高等数学(一元微积分)04-求极限方法总结

合集下载

极限求法总结

极限求法总结

极限求法总结极限是微积分中的一个重要概念,是研究函数变化趋势的基础。

在求解极限的过程中,我们常常会使用一些常用的技巧和方法。

下面我将对常见的极限求法进行总结,详细说明每种方法的步骤和应用场景。

一、直接代入法当函数在某个点有定义并且极限存在时,我们可以通过将变量直接代入函数中计算出极限的值。

例如,对于 f(x) = x^2 - 1,当 x -> 2 时,我们可以将 x 的值替换为 2,计算出 f(2) 的值。

这种方法适用于函数在该点有定义且不产生未定义结果的情况。

二、分子有理化法有些极限问题中,分子含有根式、分母含有分式等情况,为了便于计算,我们可以使用有理化方法。

主要有三种情况:有理化分母、有理化分子和有理化共轭。

1. 有理化分母:当分母中含有根式时,我们可以通过乘上分母的共轭形式,并利用差平方公式,将根式有理化为有理数。

例如,对于f(x) = 1/√x,当 x -> 4 时,我们可以乘上分母的共轭√x,得到f(x) = √x/√x^2,再利用 x^2 - a^2 = (x - a)(x + a) 的差平方公式,化简出分母为 (x - 4)。

接着我们可以直接代入计算。

2. 有理化分子:当分子中含有根式时,我们可以通过乘上分子的共轭形式,并利用和平方公式,将根式有理化为有理数。

例如,对于f(x) = √x + 1,当 x -> 2 时,我们可以乘上分子的共轭√x - 1,得到f(x) = (√x + 1)(√x - 1)/(√x - 1),再利用 a^2 -b^2 = (a - b)(a + b) 的和平方公式,化简后得到 f(x) = (x - 1)/(√x - 1)。

接着我们可以直接代入计算。

3. 有理化共轭:当分式中含有复杂的分母,我们可以根据分母的共轭形式,将分式有理化为分子和分母之间关于负号的组合。

例如,对于 f(x) = 1/(x + 3)^2,当 x -> -3 时,我们可以将分子和分母都乘上 (x + 3)^2 的共轭 (-x - 3)^2,然后化简分子和分母。

极限求解方法总结

极限求解方法总结

千里之行,始于足下。

极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。

在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。

本文将对极限求解的方法进行总结与归纳。

1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。

常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。

- 函数极限:幂函数、指数函数、对数函数、三角函数等。

2. 替换法:替换法是求解极限问题时常用的一种方法。

通过将极限问题中的变量进行替换,使得计算变得更加简洁。

常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。

3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。

通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。

常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。

4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。

施瓦茨不等式是求解极限问题中常用的一种方法。

它可以用来估量两个函数的内积,从而得到某些函数的极限。

施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。

常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。

一元函数极限的求法

一元函数极限的求法

一元函数极限的求法一元函数的极限就是在函数定义域内某一点处接近这个点时,函数取值的趋势。

在数学分析中,极限是一个十分重要的概念,它用于定义连续性、收敛与发散、导数和积分等重要概念。

对于一元函数的极限的求法,我们可以通过直接代入法、极限的四则运算法则、夹挤定理以及极限的极限转换法等多种方法进行求解。

1. 直接代入法直接代入法是最基础的求解一元函数极限的方法,即将自变量的值逐渐逼近极点,观察函数在这个点附近的取值趋势,将自变量的取值代入函数中,求函数在该点的取值。

例如:求函数$f(x)=\dfrac{x-1}{x+3}$在$x=2$处的极限。

解:将$x=2$代入得$f(2)=\dfrac{1}{5}$,因此,$x=2$时$f(x)$的极限为$\dfrac{1}{5}$。

2. 极限的四则运算法则此法则是求解一元函数极限中的基本规则。

对于两个已知极限的函数进行加减、乘除运算时,可以直接套用极限的四则运算法则。

例如:求函数$f(x)=\dfrac{sinx}{x}$在$x=0$处的极限。

解:$lim_{x \to 0}\dfrac{sinx}{x}=lim_{x \to0}\dfrac{sinx}{x}\cdot\dfrac{1}{cosx}=lim_{x \to 0}\dfrac{sinx}{x}\cdot lim_{x \to 0}\dfrac{1}{cosx}=1$,因此,$x=0$时$f(x)$的极限为$1$。

3. 夹挤定理当我们需要求一个函数在某一点处的极限值时,有时我们并不知道函数在该点处是否存在极限,因此我们引入夹挤定理,即用两个已知的存在极限的函数挤压住需要求的函数,从而求出该函数的极限值。

例如:求函数$f(x)=x^2sin\dfrac{1}{x}$在$x=0$处的极限。

解:$\lim_{x \to 0}(-x^2) \leq \lim_{x \to 0} x^2sin\dfrac{1}{x} \leq \lim_{x \to 0} x^2$。

高等数学极限求法总结

高等数学极限求法总结

高等数学极限求法总结本站小编为你整理了多篇相关的《高等数学极限求法总结》,但愿对你工作学习有帮助,当然你在本站还可以找到更多《高等数学极限求法总结》。

第一篇:6利用函数连续性(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)描述函数的一种连绵不断变化的状态,即自变量的微小变动只会引起函数值的微小变动的情况。

确切说来,函数在某点连续是指:当自变量趋于该点时,函数值的极限与函数在该点所取的值一致。

例1设 f(x)=xsin 1/x + a,x<0,b+1,x=0,x^2-1,x<0,试求:当a,b为何值时,f(x)在x=0处的极限存在?当a,b为何值时,f(x)在x=0处连续?注:f(x)=xsin 1/x +a, x< 0b+1, x=0X^2-1, x>0解:f(0)=b+1左极限:lim(x→0-) f(x)=lim(x→0-) (xsin(1/x)+a)=0+a=a左极限:lim(x→0+) f(x)=lim(x→0+) (x^2-1)=0-1=-1f(x)在x=0处连续,则lim(x→0-) f(x)=lim(x→0+) f(x)=f(0),所以a=-1=b+1,所以a=-1,b=-2第二篇:函数极限的四则运算法则学案课题:§13-3函数极限的四则运算法则(一)学习目标:掌握函数极限的运算法则,并会求简单的函数的极限学习重点:运用函数极限的运算法则求极限学习难点:函数极限法则的运用学习过程一、知识复习1.复习数列极限的四则运算法则(包括乘方的极限的法则).2.复习几个简单函数的极限.即:二、课堂学习1.指导对上述定理的证明作简要说明.2.探究问题1 根据函数极限定义和函数的图象,说出下列极限,并验证所给结论.(其中f(x)为有理分函数).所以,若f(x)为有理整函数,则有解:因为当x→x0时,分子、分母皆有极限且分母的极限不为零,因此有判断下列各极限是否存在?如果存在,求其极限;如果不存在,说明理由.三、检测1.求下列极限:2.求下列极限:四、学习小结第三篇:2利用洛必达法则洛必达(L Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。

极限计算方法总结

极限计算方法总结

千里之行,始于足下。

极限计算方法总结极限计算是微积分中的基本概念之一,通过求极限可以揭示函数的性质和趋势,进而在数学和其他学科中发挥重要作用。

本文将总结一些常见的极限计算方法,包括取极限法、洛必达法则、泰勒开放、夹逼定理、变量替换等。

1. 取极限法取极限法是最基本的极限计算方法之一。

通过取自变量趋于某个特定值,可以得到极限的值。

常见的取极限法包括代入法、分解法、分子有理化法、乘法结合法等。

例如,要求函数f(x) = (x^2 - 1) / (x - 1)在x趋于1时的极限,可以通过代入法得到f(1)的值,即1。

因此,f(x)在x趋于1时的极限为1。

2. 洛必达法则洛必达法则是一种常用的求极限法则,适用于形如0/0或无穷小/无穷小的极限。

依据洛必达法则,只需对分子和分母同时求导,然后再取极限即可。

假如得到的极限仍旧是0/0或无穷小/无穷小的形式,则可以重复应用洛必达法则。

例如,要求极限lim(x->0) (sin x / x),可以对分子和分母同时求导,得到lim(x->0) (cos x / 1) = cos 0 = 1。

3. 泰勒开放泰勒开放是一种将函数在某个点四周开放的方法,用来将简单的函数近似为简洁的多项式。

依据泰勒开放定理,可以将函数f(x)在点x=a处开放为无穷级数。

通过截取这个级数的前几项,可以近似计算函数在该点四周的值和极限。

例如,要求极限lim(x->0) (sin x / x),可以用泰勒开放公式sin x = x -第1页/共2页锲而不舍,金石可镂。

x^3/3! + x^5/5! + O(x^6)近似,得到lim(x->0) (x - x^3/3! + x^5/5! +O(x^6)) / x = 1 - x^2/3! + x^4/5! + O(x^5),当x趋近于0时,高阶无穷小项O(x^5)可以忽视,得到极限为1。

4. 夹逼定理夹逼定理是一种通过夹逼的方法来计算极限的方法。

求极限的方法总结

求极限的方法总结

千里之行,始于足下。

求极限的方法总结求极限是微积分中重要的概念之一,常见于求导、定积分以及微分方程等内容中。

求解极限可以通过以下几种方法进行总结:1. 代入法:当函数在极限点处存在时,可以直接将极限点代入函数中计算。

这种方法简单直接,适合于函数在某一点处的极限。

2. 分解因式法:当函数存在不定形式时,可以尝试将函数进行分解因式,从而简化计算。

比如,对于分式函数,可以尝试分解分子和分母,消去公因式,然后再进行计算。

3. 幂指函数法:当函数的极限含有幂指函数时,可以尝试使用幂指函数的性质进行计算。

常用的方法包括使用指数函数的性质、对数函数的性质以及对数和指数函数的换底公式等。

4. 无穷小量法:当函数的极限存在无穷小量时,可以利用无穷小量与极限的定义进行计算。

常用的方法包括使用洛必达法则、夹逼定理、泰勒级数展开等。

其中洛必达法则适用于计算$\\frac{0}{0}$、$\\frac{\\infty}{\\infty}$、$0\\cdot \\infty$型的极限,夹逼定理适用于无穷小量和无穷大量的极限,泰勒级数展开适用于函数可展开成无穷级数的情况。

5. 变量替换法:当函数的极限存在特定变量时,可以进行变量替换,通过对新变量极限进行求解来简化计算。

常用的方法包括使用三角函数的三角恒等式、指数和对数函数的换底公式、幂函数的性质等。

第1页/共2页锲而不舍,金石可镂。

6. 递推法:当函数的极限存在递推关系时,可以通过递推关系逐步求解极限。

常用的方法包括使用数列极限的性质以及函数关系的性质。

总的来说,求解极限需要根据具体的函数形式和性质进行判断和选择合适的方法。

在实际计算中,也常常需要综合运用多种方法进行求解。

因此,对于学习者来说,熟练掌握不同的求极限方法,灵活运用,可以更加高效地解决复杂的极限计算问题。

求极限的方法总结

求极限的方法总结

千里之行,始于足下。

求极限的方法总结求极限是微积分的重要内容,也是解决数学问题中常用的方法之一。

下面是对求极限的方法进行总结:1. 代入法:当在不断插入一个趋于该极限的数值时,假如函数表达式有意义,且极限存在,则取其极限值作为函数的极限。

2. 四则运算法则:假如函数 f(x) 和 g(x) 在 x = a 处极限都存在,那么可以利用加减乘除等基本运算的极限法则求解。

3. 夹逼定理:当存在两个函数 f(x) ≤ g(x) ≤ h(x),且函数 f(x),h(x)的极限都为 L,那么 g(x)的极限也为 L。

4. 函数的连续性:假如函数 f(x) 在 x = a 处连续,那么函数 f(x) 在x = a 处也存在极限。

5. 分解因式法:可以通过将函数进行分解因式,使得函数变为两个函数之比,然后利用极限的分解限求解。

6. 无穷小与无穷大:假如 x → a 时,函数 f(x) 的极限为 0,那么称函数 f(x) 为无穷小。

假如 x → a 时,函数 f(x) 的极限为∞或 -∞,那么称函数 f(x) 为无穷大。

通过争辩函数的无穷小和无穷大性质,可以求解极限。

7. 等价无穷小法:假如函数 f(x) 和 g(x) 在 x = a 处极限都为 0,并且极限 lim(x→a) [f(x)/g(x)] 存在且为 L (L ≠ 0),那么可以使用“等价无穷小”来求解极限。

第1页/共2页锲而不舍,金石可镂。

8. 数列极限法则:假如数列 {an} 在 n →∞时有极限 L,则函数 f(x) = an 在 x →∞时的极限也为 L。

通过数列的极限法则,可以推导出函数的极限。

9. 泰勒开放:对于光滑函数,可以利用泰勒开放来近似求解极限。

10. 形式不确定型:对于一些形式不确定的极限,可以通过化简、将其转换成其他形式来求解。

11. 极限存在定理:对于一些特定的函数和性质,可以通过极限存在定理来判定函数的极限是否存在。

上述是常用的一些求解极限的方法总结,通过运用这些方法,可以更加精确地求解各种极限问题。

一元函数极限的基本求法

一元函数极限的基本求法

一元函数极限的基本求法一元函数极限的基本求法摘 要:函数的极限及其求法是微积分的基础。

本文主要探讨、总结了求极限的基本方法,对每种方法的特点及注意事项作了说明,并加以实例进行讲解。

关键词:极限;积分;级数;洛必达法则。

1 引言本文介绍了一些求极限的方法有:利用定义求极限,函数连续性求极限、四则运算、两个重要极限、等价无穷小量代替求极限、洛必达法则、泰勒展开式求极限、微分中值定理等等。

在求极限的过程中,会发现一道题可以运用多种方法解答,因此给我们的启示是每种方法之间都有一定的联系。

在求极限时,可以根据不同的形式选择不同的计算方法,合理利用各种计算方法,亦可进行适当的结合,使得求极限的方法更明了,算法更简单。

2 相关的定义和性质 2.1一元函数极限的概念x 趋于∞时的函数极限:设函数)(x f 为定义在[)+∞,a 的函数,A 是一个定数,若对0>∀ε,∃正数M ,使得当M x >时有ε<-A x f )(则称函数)(x f 当x 趋于∞+时以A 为极限,记为A x f x =+∞→)(lim 。

x 趋于0x 时的函数极限:设函数)(x f 在点0x 的某个空心邻域),(00δx U 内有定义,A 为定数,若对0>∀ε,存在正数δ,使得当δ<-<00x x 时有ε<-A x f )(,则称函数)(x f 当x 趋于0x 时以A 为极限,记为A x f x x =→)(lim 0。

2.2 一元函数极限的性质存在,则必定唯一如果唯一性性质)(lim )(10x f x →的某空心邻域内有界在存在,则如果局部有界性性质0)()(lim )(20x x f x f x x →),()()()(lim )(lim )(300x h x g x f x A x h x f x x x x ≤≤==→→的某空心邻域内有,且在如果迫敛性性质Ax g x x =→)(lim 0则3一元函数极限的计算及多种求法 3.1 利用导数的定义求极限导数的定义:函数()f x 在0x 附近有定义,x ∀∆则00()()y f x x f x ∆=+∆-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ቤተ መጻሕፍቲ ባይዱ
x2 1)
8. 用等价无穷小量代换求极限
常用的等价无穷小量 : 当x 0时: (1)x ~ sin x ~ tan x ~ arcsin x ~ arctan x ~ ln(1 x) ~ ex 1; (2)1 cos x ~ x2 ;
2 (3)ex 1 ~ x; (4) ln(1 x) ~ x; (5)ax 1 ~ x ln a;
f
(
x)
1 x, x 2 1,
x
0 ,

lim
f ( x).
x 0 x0
解 x 0是函数的分段点,两个单侧极限为
lim f ( x) lim (1 x) 1,
x0
x0
lim f ( x) lim ( x2 1) 1,
x0
x0
左右极限存在且相等,
故 lim f ( x) 1. x0
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小量,然后再求极限.
5.利用无穷小运算性质求极限
例 求 lim sin x . x x
解 当x 时, 1 为无穷小,
x
而sin x是有界函数.
sin x lim 0.
x x
y sin x x
6.利用左右极限求分段函数极限


由无穷小与无穷大的关系,得
4x 1
lim
x1
x2
2x
3
.
3.消去零因子法 ( 0 型 ) 0
4.无穷小因子分出法求极限
(型)
小结:当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 xn b0 x m
a1 x n1 b1 x m1
an bm
0ab,00当,当n n
m, m,
,当n m,
极限的求法总结
1.代入法求极限
多项式函数与分式函数(分母不为0)用代入法求极限;
2.由无穷大量和无穷小量的关系求极限
lim
x1
x2
4x 1 2x
. 3
解 lim(x2 2x 3) 0 商的法则不能用
x1
又lim(4x 1) 3 0, lim x 2 2x 3 0 0.
x1
x1 4x 1 3
y
y 1 x
1
o
y x2 1 x
7.分子(母)有理化求极限
【说明】分子或分母有理化求极限,是通过有理化化去 无理式。
例 求极限 lim ( x2 3 x2 1) x
lim (
x
x2 3
x2 1) lim ( x2 3 x2 1)( x2 3
x
x2 3 x2 1
lim
2
0
x x2 3 x2 1
(6)(1 x) 1 ~ x.
9. 应用两个重要极限求极限
两个重要极限是
lim sin x 1 x0 x
lim(1
1)x
lim(1
1)n
lim(1
1
x) x
e
x
x
n
n
x0
第一个重要极限过于简单且可通过等价无穷小来实现。
第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑
+无穷小,最后凑指数部分。
相关文档
最新文档