,60C b a C.︒===80,5,7A b a D.︒===45,16,14A b a4.已知ABC ∆,面积2,32,3===b a S ,则此三角形的内角C 的度数是( )A.300B.600C.300或1500D. 600或12005.在ABC ∆中,,4,6,60===∠︒b a A 则满足条件的三角形有( )(A )一解 (B )两解 (C )无解 (D )不能确定 二.填空题6. 在ABC ∆中,若A:B:C=1:2:3,则a:b:c= .7. 在ABC ∆中,4,15,120=︒=︒=a B A ,则b=8. 在ABC ∆中,8,30,120=︒=︒=a B A ,则c=9. 已知ABC ∆,面积26,32,33+==+=b a S ,则角C 的度数是10.在△ABC 中,已知ab=60,sinA=cosB,S △ABC =15,则 △ABC 的三个内角度数等于 . 三.解答题11.解△ABC ,(1)已知45=∠A , a=100,c=502;(2) 已知18=∠A ,a=4, b=4(15+).12.解△ABC ,(1)已知32=a ,6=b ,︒=30A(2) 已知︒===45,2,3B b a13.在△ABC 中,已知b =2c sin B ,求∠C 的度数.14.在△ABC 中,已知a 2-a =2(b +c ),a +2b =2c -3,若sin C ∶sin A =4∶13,求a ,b ,c .15. 已知△ABC 中,tanA=2,tanB=3, a=1. (1)求∠C 的度数; (2)求△ABC 的面积. 16. 已知△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若COS 2(2π+A)+cosA=45,b+c=3a ,求A 、B 、C 的大小。
课时2 §11.1正弦定理(二) 教学目标学会利用正弦定理解决有关平几问题以及判断三角形形状.掌握转化与化归的数学思想.教学重点利用正弦定理判断三角形形状. 教学难点灵活利用正弦定理以及三角恒等变换公式. 教学过程:举一反三1.在△ABC 中,A B B A 22sin tan sin tan ⋅=⋅,那么△ABC 一定是 ( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形2.在△ABC 中,A 为锐角,lg b +lg(c1)=lgsin A =-lg 2, 则△ABC 为( ) A. 等腰三角形B. 等边三角形 C. 直角三角形 D. 等腰直角三角形3. 在△ABC 中,已知cos2B+cos2C=1+cos2A, sinA=2sinBcosC, cosC=sinB. 求证:△ABC 是以A 为直角顶点的等腰直角三角形.举一反三1.在△ABC中,∠A的外角平分线交BC 的延长线于D,用正弦定理证明:DCBDAC AB =. 2. ceva 定理:P 是ABC ∆外的一点,直线PC PB PA ,,依次与ABC ∆的三边AB CA BC ,,或者它们的延长线相交于,,,F E D 求证:.1=⋅⋅EACEDC BD FB AF 3.在奥运会垒球比赛前,C 国教练布置战术时,要求击球手 以与连结本垒及游击手的直线成15°方向把球击出,根据经 验,通常情况下,球速为游击手最大跑速的4倍,问按这 样布置,游击手能否接着球?拓展与延伸例3.(2004年全国高考试题)已知锐角三角形ABC 中,51)sin(,53)sin(=-=+B A B A . (1)求证: B A tan 2tan =; (2)设AB=3,求AB 边上的高;例4.(1)△ABC 中, B =600,b =1,求证:1<a +c ≤2.(2)在一个三角形中,若有一个内角不小于120°,求证:最长边与最短边之比不小于3.教材练习布置作业 一.选择题1.三角形ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c.若A=60°,B=75°,a = 32,则c 的值( )A .等于2 B .等于4 C .等于22D .不确定2.在钝角△ABC 中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是 ( )A .23 B .43 C .23 D .43 3. 在△ABC 中, 已知,10,25==c a ,∠A=30°, 则∠B=( ) A.1050 B. 1350或450 C.450 D. 1050或1504.R 是△ABC 的外接圆半径,若B A R ab cos cos 42<,则它的外心在( ) A. 三角形一边的中点 B.三角形的内部 C.三角形的外部 D.无法判断 5.已知△ABC 满足B A B A cos cos sin sin +=+,则它的形状是( )A.等腰三角形B.直角三角形C. 等腰或直角三角形D. 等腰直角三角形二.填空题6. 在△ABC 中, 已知︒===30,6,32A b a ,则B= .7. 在△ABC 中, 已知34,31cos ,23===∆ABC S C a ,则b= . 8. 在△ABC 中,已知︒=︒==+45,60,12B A b a ,则a= ,b= 9. 在△ABC 中,已知35,20==∆ABC S bc ,△ABC 的外接圆半径为3,则a= 10.在△ABC 中,,26-=AB ∠C=300,则AC+BC 的最大值是________。
三.解答题11.在ABC ∆中,已知2:1:=∠∠B A ,求证:cb a ba b a +++=; 12.如图,,60︒=∠XOY M 是XOY ∠内一点,它到两边的距离分 别为2和11,求OM 的长.13. (1)请你用正弦定理证明(Menelaus 定理):直线l 与ABC ∆的在三边CA BC AB ,,或它们的延长线依次相交于F E D ,,,则1=⋅⋅FACFEC BE DB AD .(2)如图所示,直线BE 分别与△ADF 的三边的延长线相交于B 、C 、E ,请你写出Menelaus 定理的表达式.14.在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?15.在ABC ∆中,已知)sin()()sin()(2222B A b a B A b a -+=+-,判定ABC ∆的形状. 16. 在△ABC 中,已知角A ,B ,C 所对的边分别为a,b,c,若a+c=2b, (1)求证:2cos2cos 2C A C A -=+ (2)若B=3π,试确定△ABC 形状第12题AB CEDF第13题课时3 §11.2余弦定理(一) 教学目标掌握余弦定理的推导过程,并利用余弦定理,可以解决以下两类解斜三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 教学重点三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理: 教学难点利用余弦定理判断锐角、钝角. 教学过程:利用向量的有关知识证明余弦定理.举一反三1.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ) A .135° B .90° C .120° D .150°2. 在△ABC 中,最大角A 为最小角C 的2倍 ,且三边a 、b 、c 为三个连续整数, 求a 、b 、c 的值.3.在△ABC 中,已知a =7,b =8,cos C =1413,则最大角的余弦值是________.举一反三1、已知锐角三角形的边长分别是1、3、a ,则a 的取值范围是 ( )A. (8,10)B. (10,8)C. (10,8)D. (8,10)2.已知钝角三角形ABC 中,B >90°,a =2x -5,b =x +1,c =4,求x 的取值范围. 3.已知a 、b 、c 为△ABC 的三边,且a 2-a -2b -2c =0,a +2b -2c +3=0,求这个三角形的最大内角.拓展与延伸例3.在ABC ∆中,c b a ,,分别是ABC ∆的三边长,若31cos =A . (1)求A CB 2cos 2sin 2++的值; (2)若3=a ,求bc 的最大值.教材练习教材习题布置作业 一.选择题1.在ABC ∆中,三边之比为19:3:2::=c b a ,则ABC ∆最大角的大小是( ) A.600 B.1200 C.300 D.15002. 在∆ABC 中,c b a ,,分别是∠∠∠A B C ,,的对边长,则满足下列条件时,是钝角三角形的是( )A.a:b:c=2:3:4B. a=4,b=5,c=6C. a=2k,b=k 2-1, c=k 2+1 (k 是正整数)D.C B A 3121== 3.在∆ABC 中,若C B A 222sin 2sin sin =+,则角C 是( ) A.钝角 B.直角 C.锐角 D.600 4.在△ABC 中,4222c b a S -+=,则角C 的度数是( )A.600B.450C.300D. 450或13505.某人向正东走x 千米后,再向右转150°,然后沿新的方向走3千米,结果他离出发点恰好为3千米,那么x 值为( )(A )3 (B )32 (C )32或3 (D )3 二.填空题6.已知ABC ∆,︒===60,4,3C b a ,则c=7.边长为5、7、8的三角形中,则最大角与最小角的和 。