热处理淬火及变形
热处理变形的原因

热处理变形的原因在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。
变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。
一、热处理变形产生的原因钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。
淬火应力分为热应力和组织应力两种。
由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。
当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。
1.热应力在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。
零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。
表里温差增大应力也增大。
2.组织应力组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。
由于奥氏体比容最小,淬火冷却时必然发生体积增加。
淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。
由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。
二、减少和控制热处理变形的方法1.合理选材和提高硬度要求对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。
对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。
对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。
2.正确设计零件零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。
尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。
避免较深的不通孔。
长形零件避免截面呈横梯形。
3.合理安排生产路线,协调冷热加工与热处理的关系对于形状复杂、精度要求高的零件,应在粗、精加工之间进行预先处理,如消除应力、退火等。
热处理淬火及变形

热处理淬火及变形热处理淬火及变形热处理工艺、操作与变形关系一、预处理淬火前通过对工件进行消除应力、改善组织的预备热处理,对减少淬火变形是非常有利的。
预处理一般包括球化退火、消除应力退火,有些还采用调质或正火处理。
①消除应力退火:在机械加工过程中,工件表层在加工方法、背吃刀量、切削速度等的影响下,会产生一定的残余应力,由于其分布的不均衡,导致了工件在淬火时产生了变形。
为了消除这些应力的影响,淬火前将工件进行一次消除应力的退火是必要的。
消除应力退火的温度一般为500-700℃,在空气介质中加热时,为防止工件产生氧化脱碳可采用500-550℃进行退火,保温时间一般为2-3h。
工件装炉时要注意可能因自重引起的变形,其他操作同一般退火操作。
②以改善组织为目的的预热处理:这种预处理包括球化退火、调质及正火等。
球化退火:球化球退火是碳素工具钢及合金工具钢在热处理过程中必不可少的工序,球化退火后所获得的组织对淬火变形趋势影响很大。
所以可以通过调整退火后的组织来减少某些工件有规律的淬火变形。
其他预处理:为减少淬火变形所采用的预处理方法有很多种,如调质处理、正火处理等。
针对工件产生淬火变形的原因及工件所用材料,合理地选用正火、调质等预处理对减少淬火变形是有效的。
但应对正火后引起的残余应力及硬度提高对机加工的不利影响应给予注意,同时调质处理对含WMn等钢可减少淬火时胀大,而对GCr15等钢种的减少变形作用不大。
在实际生产中要注意分清淬火变形产生的原因,即要分清淬火变形是由残余应力引起的还是由组织不佳引起的,只有这样才能对症处理。
若是由残余应力引起的淬火变形则应进行消除应力退火而不用类似调质等改变组织的预处理,反之亦然。
只有这样,才能达到减少淬火变形的目的,才能降低成本,保证质量。
以上各种预处理的具体操作同其他相应操作,此处不赘述。
二、淬火加热操作①淬火温度:淬火温度对工件的淬火变形影响很大。
其影响淬火变形趋势的一般规律如图所示。
淬火后钢件变形趋势-解释说明

淬火后钢件变形趋势-概述说明以及解释1.引言1.1 概述在钢件制造过程中,淬火是一种常见的热处理方法,通过快速冷却的方式改变钢件的组织结构和性能。
然而,在淬火过程中,钢件往往会出现一定程度的变形,这种变形现象对于钢件的质量和精度都会产生一定的影响。
因此,本文旨在探讨钢件在淬火后的变形趋势,分析变形的原因,并对影响钢件变形的因素进行讨论和展望,以期为钢件制造过程中的质量控制和工艺改进提供一定的参考和指导。
1.2 文章结构文章结构主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的。
在概述中介绍了淬火过程中钢件的重要性,以及淬火后引起的变形问题。
文章结构部分主要是本篇长文的结构安排,包括各个部分的内容和顺序。
目的部分则是说明本篇长文的写作目的和意义。
正文部分包括钢件淬火过程、变形原因分析和变形趋势探讨。
在钢件淬火过程中,我们将介绍钢件淬火的基本流程和影响因素。
变形原因分析部分将对钢件淬火后出现变形的原因进行详细的分析和讨论。
而在变形趋势探讨中,我们将对不同条件下钢件变形的趋势进行深入探讨和分析。
结论部分包括总结、影响因素和展望。
在总结中对文章的主要内容和结论进行总结归纳。
影响因素部分将进一步分析淬火后钢件变形的影响因素。
展望部分将展望未来对钢件淬火变形问题的研究方向和发展趋势。
1.3 目的本文旨在研究钢件在淬火后的变形趋势,探讨钢件在淬火过程中可能出现的变形原因,并对变形趋势进行分析。
通过本文的研究,我们旨在深入了解钢件淬火后的变形规律,为工程师和生产人员提供参考,从而有效降低钢件淬火过程中的变形率,提高产品的质量和生产效率。
同时,我们也希望为相关领域的学术研究提供实用的理论支持和指导,推动该领域的进步和发展。
2.正文2.1 钢件淬火过程:钢件淬火是一种重要的热处理工艺,通过对钢件进行急冷处理,使其获得高强度和硬度。
通常情况下,淬火包括加热、保温和冷却三个阶段。
首先是加热阶段,钢件被置于均热炉中进行升温。
淬火变形问题的解决办法

淬火变形问题的解决办法本文基于淬火变形的机理及其影响因素,浅谈淬火变形的预防控制及后期的机加工补救方法。
一,导致淬火变形的因素1,碳含量及其对淬火变化量的影响高碳钢屈服强度的升高,其变形量要小于中碳钢。
对碳素钢来说,在大多数情况下,以T7A钢的变形量为最小。
当碳的质量分数大于0.7%时,多趋向于缩小;但碳的质量分数小于0.7%时,内径、外径都趋向于膨胀。
碳素钢本身屈服强度相对较低,因而带有内孔(或型腔)类的碳素钢件,变形较大,内孔(或型腔)趋于胀大。
合金钢由于强度较高,Ms点较低,残余奥氏体量较多,故淬火变形较小,并主要表现为热应力型的变形,其钢件内孔(或型腔)趋于缩小。
因此,在与中碳钢同样条件下淬火时,高碳钢和高合金钢工件往往以内孔收缩为主。
2,合金元素对淬火变形的影响合金元素对工件热处理变形的影响主要反映在对钢的Ms点和淬透性的影响上。
大多数合金元素,例如,锰、铬、硅、镍、钼、硼等,使钢的Ms点下降,残余奥氏体量增多,减小了钢淬火时的比体积变化和组织应力,因此,减小了工件的淬火变形。
合金元素显著提高钢的淬透性,从而增大了钢的体积变形和组织应力,导致工件热处理变形倾向的增大。
此外,由于合金元素提高钢的淬透性,使临界淬火冷却速度降低,实际生产中,可以采用缓和的淬火介质淬火,从而降低了热应力,减小了工件的热处理变形。
硅对Ms点的影响不大,只对试样变形起缩小作用;钨和钒对淬透性和Ms点影响也不大,对工件热处理变形影响较小。
故工业上所谓微变形钢,均含有较多量的硅、钨、钒等合金元素。
3,原始组织和应力状态对热处理变形的影响工件淬火前的原始组织,例如,碳化物的形态、大小、数量及分布,合金元素的偏析,锻造和轧制形成的纤维方向都对工件的热处理变形有一定影响。
球状珠光体比片状珠光体比体积大,强度高,所以经过预先球化处理的工件淬火变形相对要小。
对于一些高碳合金工具钢,例如,9Mn2V、CrWMn和GCr15钢的球化等级对其热处理变形开裂和淬火后变形的校正有很大影响,通常以2.5-5级球化组织为宜。
热处理变形的原因

热处理变形的原因在实际生产中,热处理变形给后续工序,特别是机械加工增加了很多困难,影响了生产效率,因变形过大而导致报废,增加了成本。
变形是热处理比较难以解决的问题,要完全不变形是不可能的,一般是把变形量控制在一定范围内。
一、热处理变形产生的原因钢在热处理的加热、冷却过程中可能会产生变形,甚至开裂,其原因是由于淬火应力的存在。
淬火应力分为热应力和组织应力两种。
由于热应力和组织应力作用,使热处理后零件产生不同残留应力,可能引起变形。
当应力大于材料的屈服强度时变形就会产生,因此,淬火变形还与钢的屈服强度有关,材料塑性变形抗力越大,其变形程度越小。
1.热应力在加热和冷却时由于零件表里有温差存在造成热胀冷缩的不一致而产生热应力。
零件由高温冷却时表面散热快,温度低于心部,因此表面比心部有更大的体积收缩倾向,但受心部阻碍而使表面受拉应力,而心部则受压应力。
表里温差增大应力也增大。
2.组织应力组织应力是因为奥氏体与其转变产物的比容不同,零件的表面和心部或零件各部分之间的组织转变时间不同而产生的。
由于奥氏体比容最小,淬火冷却时必然发生体积增加。
淬火时表面先开始马氏体转变,体积增大,心部仍为奥氏体体积不变。
由于心部阻碍表面体积增大,表面产生压应力,心部产生拉应力。
二、减少和控制热处理变形的方法1.合理选材和提高硬度要求对于形状复杂,截面尺寸相差较大而又要求变形较小的零件,应选择淬透性较好的材料,以便使用较缓和的淬火冷却介质淬火。
对于薄板状精密零件,应选用双向轧制板材,使零件纤维方向对称。
对零件的硬度要求,在满足使用要求前提下,尽量选择下限硬度。
2.正确设计零件零件外形应尽量简单、均匀、结构对称,以免因冷却不均匀,使变形开裂倾向增大。
尽量避免截面尺寸突然变化,减少沟槽和薄边,不要有尖锐棱角。
避免较深的不通孔。
长形零件避免截面呈横梯形。
3.合理安排生产路线,协调冷热加工与热处理的关系对于形状复杂、精度要求高的零件,应在粗、精加工之间进行预先处理,如消除应力、退火等。
45号钢热处理变形

45号钢热处理变形热处理是钢材加工过程中的一项重要工艺,能够改变钢材的内部组织和性能,使其达到更高的强度和韧性。
而45号钢作为常用的碳素结构钢,在热处理过程中也会发生一定的变形。
本文将就45号钢的热处理变形进行详细介绍。
热处理是通过加热和冷却的方式来改变钢材的组织结构和性能的工艺过程。
在热处理过程中,钢材经历了加热、保温和冷却三个阶段。
对于45号钢而言,其热处理过程主要包括退火、正火和淬火等工艺。
退火是将45号钢加热到一定温度,然后保温一段时间后缓慢冷却的过程。
退火的目的是消除钢材内部的应力,改善钢材的塑性和韧性。
在退火过程中,钢材会发生一定程度的变形,主要表现为体积膨胀和形状改变。
正火是将退火后的45号钢再次加热到一定温度,保温一段时间后通过水冷或油冷的方式快速冷却。
正火的目的是提高钢材的硬度和强度。
在正火过程中,钢材也会发生一定的变形,主要表现为体积收缩和形状变化。
淬火是将正火后的45号钢迅速冷却至室温以下的过程。
淬火能够使钢材的组织结构发生相变,形成马氏体,并提高钢材的硬度和强度。
在淬火过程中,钢材的变形主要表现为收缩和扭曲。
总的来说,45号钢在热处理过程中会发生一定的变形。
这主要是由于钢材在加热和冷却过程中受到了热膨胀和热收缩的影响,以及内部组织结构的变化所导致的。
为了减少热处理变形,需要根据具体情况采取相应的措施,如合理控制加热温度和冷却速率,选择适当的冷却介质等。
45号钢热处理过程中的变形是不可避免的,但可以通过合理的工艺参数和控制手段来减少变形的程度。
只有在了解钢材的热处理变形规律的基础上,才能更好地应用热处理工艺,提高钢材的性能和质量。
影响淬火热处理变形的原因

影响淬火热处理变形的原因淬火是将钢件加热到临界温度以上,保温适当的时间,然后以大于临界冷却速度冷却,获得马氏体或贝氏体组织的热处理工艺,它是强化钢材的最重要的热处理方法。
大量重要的机器零件及各类刀具、刃具、量具等都离不开淬火处理。
需要淬火的工件,经过加热后,便放到一定的淬火介质中快速冷却。
但冷却过快,工件的体积收缩及组织转变都很剧烈,从而不可避免地引起很大的内应力,容易造成工件变形及开裂。
由于淬火变形影响因素非常复杂,导致变形控制十分棘手。
而采用校直办法纠正变形或通过加大磨削加工余量,都会增加成本,因此研究钢件淬火热处理变形的影响因素,提出防止变形的措施是提高产品质量、延长零部件使用寿命、提高经济效益的重要课题。
零件热处理变形原因分析1 热应力引起的变形钢件在加热和冷却过程中,将发生热胀冷缩的体积变化以及因组织转变时新旧相比容差而产生的体积改变。
零件加热到淬火温度时,屈服强度明显降低,塑性则大大提高。
当应力超过屈服强度时,就会产生塑性变形,如果造成应力集中,并超过了材料的强度极限,就会使零件淬裂。
导热性很差的高碳合金钢,如合金模具钢Cr12MoV、高速钢W18Cr4V之类的工具钢,淬火加热温度很高,如不采用多次预热和缓慢加热,不但会造成零件变形,而且会导致零件开裂而报废。
此外,铸钢件和锻件毛坯,如果表层存在着一层脱碳层,由于表层和心部导热性能不同,在淬火加热较快时,也会产生热应力而引起变形。
冷却时由于温差大,热应力是造成零件变形的主要原因。
2 组织应力引起的变形体积的变化往往与加热和冷却有关,因为它和钢的膨胀系数相关。
比容的变化导致零件尺寸和形状的变化。
组织应力的产生起源于体积的收缩和膨胀,没有体积的膨胀,就没有组织转变的不等时性,也就没有组织应力引起的变形,导致热处理变形的内应力是热应力和组织应力共同作用形成的复合应力,热应力和组织应力综合作用的结果是不定的,可能因冷却条件及淬火温度的不同而产生不同情况,淬火应力是由急冷急热应力及由组织转变不同时所引起的应力综合构成的。
20号钢渗碳淬火变形

20号钢渗碳淬火变形20号钢是一种广泛应用于汽车、拖拉机及一般机械制造业的钢材,其渗碳淬火过程中的变形问题一直是制造业者关注的焦点。
下面将从热处理工艺、原材料、机械加工、工件结构等方面分析20号钢渗碳淬火变形的原因,并针对这些原因提出相应的解决方案,以帮助企业更好地控制工件变形,提高产品质量。
一、20号钢渗碳淬火变形的原因1、热处理工艺不当:渗碳淬火过程中,温度控制不准确或冷却速度过快,会导致工件内部产生热应力,从而引起变形。
2、原材料问题:原材料的化学成分、晶粒度、合金元素等都会影响渗碳淬火过程中的变形。
例如,碳含量过高、晶粒度粗大等都可能导致工件变形。
3、机械加工因素:工件在机械加工过程中,加工余量过大、刀具磨损、切削热等问题,也会导致工件变形。
4、工件结构因素:工件结构复杂或存在局部热处理不均匀等问题,可能引发工件变形。
二、减小20号钢渗碳淬火变形的措施1、优化热处理工艺:制定合理的热处理工艺参数至关重要。
根据20号钢的特性,选择合适的渗碳温度、时间和冷却速度,以达到30-35HRC的硬度。
同时,严格控制加热速度和冷却速度,避免因温度变化过快而导致的热应力过大,确保工件内部热应力平衡,减小变形。
2、提高原材料质量:选用优质钢材,控制好化学成分和晶粒度,确保原材料质量符合要求。
并对原材料进行严格的化学成分分析和物理性能测试,确保原材料的质量达到要求。
此外,对原材料的晶粒度进行检测,以确保其符合规定范围。
3、机械加工注意事项:合理安排加工工艺,要注意控制加工余量,避免因加工余量过大而导致工件变形。
合理选择刀具,注意刀具的磨损和切削热对工件的影响。
此外,合理安排加工顺序,避免因加工顺序不当导致的工件变形。
4、工件结构设计:工件的结构设计也是影响渗碳淬火变形的重要因素。
设计时应尽量使工件结构简单、对称,避免复杂结构带来的热处理不均匀问题。
对于存在局部热处理不均匀的工件,可以采用局部淬火或分区淬火的方法,以减小变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理工艺、操作与变形关系
一、预处理
淬火前通过对工件进行消除应力、改善组织的预备热处理,对减少淬火变形是非常有利的。
预处理一般包括球化退火、消除应力退火,有些还采用调质或正火处理。
①消除应力退火:在机械加工过程中,工件表层在加工方法、背吃刀量、切削速度等的影响下,会产生一定的残余应力,由于其分布的不均衡,导致了工件在淬火时产生了变形。
为了消除这些应力的影响,淬火前将工件进行一次消除应力的退火是必要的。
消除应力退火的温度一般为500-700 ℃,在空气介质中加热时,为防止工件产生氧化脱碳可采用500-550 ℃进行退火,保温时间一般为2-3h。
工件装炉时要注意可能因自重引起的变形,其他操作同一般退火操作。
②以改善组织为目的的预热处理:这种预处理包括球化退火、调质及正火等。
——球化退火:球化球退火是碳素工具钢及合金工具钢在热处理过程中必不可少的工序,球化退火后所获得的组织对淬火变形趋势影响很大。
所以可以通过调整退火后的组织来减少某些工件有规律的淬火变形。
——其他预处理:为减少淬火变形所采用的预处理方法有很多种,如调质处理、正火处理等。
针对工件产生淬火变形的原因及工件所用材料,合理地选用正火、调质等预处理对减少淬火变形是有效的。
但应对正火后引起的残余应力及硬度提高对机加工的不利影响应给予注意,同时调质处理对含W Mn 等钢可减少淬火时胀大,而对GCr15等钢种的减少变形作用不大。
在实际生产中要注意分清淬火变形产生的原因,即要分清淬火变形是由残余应力引起的还是由组织不佳引起的,只有这样才能对症处理。
若是由残余应力引起的淬火变形则应进行消除应力退火而不用类似调质等改变组织的预处理,反之亦然。
只有这样,才能达到减少淬火变形的目的,才能降低成本,保证质量。
以上各种预处理的具体操作同其他相应操作,此处不赘述。
二、淬火加热操作
①淬火温度:淬火温度对工件的淬火变形影响很大。
其影响淬火变形趋势的一般规律如图所示。
根据图的所示曲线对淬火畸变的影响规律,我们可通过调整淬火温度来达到减少变形的目的,或将预留机械加工余量同淬火温度来达到减少变形的目的,或将预留机械加工余量同淬火温度经热处理试验后合理地选择、使用,从而达到减少后序加工余量。
淬火温度对淬火变形的影响除与工件所用材料有关外,还与工件的尺寸、形状等有关。
当工件形状和尺寸差异很大时,虽然工件使用材料一样,但淬火变形趋势却大不相同,操作者在实际生产中应注意这种情况。
②淬火保温时间:保温时间的选择除了要保证工件透烧、淬火后达到要求的硬度或其他力学性能外,还要考虑它对淬火变形的影响。
延升淬火保温时间,实际上就相应地提高了淬火温度。
特别是对高碳高铬钢,这一影响尤显突出。
③装炉方法:工件在加热时摆放形式不合理,则会产生因工件自重而引起的变形或因工件之间相互挤压产生变形或因工件堆放过密造成加热及冷却不均而产生变形。
如某弹簧件,淬火时曾用垂直吊挂的方式在860±10℃的保护气氛加热炉中加热保温30min,保温后从炉中取出并将工件垂直淬入冷却油中,淬火后弹簧总长缩短了27mm,并且上下螺距因淬入淬火介质的时间差异而变形量也不一样。
后改用弹簧套在心轴上,并水平吊挂装炉,其他操作过程同前,淬火后,其变形情况大为改观,螺距均匀,总长度收缩较小。
特别是细长的工件除不能以密堆横放的方式装炉外,在盐浴炉加热时,还应考虑到因加热介质翻滚使工件产生变形的可能。
细长且重量较小的杆类工件装炉时,一般是将盐浴炉先升至稍高于淬火温度,断电后再将工件装入盐浴炉中,装炉时要稳,并且采用不通电的方式加热工件,从而达到减少工件的淬火变形的目的。
④加热方式:工件的形状复杂、厚薄悬殊较大时,特别是当其材料的含碳及合金元素较高时,其加热过程一定要缓慢均匀,应充分利用预热过程,一次预热不行的,采用二次、三次预热。
对用预热方式仍不能解决变形的较大工件,还可采用装箱保护在箱式电阻炉中加热,加热时除限速升温外,还可增加等温过程,以便减少由于加热速度过快而产生的淬火变形。
三、冷却操作
淬火变形主要是来自冷却过程。
合理的淬火介质、熟练的操作技能,冷却过程中的每一个环节都直接地影响着工件的淬火变形。
1、合理选择淬火介质:在保证工件经淬火后硬度达到设计要求的情况下,工件淬火时应尽可能地选用较缓和的淬火介质。
如利用加热浴介质冷却(利用热浴介质冷却时可趁热对工件进行矫直)。
尽可能用空冷淬火,以及用介于水、油冷速之间的淬火介质代替水油双介质淬火等。
——空冷淬火:空冷淬火对减少高速钢、铬型模具钢及空冷微变形钢的淬火变形是有效的。
对淬火后硬度要求不高的3Cr2W8V钢,通过适当地调整淬火温度也可用空淬火来达到减少变形的目的。
——油冷淬火:油是一种比水的冷却速度小得多的淬火介质,但对那些具有较高淬透性且尺寸小、形状复杂的变形倾向大的工件来说,无疑人们仍会认为油的冷却速度偏高,而对尺不大但淬透性较差的工件,油的冷却速度却又显不足了。
为了解决上述矛盾,充分利用油淬减少工件的淬火变形,人们采取了调节油温及提高淬火温度的方未能来扩大对油的利用。
————改变淬火用油的温度:利用淬火用同的油温来减少淬火变形尚存在以下问题,即油温偏低时,淬火变形仍很大,而油温偏高时又难以保证工件淬火后的硬度。
某些工件在形状和材料的综合作用下,提高淬火用油的温度还可能会增加其变形。
所以,根据工件材料、截面尺寸及形状等实际情况通过试验后再确定淬火用油的油温,这是非常必要的。
利用热油淬火时,为避免因淬火冷却引起油温过高而发生火灾,应在油槽附近配备必要的消防器材。
此外还应定期检测淬火用油的质量指标,并及时补充或更换新油。
————提高淬火温度:此法适用于在正常淬火温度下加热保温后经油淬后达不到硬度要求的较小截面的碳素钢制工件及尺寸稍大的合金钢工件。
通过适当地提高淬火温度后油淬,则达到即能淬硬又能减少变形的效果。
利用这种方法淬火时要注意防止因提高淬火温度而可能引起晶粒粗化、降低工件的力学性能和使用寿命等问题。
——分级、等温淬火:在淬硬度能满足设计要求的情况下,应充分利用热浴介质的分级、等温淬火,来达到减少淬火变形的目的。
这一方法对淬透性较低的、小截面碳素结构钢、工具钢同样有效,特别是淬透性较高的含铬模具钢、高速钢制工件,热浴介质分级、等温淬火冷却方法是这类钢的基本淬火方法。
同样,对那些淬火硬度要求不高的碳素钢、低合金结构钢也是行之有效的。
在利用热浴淬火时,应注意以下问题:
第一、用油浴分级、等温淬火时,应对油温进行严格控制,防止火灾的发生。
第二、用硝盐分级淬火时,硝盐槽应配备必要的仪表及水冷装置,其他注意事项详见相关资料,此处不再赘述。
第三、等温淬火时要严格控制等温温度,温度偏高或偏低都不利于减少淬火变形。
另外等温淬火时工件的吊挂方式要选择合量,防止因工件自重而引起的变形。
第四、利用等温或分级淬火趁热矫正工件形状时,工装夹具应配备齐全,操作时动作要迅速。
防止对工件淬火质量产生不利影响。
2、冷却操作:冷却过程中操作的熟练程度对淬火变形的影响很大,特别是利用水、油等淬火介质时,操作熟练与否更为重要了。
——正确的淬入介质方向:一般来说,截面对称和细长杆类工件,垂直淬入淬火介质,截面不对称的工件可采用斜向淬入淬火介质。
实际上正确的淬入淬火介质方向就是使工件各部分能均匀冷却的方向。
将冷却慢的部分先淬入淬火介质,冷却快的部分后淬入淬火介质。
在实际生产中要特别注意工件的形状对冷却速度的影响,工件表面积大的部分,并不意味着其冷
却速度就大,特别是在该部分形状比较复杂时,由于冷却不均匀,很可能会导致冷却速度比表面积小的部分的冷却速度慢。
所以如何选择进入淬火介质方向,应根据工件的形状具体掌握。
工件淬入淬火介质方向对淬火变形的影响实例如图
——工件在淬火介质中的运动:冷却速度慢的部人应迎水运动。
形状相对称的工件在水中运动路线要对称均匀,运动幅度要小且速度要快。
对于细长薄片类工件淬入淬火介质时要稳,工件不应在淬火介质中摆动,这类工件最好不用铁丝捆绑淬火而用钳子夹持淬火。
——工件淬入淬火介质的速度:工件淬入淬火介质时的速度要快。
特别是细长、筒类工件,如淬入淬火介质的速度慢,则会导致其弯曲变形增大以及会使筒类件先淬入淬火介质部分和后淬入淬火介质部分的变形量差异增大。
——采用加保护的冷却:截面尺寸差别较大的工件应将冷却速度快的部分用石棉绳、铁皮等物进行捆绑保护,借以降低该部分的冷却速度,从而使工件各部分冷却均匀。
——工件在水中的冷却时间:对于由组织应力为主引起变形的工件可缩短其在水中的冷却时间;而对于由热应力为主引起变形的工件则可适当延长其在水中的冷却时间,从而达到减少工件淬火变形的目的。