中心对称与中心对称图形 习题精选及答案(一)
3.2中心对称与中心对称图形(一)

3.2中心对称与中心对称图形(一)一、基础训练1.把一个图形,那么称这两个图形关于这点对称,也称这两个图形成,这个点叫做,叫做对称点.2.关于某一点成中心对称的两个图形,对称点连线都经过,并且被对称中心.3.你能列举日常生活中成中心对称的两个图形的例子吗?二、典型例题例1.如图,已知△ABC和点O,画△A B''C',使它与△ABC关于点O成中心对称.AC例2.如图,两个三角形成中心对称,请确定其对称中心.三、拓展提升如图,在△ABC中,AD是中线.(1)读语句画图:延长AD到点E,使DE=AD,连结BE,CE.(2)填空:点A与点关于点成中心对称,点B与点关于点成中心对称,线段AB与线段关于点成中心对称.(3)写出所有关于点D成中心对称的三角形.四、课后作业1.下列说法正确的是( )(A )全等的两个图形成中心对称 (B )成中心对称的两个图形必须能完全重合(C )旋转后能重合的两个图形成中心对称(D )成中心对称的两个图形不一定全等2.下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了中心对称变换的是 ( )(A ) (B ) (C ) (D )3.已知A 、B 、O 三点不共线,A 、A ’关于点O 对称,B 、B ’关于点O 对称,那么线段AB 与A ’B ’的关系是 .4.在等腰三角形ABC 中,∠C=90°,BC=20cm ,如果以AC 的中点O 为旋转中心,将这个三角 形旋转180°,点B 落在B′处,那么点B′与点B 原来位置相距____________.5.分别画出下列各图中△ABC 关于点O 对称的△A B C '''6.如图所示的两个图形成中心对称,你能找到对称中心吗?7.如图,直线12l l ⊥,垂足为O ,点A 1与点A 关于直线1l 对称,点A 2与点A 关于直线2l 对称.点A 1与A 2有怎样的对称关系?你能说明理由吗?C A CB A O A B CO3.2中心对称与中心对称图形(一)一、基础训练1、绕着某一点旋转180°,如果它能够与另一个图形重合;中心对称;对称中心;两个图形中的对应点2、对称中心,平分3、略二、典型例题例1、略例2、略三、拓展提升(1)略(2)E,D,C,D,CE,D(3)△ADB与△EDC △ADC与△EDB △ABC与△ECB △ACE与△EBA四、课后作业1、B2、C3、AB与A’B’关于点O成中心对称4、5、略6、略7、A1、A2关于点O成中心对称且关于A1A2的垂直平分线成轴对称。
苏科版数学八年级下册中心对称和中心对称图形

中心对称和中心对称图形-培优拔尖精练
一、相关概念1.下列命题中正确的命题的个数有()①在成中心对称的两个图形中,连接对称点的线段都被对称中心平分;②关于某一点成中心对称的两个三角形能重合;③两个能重合的图形一定关于某点中心对称;④如果两个三角形的对应点连线都经过同一点,那么这两个三角形成中心对称;⑤成中心对称的两个图形中,对应线段互相平行或共线;
A .1个
B .2个
C .3个
D .4个
二、中心对称的性质的坐标是.
第2题图第3题图第4题图
四、对称点的坐标推导
4.如图,将ABC 绕点()0,1C -旋转180︒得到A B C ''' .设点A '的坐标为(),a b ,则点A 的坐标为()
A .(,)
a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b ---三、对称中心的确定
5.如图,在平面直角坐标系中,RtΔABC 的三个顶点分别是A (-3,2)
、B (0,4)、C (0,2).(1)将ΔABC 以点C 为中心旋转180°,画出旋转后对应的△A 1B 1C ;
(2)平移△ABC ,若点A 的对应点A 2的坐标为(1,-4)
,画出平移后对应的△A 2B 2C 2;(3)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2,请直接写出旋转中心的坐标;
练习9.2第4题图第5题图xOy 中的位置如图所示,小正方形的边长为1个单位.
111A B C △.
(3)在x 轴上有一点P ,使1PA +______.。
中心对称 练习题

中心对称练习题中心对称是几何学中常见的概念,它是指一个物体与其关于某个点的对称物体完全相同。
在这个练习题中,我们将探讨一些与中心对称相关的问题,并通过解析和说明来帮助读者更好地理解这一概念。
下面是一些练习题:练习题一:1. 在平面xy上,画一个中心在原点O的圆,并标记该圆的半径r。
解析:要画一个中心在原点O的圆,我们需要以O为圆心,r为半径画一个圆。
在平面xy上,我们可以使用一个圆规和一支铅笔来完成这个绘图任务。
首先将圆规的一个脚放在O点,然后利用铅笔调整圆规的另一个脚的长度为r,接着固定住这个长度,绕着O点转动圆规画出圆的轨迹。
最后将这个轨迹用一条曲线连接起来,就得到了一个中心在原点O的圆。
2. 给定一个点A(3, 4),请找出关于点A的中心对称点A'的坐标。
解析:关于点A的中心对称点A'的特点是,点A在O点的中垂线上,并且与O点的距离等于点A与A'的距离。
根据这个特点,我们可以确定A'在平面xy上的坐标。
首先,考虑点A到原点O的距离,根据勾股定理,这个距离为√(3^2 + 4^2) = √(9 + 16) = √25 = 5。
因此,A'与O的距离也必须为5。
O的中心对称点,所以点A与A'之间的连线与x轴的夹角可以看作是x轴与OA的夹角的两倍。
而点A的坐标为(3, 4),所以OA与x轴的夹角为arctan(4/3)。
因此,点A'与x轴的夹角为2 * arctan(4/3)。
最后,通过这个夹角和A'与O的距离,我们可以得到A'在平面xy上的坐标。
由于A'与O的距离为5,那么A'的坐标可表示为(5 * cos(2* arctan(4/3)), 5 * sin(2 * arctan(4/3)))。
将这个表达式计算出来,就可以得到A'的坐标。
练习题二:1. 在平面xy上,画一个以(2, 3)为中心的圆,并标记该圆的半径为r。
9.2 中心对称与中心对称图形(解析版)

【上好课】2021-2022学年八年级数学下册同步备课系列(苏科版)9.2 中心对称与中心对称图形一、单选题1.学校举办了“送福迎新春,剪纸庆佳节”比赛.请问以下参赛作品中,是中心对称图形的是()A.B.C.D.【答案】D【解析】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、不是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项符合题意;故选:D.2.等边三角形、等腰三角形、矩形、菱形中既是轴对称图形,又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【答案】A【解析】解:矩形,菱形既是轴对称图形,也是中心对称图形,符合题意;等边三角形、等腰三角形是轴对称图形,不是中心对称图形,不符合题意;共2个既是轴对称图形又是中心对称图形.3.下列说法正确的是()A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合C.旋转后能重合的两个图形成中心对称D.成中心对称的两个图形不一定全等【答案】B【解析】解:A、成中心对称的两个图形全等,但全等的两个图形不一定成中心对称,故错误;B、成中心对称的两个图形必须能完全重合,正确;C、旋转180°能重合的两个图形成中心对称,故错误;D、成中心对称的两个图形一定全等,故错误.故选B.4.如图,已知菱形ABCD与菱形EFGH关于直线BD上某个点成中心对称,则点B的对称点是( )A.点EB.点FC.点G【答案】D【解析】解:由于四边形ABCD 与四边形EFGH 都是菱形,且关于直线BD 上某个点成中心对称,根据中心对称的定义可知,点B 的对称点是H .故选D .5.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是 ( )A .第一张B .第二张C .第三张D .第四张【答案】A【解析】解:根据旋转的性质,旋转前后图形的大小和形状没有改变,其必须是中心对称图形.分析可得只有第一张是中心对称图形;而第(2)(3)(4)张均不符合.故选A .6.如图,ABC V 与A B C ¢¢¢V 关于O 成中心对称,下列结论中不一定成立的是( )A .ABC A CB ¢¢¢Ð=ÐB .OA OA ¢=C .BC B C ¢¢=D .OC OC ¢=【答案】A【解析】解:∵对应点的连线被对称中心平分,∴OA OA ¢=,OC OC ¢=,即B 、D 正确,∵成中心对称图形的两个图形是全等形,∴对应线段相等,即BC B C ¢¢=,∴C 正确,故选A .7.如图,已知长方形的长为10,宽为4,则图中阴影部分的面积为( )A .20B .15C .10D .25【答案】A 【解析】解:根据题意观察图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得:图中阴影部分的面积即是长方形面积的一半,×40=20cm2.则图中阴影部分的面积=12故选:A.8.如图所示,在33´的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()A.3种B.4种C.5种D.6种【答案】C【解析】如图所示:5种不同的颜色即为使整个图案构成一个轴对称图形的办法.故选:C.二、填空题9.ABO V 与11A B O V 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点(4,2)A ,则点1A 的坐标是________.【答案】(-4,-2)【解析】∵△ABO 与△A1B1O 关于点O 成中心对称,点A (4,2),∴点A1的坐标是:(-4,-2).故答案为:(-4,-2).10.如图是一个中心对称图形,点A 为对称中心,若3AC =,5AB =,4BC =,则CC ¢的长为______.【答案】6【解析】∵图形是一个中心对称图形,A 为对称中心,∴3AC AC ¢==,∴6CC AC AC ¢¢=+=,故答案为:6.11.平面直角坐标系中,点()3,2P -关于点()1,0Q 成中心对称的点的坐标是_______.【答案】(-1,2)【解析】解:如图,设Q (1,0),连结PQ 并延长到点P ′,使P ′Q =PQ ,设P ′(x ,y ),则x <0,y >0.过P 作PM ⊥x 轴于点M ,过P ′作PN ⊥x 轴于点N .在△QP ′N 与△QPM 中,QNP QMP NQP MQP QP QP Ð=ÐìïÐ==¢Ð¢í¢ïî,∴△QP ′N ≌△QPM (AAS ),∴QN =QM ,P ′N =PM ,∴1-x =3-1,y =2,∴x =-1,y =2,∴P ′(-1,2).故答案为(-1,2).三、解答题12.在直角坐标平面内,点A1、B1、C1的坐标如图所示.(1)请写出点A1、B1、C1的坐标:点A1的坐标是 ;点B1的坐标是 ;点C1的坐标是 .(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是 .(3)若点B1与点B关于原点对称,则点B的坐标是 .(4)将C1沿x轴翻折得到点C,则点C的坐标是 .(5)分别联结AB、BC、AC,得到△ABC,则△ABC的面积是 .【答案】(1)(3,0);(﹣5,﹣3);(3,2);(2)(0,3);(3)(5,3);(4)(3,﹣2);(5)252.【解析】解:(1)在直角坐标平面内,点A1、B1、C1的坐标如图所示:点A1的坐标是(3,0);点B1的坐标是(﹣5,﹣3);点C1的坐标是(3,2),故答案为:(3,0);(﹣5,﹣3);(3,2);(2)将点A1绕原点逆时针旋转90°得到点A,则点A的坐标是(0,3),故答案为:(0,3);(3)若点B1与点B关于原点对称,则点B的坐标是(5,3),故答案为:(5,3);(4)将C1沿x轴翻折得到点C,则点C的坐标是(3,﹣2),故答案为:(3,﹣2);(5)分别连接AB、BC、AC,得到△ABC,则△ABC的面积是:2555122´´=,故答案为:252.13.图中的两个四边形关于某点对称,找出它们的对称中心.【答案】见解析【解析】解:如图,点O即为所求14.如图,已知AD是ABCD的中线,画出以点D为对称中心、与ABDD成中心对称的三角形.【答案】见解析【解析】解:延长AD,且使AD A D¢D的中线,所以B点关于中心D的对称点为C,连接=,因为AD是ABCD为所求作的三角形,如图所示.'A C,则'A CD15.如图,下列4×4网格图都是由16个相同的小正方形组成,每个网格图中有4个小正方形已涂上阴影,按下列要求涂上阴影(1)在(图1)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形;(2)在(图2)中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【答案】(1)见解析;(2)见解析【解析】(1)添加图形如下:(2)添加图形如下:16.已知△OAB在平面直角坐标系中的位置如图所示,请解答以下问题:(1)按要求作图:先将△OAB绕原点O逆时针旋转90°,得到△OA1B1,再作出△OA2B2,使它与△OA1B1关于原点成中心对称;(2)直接写出点A1的坐标;点B2的坐标.【答案】(1)见解析(2)(﹣1,3);(2,﹣2)【解析】(1)如图,△OA1B1,△OA2B2即为所求;(2)点A1的坐标(﹣1,3);点B2的坐标(2,﹣2).故答案为:(﹣1,3);(2,﹣2).17.如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点( , )对称.【答案】(1)见解析(2)见解析(3)−2,0【解析】(1)点A(1,3),B(4,4),C(2,1)分别向左平移4个单位后的对应点的坐标分别为A1(−3,3),B1 (0,4),C1(−2,1),依次连接这三个点得到平移后的△A1B1C1,如图所示.(2)△ABC的三个顶点A(1,3),B(4,4),C(2,1)绕原点O旋转180゜后可得对应点A2,B2,C2的坐标分别为(−1,−3),(−4,−4),(−2,−1),依次连接这三个点得到旋转后的△A2B2C2,如图所示;(3)如(2)中图所示,连接12C C 、12A A 、12B B ,可得12,C C 关于(−2,0)对称设直线12A A 的解析式为y =kx +b ,则有:333k b k b -+=ìí-+=-î解得:36k b =-ìí=-î 即直线12A A 的解析式为36y x =--当2x =-时,y =0,则(−2,0)是12,A A 的对称中心;同理可求得直线12B B 的解析式为24y x =+当2x =-时,y =0,则(−2,0)是12,B B 的对称中心;综上所述,△A 1B 1C 1与△A 2B 2C 2关于点(−2,0)对称.18.在一次数学探究活动中,小强只用一条直线就把矩形分割成面积相等的两部分.(1)在如图所示的三个矩形中,请你大胆尝试,画出符合上述要求的直线(注:①所画直线经过的特殊点必须标注清楚,②一个矩形只画一种).(2)根据你的分割法:只用一条直线就把矩形分割成面积相等的两部分,你认为这样的直线有条?(3)由上述实验操作过程,你发现所画的这条直线的特征是;(4)经验迁移:如图④,在正方形ABCD中,AB=6,点E在边AD上,且AE=2.若直线l经过点E,并将该正方形的面积平分,与正方形的BC边交于点F,求线段EF的长.【答案】(1)见解析;(2)无数;(3)经过对角线的交点(矩形的对称中心);(4)【解析】解:(1)①直线经过矩形对角线,如图,,②直线经过一组对边中点,如图,,③直线经过矩形对称中心,如图,,此处可借助△OAE≌△OCF,证面积被平分.(2)只要经过矩形的对称中心,便可以平分矩形面积,所以有无数条,故答案为无数,(3)分析图形得到平分矩形面积的直线都经过了矩形的对称中心(对角线的交点),故答案为经过对角线的交点(矩形的对称中心).(4)根据题意,连接AC,BD交于点O,过E,O的直线交BC于点F,过点E作EG⊥BC于点G.如图,,∵四边形ABCD是正方形,∴AB=BC=6.OA=OC,∠FCO=∠OAE=45°,∵∠FOC=∠AOE,∴△FOC≌△AOE(ASA),∴AE=CF=2,∴GF=6﹣2﹣2=2,在Rt△EFG中,EG=AB=6,GF=2,∴EF=。
初中数学专题训练--四边形--中心对称和中心对称图形

典型例题一例01. 下列几组几何图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是( ).A .正方形、菱形、矩形、平行四边形B .正三角形、正方形、菱形、矩形C .正方形、矩形、菱形D .平行四边形、正方形、等腰三角形 分析 A 中平行四边形不是轴对称图形,B 中正三角形不是中心对称图形,D 中平行四 边形不是轴对称图形.正选C .解答 本题主要考查轴对称和中心对称图形的判定,易错点是弄错图形的对称性,解题关键是要熟悉所学过的图形的对称性.典型例题二例02.如图,已知:四边形ABCD 关于O 点成中心对称图形. 求证:四边形ABCD 是平行四边形.分析:因为四边形ABCD 是中心对称图形,所以A 点与C 点,B 点与D 点是对称点. 所以线段AC 过O 点,线段BD 也过O 点,且两条线段都被O 点平分,故四边形ABCD 是平行四边形.证明:连结AC 、BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 上,也在BD 上,并且OD OB OC OA ==,∴ 四边形ABCD 是平行四边形.说明:要应用轴对称或中心对称解决问题,应该判断清楚图形的对称的特点,找到对称点.典型例题三例03.如图,已知:矩形ABCD 和D C B A '''关于点A 对称. 求证:四边形D B BD ''是菱形.分析:根据题意知点B 与B '关于点A 对称,点D 和点D '关于点A 对称,又四边形ABCD 和D C B A '''是矩形,由中心对称的性质及矩形的性质即可证明.证明:∵矩形ABCD 和D C B A '''关于点A 成中心对称图形.∴ D A AD '=,B A AB '=(关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分).∴ 四边形D B BD ''是平行四边形.又∵四边形ABCD 是矩形,∴︒=∠90DAB ∴四边形D B BD ''是菱形.典型例题四例04.(西安市,2000)已知:如图,AD 是ABC ∆中A ∠的平分线,AC DE //交AB 于E ,AB DF //交AC 于F .求证:点E ,F 关于直线AD 对称.证明:∵AE DF AF DE //,//,∴四边形AEDF 是平行四边形.∵DAF DAE ∠=∠,EDA DAF ∠=∠, ∴EDA DAE ∠=∠. ∴ED AE = ∴AEDF 是菱形.∴点E ,F 关于直线AD 对称. 说明 证明菱形是关键典型例题五例05.(南昌市,1999)按要求画一个图形:所画图形中同时要有正方形和圆,并且这个图形既是中心对称图形又是轴对称图形.分析 这是一道具有开放特色的考题,题中给定的两个图形都既是轴对称图形,也是中心对称图形,故按要求画出的图形只要让两个图形的对称中心重合即可.这样的图形观出很多.解答 具体作法是:先作出正方形,连结对角线找出对角线交点,再以对角线交点为圆心,以任意长为半径画图,所得图形都满足题设要求.举例如下:说明 本题考查轴对称图形和中心对称图形的应用,解题关键是要探索出两个图形的对称中心重合.选择题1.(四川省,2000)下列图形中,既是轴对称图形又是中心对称图形的是( )A .角B .等边三角形C .线段D .平行四边形 2.下列多边形中,是中心对称图形而不是轴对称图形的是( )A .平行四边形B .矩形C .菱形D .正方形 3.已知下列命题:(1)关于中心对称的两个图形一个不全等;(2)关于中心对称的两个图形是全等的图形;(3)两个全等的图形一定关于中心对称,其中真命题的个数是( )A .0B .1C .2D .34.在平面上一个菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转角度至少是( )A .︒180B .︒90C .︒270D .︒3605.下列命题:(1)如果ABC ∆与C B A '''∆关于中心对称,则C B A ABC '''∆≅∆;(2)如果C B A ABC '''∆≅∆,则ABC ∆与C B A '''∆关于中心对称;(3)相交的两条直线是中心对称图形;(4)等边三角形是中心对称图形;(5)菱形是中心对称图形. 其中正确的命题的个数是()A .1B .2C .3D .4 6.(威海市,2001;北京市东城区,2002)下列四个图形中,既是轴对称图形又是中心对称图形的是()A .①②③④B .①②③C .①③D .③ 7.下列图形中,是中心对称图形而不是轴对称图形的是(). A .平行四边形 B .矩形 C .菱形 D .正方形8.下列图形中,既是轴对称图形,又是中心对称图形的是().A .等腰三角形B .等边三角形C .平行四边形D .矩形9.下列说法中正确的是().A .矩形的每一条对角线都是矩形的对称轴B .平行四边形对角线的交点是平行四边形的对称中心C .菱形是轴对称图形,但不是中心对称图形D .中心对称图形就是中心对称参考答案:1.C 2.A 3.B 4. A 5.C 6.D 7.A 8.D 9.B填空题1.在平行四边形,菱形,等边三角形中,轴对称图形有_____种,中心对称图形有______种.2.既是中心对称图形,又是轴对称图形,且只有两条对称轴的四边形是_______. 3.关于中心对称的两个图形,对应线段_______. 4.(徐州市,2000)在下面四个图形中,图形①与图形_______成轴对称;图形①与图形________成中心对称(填写符合要求的图形所对应的序号)参考答案: 1.3,32.矩形或菱形 3.平行且相等 4.④,③解答题1.如图,已知线段AB 及AB 外一点P ,求作线段B A '',使B A ''与AB 关于点P 对称.2.如图,已知ABC ∆及点P ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点P 对称.3.如图,已知ABC ∆及其内部一点O ,求作C B A '''∆,使C B A '''∆与ABC ∆关于点O 对称.4.如图,已知:矩形ABCD 和矩形D C B A '''关于A 点对称. 求证:四边形D B BD ''是菱形.5.已知ABCD ,作四边形D C B A '''',使它与已知平行四边形关于顶点A 对称,并证明四边形C B BC ''是平行四边形.6.如图,四边形ABCD 关于O 点成中心对称图形, 求证:四边形ABCD 是平行四边形.7.(山西省,2000)如图,矩形ABCD 是篮球场地简图,请你画图找出它们的对称中心O .8.(南昌市,2001)如图,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后得到标号为P 、Q 、M 、N 的四组图形. 试按照“哪个正方形剪开后得到哪组图形”的对应关系,填空:A 与______对应;B 与______对应;C 与______对应;D 与______对应.9.(遵义市,2000)如图,请画出把下列矩形的面积两等分的直线,并填空. (一个矩形只画一条直线,不写画法)在一个矩形中,把此矩形面积两等分的直线最多有______条,这些直线都必须经过该矩形______点.10.(聊城市,2000)如图,已知矩形ABCD 中,3=AB ,4=BC ,将矩形折叠使C 点与A 点重合.(1)作出折痕EF ,并写出作法(E 点在BC 边上,F 点在AD 边上);(2)翻折后点D 落在D '上,求此时B 、D '之间的距离.11.(济南市,2001)如图是未完成的上海大众汽车的标志图案. 该图案应该是以直线l 为对称轴的轴对称图形,现已完成对称轴左边的部分,请你补全标志图案,画出对称轴右边的部分(要求用尺规作图,保留痕迹,不写作法).12.(荆州市,2002)有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).13.(盐城市,2002)已知:如图,矩形ABCD . (1)作出点C 关于BD 所在直线的对称点C '(用尺规作图,不写作法,保留作图痕迹) (2)连结B C ',D C ',若BD C '∆与ABD ∆重叠部分的面积等于ABD ∆面积的32,求CBD ∠的度数.14.(福州市,2002)已知:图(1),图(2)分别是66⨯正方形网格上的两个轴对称图形(阴影部分),其面积分别为A S ,B S (网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:B A S S :的值是_______;(2)请在图(3)的网格上画出一个面积为8个平方单位的中心对称图形.参考答案:1.略 2.略 3.略4.因矩形ABCD 和矩形D C B A '''关于A 点对称,∴ B A AB '=,D A DA '= ∴ 四边形D B BD ''是平行四边形. ∵ B B D D '⊥',∴D B BD ''是菱形 5. 图略,证法同第4题. 6.证明:连结AC ,BD .∵ 四边形ABCD 关于O 点成中心对称图形,∴ O 点在AC 和BD 上,且OD OB OC OA ==,. ∴ 四边形ABCD 是平行四边形. 7.连结AC ,BD 交于O 8.M ,P ,Q ,N9.略 10.略 11.图略 12.略13.(1)略;(2)连结C B ',C D ',设C B '与AD 相交于E . 证AE BE EB ED 2,==,求得︒=∠30ABE ,∴ ︒=∠30CBD14.(1)119:=B A S S ;(2)略。
中心对称与中心对称图形(四大类型)(题型专练)(原卷版)

专题02 中心对称与中心对称图形(四大类型)【题型1 中心对称图形】【题型2 中心对称的性质】【题型3 点坐标的对称】【题型4 图案设计】【题型1 中心对称图形】1.(2022秋•香坊区期末)如图各图形中,是中心对称图形的是()A.B.C.D.2.(2022秋•曲周县期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(2022秋•十堰期末)下列四组图形中,左边的图形与右边的图形成中心对称的有()A.1组B.2组C.3组D.4组4.(2022秋•平泉市校级期末)若两个图形成中心对称,则下列说法:①对应点的连线必经过对称中心;②这两个图形的形状和大小完全相同;③这两个图形的对应线段一定相等;④将一个图形绕对称中心旋转某个角度后必与另一个图形重合.其中正确的有()A.1个B.2个C.3个D.4个5.(2022秋•栾城区期末)如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【题型2 中心对称的性质】6.(2023春•砀山县校级期中)如图,BO是等腰三角形ABC的底边中线,AC =2,AB=4,△PQC与△BOC关于点C中心对称,连接AP,则AP的长是()A.4B.C.D.7.(2022春•安吉县期末)如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,点A,B,C的对应点分别为A1,B1,C1,则对称中心E点的坐标是()A.(3,﹣1)B.(0,0)C.(2,﹣1)D.(﹣1,3)8.(2022•贵阳模拟)如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C旋转180°得到△B′O′C,则点A与点B′之间的距离为()A.6B.8C.10D.12 9.(2022春•连山区期中)如图,平面直角坐标系中的图案是由六个边长为1的正方形组成的,B(3,3),A(a,0)是x轴上的动点,当AB将图案分成面积相等的两部分时,a等于()A.1B.C.D.10.(2022春•相城区校级期中)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB′=5,则菱形ABCD 的边长是()A.3B.4C.D.11.(2022秋•天山区校级期末)如图,菱形ABCD的对角线AC、BD交于点O,将△BOC绕着点C旋转180°得到△B'O'C,若AC=2,AB=4,则AB'的长是()A.4B.C.2D.12.(2022秋•五华县期中)如图是北师大版九年级上册数学教材第25页第4题内容的变式,如图,三个边长相同的正方形重叠在一起,O1、O2是其中两个正方形的中心,阴影部分的面积和是8,则正方形的边长为()A.2B.4C.8D.2 13.(2022秋•沙河口区校级月考)经过矩形对称中心的任意一条直线,把这个矩形分成两部分,设这两部分的面积分别为S1和S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不能确定14.(2022春•温州期中)如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(﹣1,0),若直线y=﹣2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是.15.(2021秋•任城区校级月考)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.16.(2022秋•南昌期中)如图,直线MN过▱ABCD的中心点O,交AD于点M,=.交BC于点N,已知S▱ABCD=4,则S阴影17.(2021秋•雷州市校级月考)如图所示的图形是一个中心对称图形,点O是AC与BD的交点,且是对称中心.(1)若AO=4cm,那么CO的长是多少?(2)试说明△ABO≌△CDO.【题型3 点坐标的对称】18.(2022秋•仙居县期末)点A(﹣1,2)关于原点对称的点B的坐标是()A.(1,﹣2)B.(1,2)C.(﹣2,﹣1)D.(2,﹣1)19.(2023•大东区模拟)已知点A(﹣2,b)与点B(a,3)关于原点对称,则a﹣b的值为()A.6B.5C.4D.3 20.(2023春•东港市期中)在平面直角坐标系中,点(a+5,4)关于原点的对称点为(﹣3,﹣b),则ab的值为()A.8B.﹣8C.32D.﹣32 21.(2022秋•鸡西期末)已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣C.﹣<a<1D.a>1【题型4 图案设计】22.(2022春•梅江区期末)如图,在平面直角坐标系中,已知点A(﹣5,2),B(﹣4,5),C(﹣3,3)(1)画出△ABC.(2)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标是.△A1B1C1的面积是.23.(2023春•雨花区校级期末)已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次连接点A、D、B、C,求所得图形的面积.23.(2021秋•南关区校级期中)图①、②均是5×5的正方形网格,每个小正方形边长为1,小正方形的顶点称为格点,点A、C在格点上.在给定的网格中按要求作图,所有图形的顶点均在格点上.(1)在图①中作以AC为腰的等腰△ABC,且三边长均为无理数,并写出△ABC的面积为.(2)在图②中作以AC为边的四边形ACDE,使四边形为中心对称图形,且面积为8.24.(2021春•浦东新区校级期末)如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是;(2)点B关于原点对称的点C的坐标是;点A关于y轴对称的点D 的坐标是;(3)四边形ABDC的面积是;(4)在y轴上找一点F,使S△ADF =S△ABC,那么点F的所有可能位置是.。
9.2 中心对称与中心对称图形

9.2 中心对称与中心对称图形【中档题】(满分100分时间:40分钟)班级姓名得分【知识点回顾】1、中心对称:一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这点对称,也称这两个图形成中心对称。
这个点叫做对称中心。
2、成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
3、中心对称图形:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形;这个点就是它的对称中心。
【课时练习】一、单项选择题:(本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.(2021·重庆北碚区·西南大学附中九年级期末)下列图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形与轴对称图形的定义求解.【详解】解:A、是轴对称图形不是中心对称图形,不符合题意;B、既是轴对称图形也是中心对称图形,不符合题意;C、是中心对称图形不是轴对称图形,符合题意;D、是轴对称图形不是中心对称图形,不符合题意;故选C .【点睛】本题考查轴对称与中心对称的应用,熟练掌握轴对称与中心对称的意义是解题关键.2.(2020·浙江杭州市·八年级其他模拟)若4y kx =-的函数值y 随x 的增大而增大,则(,3)k 关于原点的对称点在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据函数的性质确定k >0,判断点(,3)k 在第一象限,根据中心对称的性质即可求解.【详解】解:∵4y kx =-的函数值y 随x 的增大而增大,∴k >0,∴点(,3)k 在第一象限,∴(,3)k 关于原点的对称点在第三象限.故选:C【点睛】本题考查了一次函数的增减性,中心对称的性质,根据一次函数的增减性判断k 的符号是解题关键.3.(2020·广州白云广雅实验学校九年级月考)如图,0MON 9°Ð=,ABC V 关于OM 的对称图形是111A B C V ,111A B C V 关于ON 的对称图形是222A B C V ,则ABC V 与222A B C V 的关系是( )A.平移关系B.关于O点成中心对称Ð的平分线成轴对称D.关于直线ON成轴对称C.关于MON【答案】B【分析】可设OM所在直线为y轴,ON所在直线为x轴,再根据平面直角坐标系中轴对称与中心对称的对称点的坐标关系便可求解.【详解】不妨设OM所在直线为y轴,ON所在直线为x轴,∵△ABC关于OM的对称图形是△A1B1C1,∴A与A1、B与B1、C与C1的纵坐标相同,横坐标互为相反数,∵△A1B1C1关于ON的对称图形是△A2B2C2,∴A1与A2、B1与B2、C1与C2的横坐标相同,纵坐标互为相反数,∴A与A2、B与B2、C与C2的横坐标、纵坐标都互为相反数,则由中心对称图形在平面直角坐标系中对称点的坐标关系可知:△ABC与△A2B2C2关于O点成中心对称.故答案为:B.【点睛】本题考查了轴对称图形的特征和中心对称图形的识别,正确区分两种对称变换的特征是解题的关键.4.(2020·山东淄博市·鲁村中学八年级月考)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是()A.④B.③C.②D.①【答案】C【分析】将一个图形旋转180度后能与原图形重合的图形是中心对称图形,根据定义解答.【详解】A、涂④后构成轴对称图形,不符合题意;B、涂③后构成轴对称图形,不符合题意;C、涂②后构成中心对称图形,符合题意;D、涂①后既不是轴对称图形也不是中心对称图形,不符合题意;故选:C..【点睛】此题考查中心对称图形的定义,掌握中心对称图形与轴对称图形的特点及区别是解题的关键.5.(2020·全国九年级课时练习)如图,线段AC与BD相交于点O,且△ABO和△CDO关于点O成中心对称,则下列结论,其中正确的个数是()△≌△;④AC=BD.①OB=OD;②AB=CD;③ABO CDOA.4B.3C.2D.1【答案】B【分析】根据成中心对称的两个图形的性质解答.【详解】解:∵△ABO和△CDO关于点O成中心对称,∴△ABO≌△CDO,∴OB=OD,AB=CD,而AC=BD不一定成立,故选:B.【点睛】此题考查成中心对称的两个图形的性质:成中心对称的两个图形全等,熟记性质是解题的关键.6.(2020·上海嘉定区·七年级期末)下列说法中正确的是()A.如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B.如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C.如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D.如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;【答案】C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180°则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.二、填空题:(本题共4小题,每小题5分,共20分)-关于原点对称的点的坐标为______.7.(2021·福建莆田市·九年级期末)在平面直角坐标系中,点(2,4)-【答案】(2,4)【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】点(2,4)-关于原点对称的点的坐标为(2,4)-,故答案为:(2,4)-.【点睛】此题考查关于原点对称的点的坐标特点:横纵坐标都互为相反数.8.(2021·重庆市璧山中学校九年级月考)已知点(,3)-A m 与(6,1)B n -关于原点对称,则m n +=____________.【答案】-8【分析】关于原点对称的点的横纵坐标都互为相反数,据此解答.【详解】∵点(,3)-A m 与(6,1)B n -关于原点对称,∴m=-6,1-n=3,∴n=-2,∴m+n=-6-2=-8,故答案为:-8.【点睛】此题考查关于原点对称的点的坐标特征:横纵坐标互为相反数,求代数式的值,熟记坐标特征是解题的关键.A a b+关于原点O对称的点的坐标是9.(2020·富顺县北湖实验学校九年级月考)直角坐标系里,点(,1)(4,3),则点A的坐标为____.【答案】(-4,-3)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A a b+关于原点O对称的点的坐标是(4,3),解:∵点(,1)∴a=-4,b+1=-3∴点A的坐标为(-4,-3) .故答案为:(-4,-3).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.10.(2020·孝感市孝南区教学研究室九年级期中)如图,O是正方形ABCD的中心,M是ABCD内一点,V绕O点旋转180°后得到BNACM=,则MN的长为V.若390DMCÐ=°,将DMCMD=,4______.【分析】延长BN交CM与E,判定△NME为等腰直角三角形,求出NE的长,再据勾股定理可计算得MN的长.【详解】解:如下图在正方形ABCD中延长BN交CM于E,由题意据中心对称的性质,得∠ABE=∠CDM,∠MDC与∠MCD互余,∠ABE与∠EBC互余∴∠EBC=∠DCM;同理可得∠MCB=∠ABN又∠ABN=∠CDM∴∠MCB=∠MDC又BC=CD∴△BEC≌△CMD∴∠BEC=∠CMD=90° BE=CM=4 CE=DM=3∴ME=CM-CE=1,NE=BE-BN=1所以△MNE为等腰直角三角形,且∠NEM是直角,ME=NE=1,由勾股定理得=.【点睛】此题考查综合运用中心对称的性质解决问题.其关键是要运用中心对称的性质找全等条件,证明△BEC ≌△CMD .三、解答题:(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤.)11.(2021·山东淄博市·八年级期末)如图,平面直角坐标系的原点在边长为1个单位长度的小正方形组成的网格的格点上,ABC V 为格点三角形(三角形的顶点在网格的格点上)(1)直接写出下列点的坐标:A (______,______),B (______,______),C (______,______).(2)直接画出经过下列变换后的图形:将ABC V 向右平移1个单位,再向下平移6个单位后,得到111A B C △(其中:点A 移动后为点1A ,点B 移动后为点1B ,点C 移动后为点1C )再将其绕点1A 顺时针旋转180°得到222A B C △.(3)通过观察分析判断ABC V 与222A B C △是否关于某点成中心对称?如果是,直接写出对称中心的坐标;如果不是,说明理由.【答案】(1)(3,2)A ,(1,1)B ,(4,0);(2)见解析;(3)ABC V 与222A B C △关于点P 成中心对称,点P 的坐标为 7,12öæ-ç÷èø.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构分别找出点A 、B 、C 平移后的对称点A 1、B 1、C 1的位置,然后顺次连接即可;分别找出点A 1、B 1、C 1绕点A 1顺时针旋转180°的对应点A 2、B 2、C 2的位置,然后顺次连接即可;(3)根据网格结构和中心对称的性质确定出对称中心,并根据对称中心的位置写出坐标即可.【详解】解:(1)(3,2)A ,(1,1)B ,(4,0)C .(2)111A B C △如图所示,222A B C △如图所示.(3)如图所示,ABC V 与222A B C △关于点P 成中心对称,∵C(4,0),C2(3,-2),CP=C2P,点P的横坐标为:12×(4+3)=72,纵坐标为:12×(0-2)=-1,∴P7,12öæ-ç÷èø.【点睛】本题考查了利用平移、旋转变换作图及中心对称等知识,解题的关键是理解题意,熟练掌握平移、旋转及中心对称的性质并准确找出对应点的位置.12.(2020·浙江杭州市·八年级其他模拟)在66´的方格纸中,每个小正方形的边长均为1,请在图1、图2、图3中各画一个以A,B为顶点的四边形,满足以下要求:(1)在图1中画出一个面积为6,且是中心对称的四边形;(2)在图2中画出一个面积为9,且是轴对称的四边形;(3)在图3中画出一个既是轴对称又是中心对称的四边形.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)画一个底为2,高为3的平行四边形即可;(2)画一个上底为2,下底为4,高为3的梯形即可;(3)以AB为边画一个正方形即可.【详解】解:(1)如图,四边形ABCD即为所作;(2)如图,四边形ABCD即为所作;(3)如图,四边形ABCD即为所作.【点睛】本题考查了轴对称图形和中心对称图形,解题的关键是掌握相应图形的性质,以及网格的性质.V各顶点坐标为:13.(2021·朝阳县羊山实验中学九年级期末)如图,在平面直角坐标系中,ABCA-,(4,0)(2,3)B-,(1,1)C-.(1)作ABC V 关于原点O 成中心对称的111A B C △;(2)将111A B C △向上平移5个单位,作出平移后的222A B C ;(3)在x 轴上求作一点P ,使2PA PA +的值最小,并求出点P 的坐标【答案】(1)见详解;(2)见详解;(3)见详解,2,05æöç÷èø【分析】(1)根据关于原点对称的点的坐标特征分别作出点A 、B 、C 关于原点的对称点A 1、B 1、C 1,即可得到△A 1B 1C 1;(2)根据平移的性质分别作出点A 1、B 1、C 1向上平移5个单位的对称点A 2、B 2、C 2,即可得到△A 2B 2C 2;(3)由于点A′和A 关于x 轴对称,连结A′A 2交x 轴于P ,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,接着利用待定系数法求出直线A′A 2的解析式为5142y x =-,然后计算函数值为0时的自变量的值即可得到点P 的坐标.【详解】(1)如图,△A 1B 1C 1为所求;(2)如图,△A 2B 2C 2为所求;(3) 作点A 关于x 轴对称的对称点A′,连结A′A 2交x 轴于P ,则P 点为所求,则PA′=PA ,所以PA+PA 2=PA′+PA 2=A′A 2,根据两点之间线段最短得到PA 2+PA 的值最小,设直线2A A ¢的解析式为y kx b =+,把(2,3)A ¢--,2(2,2)A 代入得:2322k b k b -+=-ìí+=î,解得5412k b ì=ïïíï=-ïî,∴直线2A A ¢的解析式为5142y x =-,当0y =时,51042x -=,解得25x =,P 点坐标为2,05æöç÷èø.【点睛】本题考查了作图-中心对称变换和平移变换.根据中心对称的性质可知,作对应点与中心O连线并延长,利用对应线段相等,由此可以射线上的边上截取相等的线段的方法,找到对应点,顺次连接得出成中心对称的图形.14.(2020·长沙市中雅培粹学校)阅读下列材料并完成题目:类似于平移变换是在原有横、纵坐标上加减一个数,在平面直角坐标系xOy中,点P(x,y)经过变换φ得到P′(x′,y′),把这种变换记作φ(x,y)=(x′,y′),其中''x ax byy ax by=+ìí=-î(a,b为常数),例如:当a=1,且b=1时,则φ(﹣2,3)=(1,﹣5).(1)①当a=2,且b=1时,φ(﹣2,1)= .②若φ(3,1)=(﹣3,﹣3),则a= ,b= .(2)点P(2,1)经过变换φ得到点P′(x′,y′),若点P′与点P关于原点对称,求a和b的值.(3)对任意横、纵坐标满足二元一次方程2x﹣y=0的点P(x,y),点P经过变换φ得到点P′(x′,y′),若点P与点P′重合,求a和b的值.【答案】(1)①(﹣3,﹣5);②﹣1,0;(2)31,42a b=-=-;(3)32a=,14b=-.【分析】(1)①根据变换φ的定义解答即可;②根据变换φ的定义构建方程组即可解决问题;(2)先根据关于原点对称的点的坐标特点求出点P′的坐标,再根据变换φ的定义构建方程组即可解决问题;(3)由题意可设P(x,2x),然后根据变换φ的定义构建方程组即可解决问题.【详解】解:(1)①x′=2×(﹣2)+1×1=﹣3,y′=2×(﹣2)﹣1×1=﹣5,∴φ(﹣2,1)=(﹣3,﹣5),故答案为:(﹣3,﹣5);②由题意,得3333a ba b+=-ìí-=-î,解得1ab=-ìí=î,故答案为:﹣1,0;(2)∵点P′与点P关于原点对称,P(2,1),∴P′(﹣2,﹣1),由题意,得2221a ba b+=-ìí-=-î,解得3412abì=-ïïíï=-ïî;所以31,42 a b=-=-;(3)由题意可设P(x,2x),则有222ax bx xax bx x+=ìí-=î,解得3214abì=ïïíï=-ïî.所以32a=,14b=-.【点睛】本题是新定义题目,以φ变换为载体,主要考查了二元一次方程组的解法和关于原点对称的点的坐标特点,正确理解变换法则、熟练掌握解二元一次方程组的方法是解题的关键.。
第三章 中心对称图形(一)单元复习题(含答案)

第三章中心对称图形(一)(附答案)一、选择题:1.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE=()A.30°B.22.5°C.15°D.以上都不对2.菱形的周长为20㎝,两邻角的比为1∶3,则菱形面积为()㎝A.25 B.16 C.D.3.下列命题不正确的是()A.任何一个成中心对称的四边形是平行四边形;B.平行四边形既是轴对称图形又是中心对称图形;C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形;D.等边三角形、矩形、菱形、正方形都是轴对称图形4.四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.以线段a=16,b=13,c=6为边作梯形,其中a,c为梯形的两底,这样的梯形()A.有一个B.有两个C.有三个D.以上都不对6.梯形ABCD的面积是6cm2,P是腰BC的中点,则S△APD等于()A.1cm2B.1.5cm2C.2cm2D.3cm27.三角形三条中位线的长为3、4、5,则此三角形的面积为()A.12 B.24 C.36 D.488.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为()EABCDEGHA .12BC .D .9.已知等腰梯形的两底之差等于腰长,则腰与下底的夹角为( )A .15°B .30°C . 45°D .60°10.直角梯形ABCD 中,AB ∥CD ,∠A =30°,AB +CD =m ,BC +AD =n ,则梯形ABCD 的面积为( )A .1mn 4B .1mn 5C .1mn 6D .1mn 8二、填空题:11.梯形的上底长为3cm ,中位线长为5cm ,底边上的高为5cm ,则梯形面积为______ cm 2,下底长为__________cm .12.已知等腰梯形一底角为60°,两底的和为30cm ,且对角线平分60°的底角,则此等腰梯形的周长为__________cm .13.如图:正方形ABCD 的边长为a ,E 为AD 的中点,BM⊥BC 于M ,则BM 的长为___________. 14.如图:DE 是△ABC 的中位线,且DE=5cm ,GH 是梯形DECB 的中位线,则GH=___________. 15.如图:延长正方形ABCD 的边BC 至E ,使CE=AC ,连接AE 交CD 于F ,则∠AFC=___________.16. 梯形的高为5cm ,中位线为14cm ,则此梯形的面积为____________.17.等腰梯形两对角线互相垂直,中位线长为a ,则此梯形的面积为___________. 18.如图,在□ABCD 中,E 、F 分别是AD 、BC 的中点,AC 分别交BE 、DF 于G 、H ,以下结论:① BE=DF;② AG=GH=HC;③ EG=21BG ;④ S △ABE =3S △AGEFAB DM NADE BACD 其中,正确的有________________. 三、解答题:19.矩形ABCD 中,AC 、BD 相交于点O ,E 为矩形ABCD 外一点,若AE⊥CE,求证BE⊥DE.20.在梯形ABCD 中,∠B=45°,∠C=60°,CD=4cm , AD=2cm , 求梯形ABCD 的周长及面积.21.在△ABC 中, AB=2AC ,AF=41AB ,D 、E 分别为AB 、AC 的中点,EF 与CA 的延长线交于点G ,求证:AF=AG .22.如图:梯形ABCD 中,AD∥BC,S △ADC :S △ABC =2:3,而对角线中点M 、N 的连线段为10cm , 求梯形两底的长.ABCEDF GE23.△ABC 中E 是AB 的中点,CD 平分∠ACD,AD⊥CD与点D ,求证:DE=21(BC-AC ).24.如图:AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O ,求证:OF=21CE .答案:1.C 2.C 3.B 4.C 5.D 6.D 7.B 8.A 9.D 10.C11.25、7;12.50、 13;14.7.5; 15.112.5°16.70㎝2 17.2a; 18.①、②、③、④;19.提示:连结OE,证OE=OA,又OA=OB=OC=OD,则OE=OB=OD即得;20.周长为10+6+;21.提示:取AC的中点M,连结EM;22.AD=40,BC=60;23.提示:延长AD交BC于F,说明AC=CF,DE是△ABF的中位线;24.提示:过O点作OP∥BC交AE于P,则OP=12CE,再证OP=OF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称与中心对称图形 习题精选(一)
1.判断题
(1)两个全等三角形构成的图形是中心对称图形。
( )
(2)具有对称中心的四边形必是平行四边形。
( )
(3)轴对称与中心对称不同,所以轴对称图形一定不是中心对称图形。
( )
(4)三角形一定不是中心对称图形。
( )
(5)对称中心是所有对称点连线的中点。
( )
(6)平行四边形是中心对称图形。
( )
2.如图将ABCD 绕O 点旋转180°后,A 点旋转到_______点,B 点旋转到________点,旋转后的平行四边形与原位置的平行四边形互相_________。
3.中心甘情愿对称图形上的每一对对应点所连成的线段都被__________平分。
4.在下列图形:线段、射线、直线、角、等边三角形、平行四边形、矩形、菱形、正方形中,既是轴对称图形,又是中心对称图形的有__________________________________。
5.若四边形ABCD 和四边形A B C D ''''关于点O 成中心对称,已知A 80∠=︒,AB=7cm ,CO=9cm ,那么A '∠=________,A B ''=__________,C O '=_________。
6.下列英文大写字母中,是中心对称图形的是 ( )
A.B
B.H
C.M
D.Y
7.已知四边形ABCD 的对角线相交于点O ,且OA=OB=OC=OD ,那么这个四边形是 ( ) A.仅是轴对称图形
B.仅是中心对称图形
C.是轴对称图形但不是中心对称图形
D.既是轴对称图形又是中心对称图形
8.下面扑克牌中,是中心对称图形的是 ( )
9.下列图形中,是中心对称图形的为 ( )
A.①②③
B.①③④
C.②③④
D.①②④
10.下列说法中,错误的是 ( )
A.一条线段是中心对称图形
B.两个全等三角形一定关于某点成中心对称
C.正方形既是中心对称图形也是轴对称图形
D.关于中心对称的两个图形必是全等形
11.如图所示的两个图形成中心对称,请找出对称中心。
12.如图所示的图形是不是轴对称图形?是不是中心对称图形?
13.如图,已知ABC 和点P ,求作A B C ''',使A B C '''与ABC 关于点P 对称。
14.下列图形中既是轴对称图形又是中心对称图形的个数是 ( )
A.1个
B.2个
C.3个
D.4个
15.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的3张牌旋转180°成第二行的样子,你能判断出被旋转过的3张牌是哪3张吗?
16.如图,画出半圆关于直径上一点为对称中心的叫心对称图形。
17.找出图中的旋转对称中心,说出至少旋转多少度能怀原图形重合?并说出它们是否是中心对称图形。
18.如图,AD是△ABC中∠A的平分线,DE∥AC交AB于E,DF∥AB交AC于F,请用中心对称图形有关知识说明点E、F关于AD中点O对称。
答案
1.(1)× (2)√(3) ×(4) √(5) √(6) √
2.C D
3.对称中心
4.线段、直线、矩形、菱形、正方形
5.80° 7cm 9cm
6.B
7.D
8.B
9.B
10.B
11.找出两对应点的交点即为对称中心
12.不是轴对称图形,但是中心对称图形
13.略
14.B
15.第1张、第3张、第4张
16.略
17.(1)旋转90°(2)旋转72°(3)旋转45°(1)(3)是中心对称图形
18.说明点O为EF的中点即可。