最新-江苏省南通中学高二下学期期中考试——数学(理)
江苏省南通中学2019-2020学年度第二学期期中考试高二数学试卷(含答案和解析)

江苏省南通中学2019~2020学年第二学期期中考试高二数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,复数()()i 2i 1++=z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限、2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,则“4>ξ”表示试验的结果为()A.第一枚为5点,第二枚为1点B.第一枚大于4点,第二枚也大于4点C.第一枚为6点,第二枚为1点D.第一枚为4点,第二枚为1点3.若函数xx x f 1)(2+=,则()=-'1f ()3A.-1B.1C.-3D.4.已知*∈N n ,则()()()n n n ---100...2221等于()79100 A.nA -80100 B.nA -nnA --21100 C.nA -21100D.5.函数)(x f 的定义城为),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在),(b a 内极小值点个数为()1 A.2 B.3 C.4D.28515 A.C C 28915 B.C C 285390 C.C C -385390 D.C C -7.从甲、乙、丙、丁四人中选取两人参加某项活动,则甲、乙两人有且仅有一人入选的概率为()41A.31B.32C.43D.8.若函数bx x x x f -+=221ln )(存在单调递减区间,则实数b 的取值范围是())(2, A.+∞,2)2( B.-),2()2,( C.+∞⋃--∞)2,0( D.二、多项选择题(本大题共4小题,每题5分)9.若m m C C 8183>-,则m 的取值可能是()A.6B.7C.8D.910.若复数z 满足()i z i +=3-1(其中i 是虚数单位),则()A.z 的实部是2B.z 的虚部是i2 C.iz 21-= D.5=z 11.从甲袋中摸出一个红球的概率是31,从乙袋中摸出一个红球的概率是21,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为61 B.2个球不都是红球的概率为31C.至少有1个红球的概率为32D.2个球中恰有1个红球的概率为216.若90件产品中有5件次品,现从中任取3件产品,则至少有一件是次品的取法种数是()12.已知函数()x x x f ln =,若210x x <<,则下列结论不正确的是()A.()()2112x f x x f x <B.()()2211x f x x f x +<+C.()()02121<--x x x f x f D.当1ln ->x 时,()()()1222112x f x x f x x f x <+三、填空题(本大题共4小题,每小题5分)13.522⎪⎭⎫ ⎝⎛+x x 的展开式中4x 的系数为_______.14.已知随机变量ξ的概率分布规律为()(1,2,3,4)(1)aP n n n n ξ===+,其中a 是常数,则15()22P ξ<<的值为.15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种(数字作答).16.已知函数2(2)2,1,(),1x x a x a x f x e ax x ⎧-++=⎨->⎩若函数()y f x =在R 上有零点,则实数a 的取值范围为.四、解答题(本大题共6小题,共70分)17.已知i 是虚数单位,且复数z 满足(3)(2)5z i --=.(1)求z ;(2)若()z a i + 是纯虚数,求实数a 的值.18.已知二项式(2()n x n N+∈的展开式中第2项与第3项的二项式系数之比是2:5,按要求完成以下问题:(1)求n 的值;(2)求展开式中的常数项;(3)计算式子061524366662222C C C C +++3425160666222C C C +++的值.19.已知函数32()2(,)f x x ax bx a b R =+++∈的图象在点(1M ,f (1))处的切线方程为1230x y +-=.(1)求a 、b 的值;(2)求()f x 在[2-,4]的最值.21.盒子中有大小相同的9个,其中2个球红色球,3个白色球,4个黑色球规定取出一个红色球得1分,取出一个白色球得0分,取出一个黑色球得-1分,现从盒子任取3个球(1)求取出的3个球至少1个红色球的概率(2)求取出三个球得分之和为1的概率(3)设ξ为取出的3个球中白色球的个数,求ξ的概率分布22.已知函数()(1)(1)x f x kx e k x =---.(1)若()f x 在0x x =处的切线斜率与k 无关求0x ;(2)若x R ∃∈,使得()0f x <成立,求整数k 的最大值.20.乒乓球单打比赛在甲乙两名运动员之间进行,比赛采用7局4胜制(先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同(1)求乙以4比1获胜的概率(2)求甲获胜且比赛局数多于5局的概率江苏省南通中学2019~2020学年第二学期期中考试高二数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
江苏省南通市高二下学期期中数学试卷(理科)

江苏省南通市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高一上·思南期中) 已知集合A={(x,y)|y=2x﹣3},B={(x,y)|y=m},若A∩B=∅,则实数m的取值范围是()A . m<3B . m≤3C . m≤﹣3D . m<﹣32. (2分) (2016高三上·厦门期中) 已知 =1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A . 3B . 2C . 5D .3. (2分)已知数列{an}(n=1,2,3,4,5)满足a1=a5=0,且当2≤k≤5时,(ak﹣ak﹣1)2=1,令S=,则S不可能的值是()A . 4B . 0C . 1D . -44. (2分)如图是一个几何体的三视图,其中俯视图中的曲线为四分之一圆,则该几何体的表面积为()A . 3B .C . 4D .5. (2分) (2019高二上·集宁月考) 已知数列满足,则()A .B . 5C .D .6. (2分)(2017·山东) 从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A .B .C .D .7. (2分) (2018高二上·六安月考) 若关于x的不等式至少有一个负数解,则实数a的取值范围是()A .B .C .D .8. (2分) (2018高三上·云南期末) 要得到函数的图象,只需将函数的图象上所有的点()A . 再向左平行移动个单位长度B . 再向右平行移动个单位长度C . 再向右平行移动个单位长度D . 再向左平行移动个单位长度9. (2分)若椭圆上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A . 2B . 4C . 6D . 810. (2分)在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A . 32B . -32C . 0D . 111. (2分)(2017·山东模拟) 如果,,那么等于()A . ﹣18B . ﹣6C . 0D . 1812. (2分)已知数列{an}满足a1=1,a2=,且[3+(﹣1)n]an+2﹣2an+2[(﹣1)n﹣1]=0,0∈N* ,记T2n为数列{an}的前2n项和,数列{bn}是首项和公比都是2的等比数列,则使不等式(T2n+)•<1成立的最小整数n为()A . 7B . 6C . 5D . 4二、填空题 (共4题;共4分)13. (1分) (2016高三上·沙坪坝期中) 若(x﹣a)dx= ,则a=________.14. (1分) (2016高二下·宜春期中) 二项式的展开式的第二项的系数为,则的值为________.15. (1分)(2017·佛山模拟) 所有真约数(除本身之外的正约数)的和等于它本身的正整数叫做完全数(也称为完备数、玩美数),如6=1+2+3;28=1+2+4+7+14;496=1+2+4+8+16+31+62+124+248,此外,它们都可以表示为2的一些连续正整数次幂之和,如6=21+22 , 28=22+23+24 ,…,按此规律,8128可表示为________.16. (1分) (2019高二下·上海月考) 从星期一到星期六安排甲、乙、丙三人值班,每人值2天班,如果甲不安排在星期一,乙不安排在星期六,那么值班方案种数为________.三、解答题 (共5题;共30分)17. (5分) (2018高三上·重庆期末) 在△ABC中,角 A , B , C所对的边分别为,且(I)求A;(II)若,△ABC的面积为,求的值。
【名校名卷】南通中学2022—2022学年度第二学期期中考试高二理科数学试卷

江苏省南通中学2022—2022学年度第二学期期中考试高二数学(理科)试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上..1.i 是虚数单位,i(1i)+的实部是 ▲ .2.已知命题p :x ∀∈R ,sin 1x ≤,则p ⌝为: ▲ . 3.已知平面α的法向量(1,2,2)=-n ,则=n ▲ . 4.i 是虚数单位,复数22i i+= ▲ . 5.命题:“若21x <,则11x -<<”的逆否命题是 ▲ .6.反证法基本证明模式是:要证明M N >,先假设 ▲ ,由已知及性质推出矛盾,从而肯定M N >. 7.设1111()123431f n n =++++⋅⋅⋅+-*()n ∈N ,则(1)()f k f k +-= ▲ .8.“2x <”是“260x x --<”成立的 ▲ 条件.填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的一个9.已知向量a =1,1,0,b =-1,0,2,且a +b 与2a +b 互相垂直,则= ▲ .10.已知命题p :x ∃∈R ,220x ax a ++≤.若命题p 是假命题,则实数a 的取值范围是▲ .11.复数i1i+在复平面中所对应的点到原点的距离为 ▲ .12.213122+<,221151233++<,222111712344+++<,……,根据以上式子可以猜想:2112+221132017++⋅⋅⋅+< ▲ .13.已知空间四点A -2,3,1,B 2,-5,3,C 10,0,10和D 8,4,9,则四点构成四边形形状是 ▲ . 14.已知数列{}n a 满足132a =,且11321n n n na a a n --=+-()2,n n +∈N ≥,请你运用归纳猜想法,得出数列的通项公式n a = ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定.....区域..内作答,解答时应写出文字 说明、证明过程或演算步骤. 15.(本小题满分14分)实数m 分别取什么数值时,复数22(56)(215)i z m m m m =+++--(i 是虚数单位),(1)与复数212i -相等; (2)与复数1216i +互为共轭.16.(本小题满分14分)已知p :128x <<;q :不等式240x mx -+≥恒成立,若p 是q 的充分条件,求实数m 的取值范围17.(本小题满分15分)已知点H 在正方体ABCD A B C D ''''-的对角线B D ''上,60HDA ∠=︒. (1)求DH 与CC '所成角的大小;(2)求DH 与平面AA D D ''所成角的大小.D 'C 'B 'A'HD CBA18.(本小题满分15分)已知数列{}n a 满足2*1111()22n n n a a na n +=-+∈N ,且13a =.(1)计算出2a 、3a 、4a ,并由此猜想数列{}n a 的通项公式; (2)用数学归纳法证明你的猜想.19.(本小题满分16分)由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量()P t (单位:吨)与上市时间t (单位:月)的关系大致如图(1)所示的折线ABCDE 表示,销售价格()Q t (单位:元/千克)与上市时间t (单位:月)的大致关系如图(2)所示的抛物线段GHR 表示(H 为顶点).(1)请分别写出()P t ,()Q t 关于t 的函数关系式,并求出在这一年内3到6月份的销售额最大的月份(2)图(1)中由四条线段所在直线....围成的平面区域为M ,动点(,)P x y 在M 内(包括边界),将动点(,)P x y 所满足的条件由加法运算类比到乘法运算(如1233x y -≤≤类比为2313x y≤≤),试写出类比后(,)P x y 所满足的条件,并求5xz y =的最大值.(图1)(图2)20.(本小题满分16分)已知函数()ln(1)f x x ,()()g x kx k =∈R . (1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得对任意0(0,)x x ∈,恒有5 2O36912 AB CD Et()P t 6 5 O412 GRHt()Q t()()f x g x >;(3)确定k 的所以可能取值,使得存在0t >,对任意的(0,)x t ∈恒有2()()f x g x x -<.江苏省南通中学2022-2022学年度第二学期期中考试 高二数学(理科)试卷参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上..1.i 是虚数单位,i(1i)+的实部是 ▲ .答案:1-2.已知命题p :x ∀∈R ,sin 1x ≤,则p ⌝为: ▲ . 答案:x ∃∈R ,sin 1x >3.已知平面α的法向量(1,2,2)=-n ,则=n ▲ . 答案:34.i 是虚数单位,复数22i i+= ▲ . 答案:2i -+5.命题:“若21x <,则11x -<<”的逆否命题是 ▲ . 答案:若11x x -≥,或≤,则21x ≥6.反证法基本证明模式是:要证明M N >,先假设 ▲ ,由已知及性质推出矛盾,从而肯定M N >. 答案:M N ≤7.设1111()123431f n n =++++⋅⋅⋅+-*()n ∈N ,则(1)()f k f k +-= ▲ .答案:11133132k k k ++++ 8.“2x <”是“260x x --<”成立的 ▲ 条件.填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的一个 答案:充分不必要9.已知向量a =1,1,0,b =-1,0,2,且a +b 与2a +b 互相垂直,则= ▲ .答案:-110.已知命题p :x ∃∈R ,220x ax a ++≤.若命题p 是假命题,则实数a 的取值范围是▲ . 答案:()0,1 11.复数i1i+在复平面中所对应的点到原点的距离为 ▲ .12.213122+<,221151233++<,222111712344+++<,……,根据以上式子可以猜想:2112+221132017++⋅⋅⋅+< ▲ .答案:4033201713.已知空间四点A -2,3,1,B 2,-5,3,C 10,0,10和D 8,4,9,则四点构成四边形形状是 ▲ .答案:梯形14.已知数列{}n a 满足132a =,且11321n n n na a a n --=+-()2,n n +∈N ≥,请你运用归纳猜想法,得出数列的通项公式n a = ▲ .答案:331nn n n a ⋅=-二、解答题:本大题共6小题,共90分.请在答题卡指定.....区域..内作答,解答时应写出文字 说明、证明过程或演算步骤. 15.(本小题满分14分)实数m 分别取什么数值时,复数22(56)(215)i z m m m m =+++--(i 是虚数单位),(1)与复数212i -相等; (2)与复数1216i +互为共轭.解析:(1)根据复数相等的充要条件得 -----------5分解之得m =-分 (2)根据共轭复数的定义得 --------------12分解得m =分 16.(本小题满分14分)已知p :128x <<;q :不等式240x mx -+≥恒成立,若p 是q 的充分条件,求实数m 的取值范围 解析::p 128x <<,即30<<x ,……3分p 是q 的充分条件,∴不等式240x mx -+≥对()3,0∈∀x 恒成立,……7分x x x x m 442+=+≤∴对()3,0∈∀x 恒成立, (10)分44x x +≥,当且仅当2x =时,等号成立……13分4≤∴m ……14分17.(本小题满分15分)已知点H 在正方体ABCD A B C D ''''-的对角线B D ''上,60HDA ∠=︒. (1)求DH 与CC '所成角的大小;(2)求DH 与平面AA D D ''所成角的大小.D 'C 'B 'A'HD CBA解析:以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.设(1)(0)H m m m >,,则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,可得2m =.解得m =, 所以2122DH ⎛⎫= ⎪ ⎪⎝⎭,.(Ⅰ)因为00112cos 2DH CC ++⨯'<>==,,所以45DH CC '<>=,.即DH 与CC '所成的角为45. (2)平面AA D D ''的一个法向量是(010)DC =,,. 因为011012cos 2DH DC ++⨯<>==,,所以60DH DC <>=,.可得DH 与平面AA D D ''所成的角为30. 18.(本小题满分15分)已知数列{}n a 满足2*1111()22n n n a a na n +=-+∈N ,且13a =.(1)计算出2a 、3a 、4a ,并由此猜想数列{}n a 的通项公式;(2)用数学归纳法证明你的猜想.证明:(1)24a =,35a =,46a =,猜想:*2()n a n n =∈+N . (2)①当1n =时,13a =,结论成立;②假设当*(1,)n k k k =∈N ≥时,结论成立,即2k a k =+,则当1n k =+时,22111111=(2)(+2)+1=+3=(+1)+22222k k k a a ka k k k k k +=-+-+,即当1n k =+时,结论也成立,由①②得,数列{}n a 的通项公式为*2()n a n n =∈+N .19.(本小题满分16分)由一个小区历年市场行情调查得知,某一种蔬菜在一年12个月内每月销售量()P t (单位:吨)与上市时间t (单位:月)的关系大致如图(1)所示的折线ABCDE 表示,销售价格()Q t (单位:元/千克)与上市时间t (单位:月)的大致关系如图(2)所示的抛物线段GHR 表示(H 为顶点).(1)请分别写出()P t ,()Q t 关于t 的函数关系式,并求出在这一年内3到6月份的销售额最大的月份(2)图(1)中由四条线段所在直线....围成的平面区域为M ,动点(,)P x y 在M 内(包括边界),将动点(,)P x y 所满足的条件由加法运算类比到乘法运算(如1233x y -≤≤类比为2313x y≤≤),试写出类比后(,)P x y 所满足的条件,并求5x z y =的最大值.(图1)(图2)解析:1503,136,()1169,7912t t t t P t t t t t -+≤≤⎧⎪-<≤⎪=⎨-+<≤⎪⎪-<≤⎩21()(4)6(012)16Q t t t =--+≤≤.21()()(1)[(4)6]16P t Q t t t ⋅=---+(36)t <≤ '23(()())[(3)33]16P t Q t t ⋅=---0>在(3,6]t ∈恒成立,所以函数在]6,3(上递增当t =6时,max [()()]P t Q t =.∴6月份销售额最大为34500元.2⎩⎨⎧≤-≤≤+≤71115y x y x 类比到乘法有:已知⎪⎩⎪⎨⎧≤≤≤≤71115y x xy ,求5y x z =的最大值.由=xy A·B⎩⎨⎧=-=⇒⎩⎨⎧-=-=+3251B A B A B A .∴251)(12112≤≤-xy ,343)(13≤≤xy , ∴253431211≤≤z ,则ma=.20.(本小题满分16分)已知函数()ln(1)f x x ,()()g x kx k =∈R .5 2O36912 AB CD Et()P t 65 O412 GRHt()Q t(1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得对任意0(0,)x x ∈,恒有()()f x g x >;(3)确定k 的所以可能取值,使得存在0t >,对任意的(0,)x t ∈恒有2()()f x g x x -<..【解析】3当1k 时,由(1)知,对于(0,),x +()f()g x x x ,故()f()g x x ,|f()()|()()k ln(1)x g x g x f x x x ,令2M()k ln(1),[0)x x x x x ,+,则有21-2+(k-2)1M ()k 2=,11x x k x x x x故当22(k 2)8(k 1)0)4k x (,时,M ()0x ,M()x 在22(k 2)8(k 1)[0)4k ,上单调递增,故M()M(0)0x ,即2|f()()|x g x x ,所以满足题意的t 不存在当1k 时,由(2)知存在00x ,使得对任意的任意的0(0),x x ,恒有f()()x g x .此时|f()()|f()()ln(1)k x g x x g x x x ,解法二:(1)(2)同解法一(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x ,令2(k1),01x x x k 解得,从而得到当1k 时,(0,1)x k 对于恒有2|f()()|x g x x ,所以满足题意的t 不存在当1k 时,取11k+1=12k k k ,从而]。
2022-2023学年江苏省南通市高二年级下册学期期中考试 数学【含答案】

江苏省南通市2022-2023学年度第二学期期中考试高二数学一、单选题1.109876⨯⨯⨯⨯可以表示为A .410A B .510A C .4!C D .510C 2.已知集合N M ,均为R 的子集,且∅=N M C )(R ,则=N M A .空集B .M C .N D .R 3.如图,平行六面体1111D C B A ABCD -的底面ABCD 是边长为1的正方形,且=∠AD A 1=∠AB A 1,6021=AA ,则线段1AC 的长为A .6B .10C .11D .324.若a x =是函数)1()()(2--=x a x x f 的极大值点,则a 的取值范围是A .1<a B .1≤a C .1>a D .1≥a 5.投资甲、乙两种股票,每股收益(单位:元)分别如下表;甲种股票收益分布列乙种股票收益分布列收益1-02收益012概率1.03.00.6概率0.20.50.3则下列说法正确的是A .投资甲种股票期望收益大B .投资乙种股票期望收益大C .投资甲种股票的风险更高D .投资乙种股票的风险更高6.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次,已知甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有A .72种B .54种C .36种D .27种7.如图,在棱长为2的正方体1111D C B A ABCD -中,E 为BC 的中点,点P 在线段E D 1上,点P 到直线1CC 的距离的最小值为A .552B .55C .105D .51038.托马斯·贝叶斯(Thomas Bayes)在研究“逆向概率”的问题中得到了一个公式:∑==nj jji i i A B P A P A B P A P B A P 1)()()()()(,这个公式被称为贝叶斯公式(贝叶斯定理),其中)()(1jjnj A B P A P ∑=称为B 的全概率,假设甲袋中有3个自球和3个红球,乙袋中有2个自球和2个红球,现从甲袋中任取2个球放入乙袋,再从乙袋中佳取2个球,已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为A .135B .7516C .83D .53二、多选题9.已知iiz 43-=,则下列说法中正确的是A .z 的实部为4B .z 在复平面上对应的点在第三条象限C .25=⋅z zD .25||=z 10.随机抛掷一枚质地均匀的硬币10次,下列说法正确的有A .每次出现正面向上的概率为0.5B .第一次出现正面向上的概率为0.5,第二次出现正面向上的概率为0.25C .出现n 次正面向上的概率为10105.0nC D .出现n 次正面向上的概率为nn C 5.01011.已知正方体1111D C B A ABCD -的棱长为1,点P 是对角线1BD 上异于B ,1D 的动点,则A .当P 是1BD 的中点时,异面直线AP 与BC 所成角的余弦值为33B .当P 是1BD 的中点时,P C B A ,,,1四点共面C .当//AP 平面D AC .1时,131BD BP =D .当//AP 平面D C A 11时,1BD AP ⊥12.某车间加工同一型号零件,第一、二台车床加工的零件分别占总数的%40,%60,各自产品中的次品率分别为%6,%5.记“任取一个零件为第i 台车床加工)2,1(=i ”为事件i A ,“任取一个零件是次品”为事件B ,则A .054.0)(=B P B .03.0)(2=B A P C .06.0)|(1=A B P D .95)|(2=B A P 三、填空题13.已知:P “00200<+-∈∃a x x R x ,”为真命题,则实数a 的取值范围为.14.如图,用4种不同的颜色对图中4个区域涂色,要求每个区域涂1种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有种.15.正方体1111D C B A ABCD -的棱长为1,点M 在线段1CC 上,且CMMC 21=点P 在平面1111D C B A 上,且⊥AP 平面1MBD ,则线段AP 的长为16.若函数x x x f ln )(2=,xxe x g 2)(=,则)(x f 的最小值为;若0,>b a ,且)()(b g a f =,则b a 2-的最小值为.四、解答题17.在条件①无理项的系数和为364-,②3x 的系数是64,③第3项的二项式系数与第2项的二项式系数的比为2:5中任选一个,补充在下面的问题中,并解答问题.问题;在)(21*N n x x n∈⎪⎭⎫ ⎝⎛-的展开式中.(1)求n 的值;(2)求展开式中的常数项.注:如果选择多个条件分别解答,按第一个解答计分.A DB C18.某企业广告费支出与销售额(单位:百万元)数据如表所示:广告费x 64825销售额y5040703060(1)求销售额y 关于广告费x 的线性回归方程;(2)预测当销售额为76百万元时,广告费支出为多少百万元.回归方程a bx y +=中斜率和截距的最小:乘估计公式分别为:⋅-=-=---=∑∑∑∑===⇒x b y a xn x yx n yx x xy y x xb in t ni i i ini ii ,)())((22112119.某校为了解学生对体育锻炼时长的满意度,随机插驭了100位学生进行调查,结果如下:回答“满意”的人数占被调查人数的一半,且在回答“满意”的人中,男生人数是女生人数的73,在回答“不满意”的人中,女生人数占51.(1)请根据以上信息填写下面22⨯列联表,并依据小概率值001.0=α的独立性检验,判断学生对体育锻炼时长的满意度是否与性别有关?满意不满憨合计男生女生合计附:α0.10.050.010.0050.0010x 2.706 3.841 6.6357.87910.828参考公式:))()()(()(22d b c a d c b a bc ad n ++++-=χ,其中dc b a n +++=①为了解增加体育锻炼时长盾体育测试的达标效果,一学期后对这100名学生进行体育测试,将测试成绩折算成百分制,规定不低子60分为达标,超过96%的学生达标则认为达标效果显著,已知这100名学生的测试成绩服从正态分布)25,70(N ,试判断该校增加体育锻炼时长后达标效果是否显著.附:若),(~2σμN X ,则6827.0)(≈+≤≤-σμσμX P ,9545.0)22(≈+≤≤-σμσμX P 9973.0)33(≈+≤≤-σμσμX P .20.某校在体育节期间进行趣味投篮比赛,设置了B A ,两种投篮方案。
江苏省南通市2023-2024学年高二下学期期中质量监测数学试题(含简单答案)

南通市2023-2024学年高二下学期期中质量监测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置上,在其他位置作答一律无效.3.本卷满分为150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,若,则( )A. B. C. 4D. 22. 记函数的导函数为.若,则( )A. B. 0C. 1D. 23. 某产品的广告费用(单位:万元)与销售额(单位:万元)之间有如下关系:2456830405060已知与的线性回归方程为,则等于( )A. 68B. 69C. 70D. 714. 已知函数,则的图象大致为( )A. B.(1,,2)a m = (2,4,)b n =- //a bm n +=4-6-()f x ()f x '()sin f x x x =+()0f '=1-x y x yay x 715y x =+a ()ln f x x x =-()f xC. D.5. 在的展开式中,含项的系数为( )A 16B. -16C. 8D. -86. 甲、乙两人投篮命中率分别为和,并且他们投篮互不影响.现每人分别投篮2次,则甲与乙进球数相同的概率为( )A.B.C. D.7. 今年春节,《热辣滚汤》、《飞驰人生2》、《熊出没之逆转时空》、《第二十条》引爆了电影市场,小帅和他的同学一行四人决定去看电影.若小帅要看《飞驰人生2》,其他同学任选一部,则恰有两人看同一部影片的概率为( )A.B.C.D.8. 已知函数,若对任意正数,,都有恒成立,则实数a 的取值范围( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 有3名学生和2名教师排成一排,则下列说法正确的是( )A. 共有120种不同的排法B. 当2名教师相邻时,共有24种不同的排法C. 当2名教师不相邻时,共有72种不同的排法D. 当2名教师不排在两端时,共有48种不同的排法.4(1)(2)x x -+3x 121373611361336173696491619324564()21ln 2f x a x x =+1x ()212x x x ≠()()12121f x f x x x ->-10,4⎛⎤ ⎝⎦10,4⎛⎫⎪⎝⎭1,4⎡⎫+∞⎪⎢⎣⎭1,4⎛⎫+∞⎪⎝⎭10. 已知,则( )A. 展开式各项的二项式系数的和为B. 展开式各项的系数的和为C.D. 11. 如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,是上的动点.则( )A. 平面平面B. 为的中点时,C. 存在点,使得直线与的距离为D. 存在点,使得直线与平面所成的角为三、填空题:本题共3小题,每小题5分,共15分.12. 已知随机变量,且,则__________.13. 已知事件相互独立.若,则__________.14. 若函数有绝对值不大于1的零点,则实数的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数.(1)求曲线在处的切线方程;(2)求在上的最值.1002100012100(12)x a a x a x a x -=++++ 10021-024********a a a a a a a a ++++>++++ 123100231000a a a a ++++< ABF DCE -AB AF ⊥4AB AD AF ===G »CDADG ⊥BCGG »CD//BF DG G EFAG G CF BCG 60()22,X N σ:(1)0.7P X >=(23)P X <<=,A B ()()0.6,0.3P A P B A ==()P AB =()334f x x x a =-+a ()()1e xf x x =-()y f x =()()1,1f ()f x []1,2-16. 如图,在直四棱柱中,底面是梯形,,且是的中点.(1)求点到平面的距离;(2)求二面角正弦值.17. “五一”假期期间是旅游的旺季,某旅游景区为了解不同年龄游客对景区的总体满意度,随机抽取了“五一”当天进入景区的青、老年游客各120名进行调查,得到下表:满意不满意青年8040老年10020(1)依据小概率值的独立性检验,能否认为“是否满意”与“游客年龄”有关联;(2)若用频率估计概率,从“五一”当天进入景区的所有游客中任取3人,记其中对景区不满意的人数为,求的分布列与数学期望.附:,其中.0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.已知函数.(1)讨论单调性;的的1111ABCD A B C D -ABCD //AB ,DC DA DC ⊥111,2AD DD CD AB E ====AB C 1BC D 1B C D E --0.005α=X X ()()()()22()n ad bc a b c d a c b d χ-=++++n a b c d =+++()20P x χ≥0x 21()(1)ln ,R 2f x ax a x x a =+--∈()f x(2)当时,证明:;(3)若函数有两个极值点,求的取值范围.19. 现有外表相同,编号依次为的袋子,里面均装有个除颜色外其他无区别的小球,第个袋中有个红球,个白球.随机选择其中一个袋子,并从中依次不放回取出三个球.(1)当时,①假设已知选中恰为2号袋子,求第三次取出的是白球的概率;②求在第三次取出的是白球的条件下,恰好选的是3号袋子的概率;(2)记第三次取到白球的概率为,证明:.的0a >3()22f x a≥-2()()F x ax x f x =--11222,()3x x x x <<12()()F x F x -()1,2,3,,3n n ≥ n ()1,2,3,,k k n = k n k -4n =p 2p 1<南通市2023-2024学年高二下学期期中质量监测数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】B【8题答案】【答案】C二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】AC【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】##【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2),.【16题答案】【答案】(1(2).【17题答案】【答案】(1)能认有关 (2)分布列略,【18题答案】【答案】(1)答案略; (2)证明略; (3).【19题答案】【答案】(1)①;② (2)证明略为0.2150.1232511,44⎡⎤-⎢⎥⎣⎦e e 0x y --=2max ()(2)e f x f ==min ()(0)1f x f ==-13()34E X =3(0,ln 2)4-1216。
江苏省南通市高二下学期期中数学试卷(理科)

江苏省南通市高二下学期期中数学试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列命题中,正确的命题有()①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;②将一组数据中的每个数据都加上同一个常数后,方差恒不变;③设随机变量服从正态分布N(0,1),若,则;④回归直线一定过样本点的中心A . 1个B . 2个C . 3个D . 4个2. (2分)若则()A .B .C .D .3. (2分)如图,在长方体ABCD﹣A1B1C1D1中,E,H分别是棱A1B1 , D1C1上的点(点E与B1不重合),且EH∥A1D1 ,过EH的平面与棱BB1 , CC1相交,交点分别为F,G.设AB=2AA1=2a.在长方体ABCD﹣A1B1C1D1内随机选取一点,记该点取自于几何体A1ABFE﹣D1DCGH内的概率为P,当点E,F分别在棱A1B1 , BB1上运动且满足EF=a时,则P的最小值为()A .B .C .D .4. (2分)(2014·广东理) 已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A . 200,20B . 100,20C . 200,10D . 100,105. (2分) (2016高二下·宜春期中) 某校根据新课程标准改革的要求,开设数学选修系列4的10门课程供学生选修,其中4﹣1,4﹣2,4﹣4三门由于上课时间相同,所以至多选一门,根据学分制要求,每位同学必须选修三门,则每位同学不同的选修方案种数是()A . 120B . 98C . 63D . 566. (2分) (2017高二下·汪清期末) 两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,,则这两个零件中恰有一个一等品的概率为()A .B .C .D .7. (2分)展开式的各项系数之和大于8,小于32,则展开式中系数最大的项是()A .B .C .D . 或8. (2分) (2017高一下·卢龙期末) 现从编号为1~31的31台机器中,用系统抽样法抽取3台,测试其性能,则抽出的编号可能为()A . 4,9,14B . 4,6,12C . 2,11,20D . 3,13,239. (2分)(2019·鞍山模拟) 的展开式中的系数为()A .B . 1024C . 4096D . 512010. (2分)下列命题中正确的个数为()①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱;②残差平方和越小的模型,模型拟合的效果越好;③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好.A . 1B . 2C . 3D . 011. (2分)篮球比赛中每支球队的出场阵容由5名队员组成,2017年的篮球赛中,休斯敦火箭队采取了“八人轮换”的阵容,即每场比赛只有8名队员有机会出场,这8名队员中包含两名中锋,两名控球后卫,若要求每一套出场阵容中有且仅有一名中锋,至少包含一名控球后卫,则休斯顿火箭队的主教练一共有()种出场阵容的选择.A . 16B . 28C . 84D . 9612. (2分)在区间[﹣2,4]上随机地抽取一个实数x,若x满足x2≤m的概率为,则实数m的值为()A . 2B . 3C . 4D . 9二、填空题. (共4题;共4分)13. (1分)一个口袋中共有10个红、绿两种颜色小球,不放回地每次从口袋中摸出一球,若第三次摸到红球的概率为,则袋中红球有________ 个.14. (1分)已知某商场新进6000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.15. (1分)(2017·湖北模拟) 若二项式展开式中的含x2的项的系数为60.则=________.16. (1分) (2017高二下·夏县期末) 某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.三、解答题 (共6题;共60分)17. (10分) (2016高一下·珠海期末) 为了迎接珠海作为全国文明城市的复查,爱卫会随机抽取了60位路人进行问卷调查,调查项目是自己对珠海各方面卫生情况的满意度(假设被问卷的路人回答是客观的),以分数表示问卷结果,并统计他们的问卷分数,把其中不低于50分的分成五段[50,60),[60,70),…[90,100]后画出如图部分频率分布直方图,观察图形信息,回答下列问题:(1)求出问卷调查分数低于50分的被问卷人数;(2)估计全市市民满意度在60分及以上的百分比.18. (5分)(2017·雨花模拟) 品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.现设n=4,分别以a1 , a2 , a3 , a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1﹣a1|+|2﹣a2|+|3﹣a3|+|4﹣a4|,则X是对两次排序的偏离程度的一种描述.(Ⅰ)写出X的可能值集合;(Ⅱ)假设a1 , a2 , a3 , a4等可能地为1,2,3,4的各种排列,求X的分布列;(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.19. (5分)我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,40:59岁之间进行了统计,相关数据如下:100﹣500元600﹣1000总计20﹣391061640﹣59151934总计252550(1)用分层抽样的方法在缴费100:500元之间的村民中随机抽取5人,则年龄在20:39岁之间应抽取几人?(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.20. (10分) (2020·辽宁模拟) 某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品的需求量的限制,并有如下关系:商品的月需求量(万件)车间最多正常运行个数345若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系:商品的月需求量(万件)未正常生产的一个车间的月维护费(万元)500600试分析并回答该工厂应建设生产线车间多少个?使得商品的月利润为最大.21. (15分) 2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为,,…,分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中的的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.22. (15分) (2019高二下·杭州期中) 用0,1,2,3,4这五个数字组成无重复数字的自然数.(1)在组成的五位数中,所有奇数的个数有多少?(2)在组成的五位数中,数字1和3相邻的个数有多少?(3)在组成的五位数中,若从小到大排列,30124排第几个?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、17-2、18-1、第11 页共13 页19-1、20-1、20-2、第12 页共13 页21-1、21-2、21-3、22-1、22-2、22-3、第13 页共13 页。
数学-高二-江苏省南通市启东中学高二(下)期中数学试卷(理科)

2015-2016学年江苏省南通市启东中学高二(下)期中数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=.2.函数y=sinx•cosx的导函数为.3.函数y=xlnx的单调减区间为.4.已知函数f(x)=x3﹣2tx2+t2x在x=2处有极小值,则实数t的值为.5.函数y=x3+x2+ax在x∈R上单调递增,则实数a的取值范围是.6.函数y=3x3﹣9x+5在区间上的最大值与最小值之和是.7.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是.8.已知函数f(x),g(x)满足f(5)=5,f′(5)=3,g(5)=4,g′(5)=1,则函数y=的图象在x=5处的切线方程为.9.已知函数f(x)=alnx﹣x+2,其中a≠0.若对于任意的x1∈,总存在x2∈,使得f(x1)+f(x2)=4,则实数a=.10.水波的半径以50cm/s的速度向外扩张,当半径为250cm时,水波面的圆面积的膨胀率是.11.已知函数y=f(x)是定义在R上的奇函数,且当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立,若a=30.3•f(30.3),b=(logπ3)•f(logπ3),.则a,b,c的大小关系是.12.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f″(x)是函数y=f(x)的导数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现作为条件,求若函数g(x)=x3﹣x2+3x﹣+,则g()+g()+g()+…+g()=.13.已知函数f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围.14.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.16.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止.用X表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X的概率分布及数学期望E(X).17.已知二阶矩阵A=.(1)求矩阵A的特征值和特征向量;(2)设向量=,求A2016.18.全美职业篮球联赛(NBA)某年度总决赛在雷霆队与迈阿密热火队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获门票收入2000万美元,以后每场比赛门票收入比上场增加100万美元,当两队决出胜负后,问:(1)组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)某队在比赛过程中曾一度比分落后2分以上,最后取得全场胜利称为“逆袭”,求雷霆队“逆袭”获胜的概率;(3)求此次决赛所需比赛场数的分布列及数学期望.19.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.(1)若x∈,不等式f(x)≤f′(x)恒成立,求a的取值范围;(2)解关于x的方程f(x)=|f′(x)|;(3)设函数,求g(x)在x∈时的最小值.20.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:.2015-2016学年江苏省南通市启东中学高二(下)期中数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=3.【考点】导数的运算.【分析】先将x=1代入切线方程可求出f(1),再由切点处的导数为切线斜率可求出f'(1)的值,最后相加即可.【解答】解:由已知切点在切线上,所以f(1)=,切点处的导数为切线斜率,所以,所以f(1)+f′(1)=3故答案为:32.函数y=sinx•cosx的导函数为cos2x.【考点】导数的运算.【分析】利用导数的乘法与除法法则求出它的导数【解答】解:∵y=sinx•cosx,∴y′=(sinx)′cosx+sinx(cosx)′=cos2x﹣sin2x=cos2x故答案为cos2x.3.函数y=xlnx的单调减区间为(0,).【考点】利用导数研究函数的单调性.【分析】利用积的导数运算法则求出导函数,令导函数小于0求出x的范围与定义域的公共范围是函数的单调递减区间.【解答】解:y′=1+lnx,令,又因为函数y=xlnx的定义域为(0,+∞)所以函数y=xlnx的单调减区间为故答案为:4.已知函数f(x)=x3﹣2tx2+t2x在x=2处有极小值,则实数t的值为2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(2)=0,解出t的值,检验即可.【解答】解:f(x)=x3﹣2tx2+t2x,f′(x)=3x2﹣4tx+t2,∵函数f(x)在x=2处有极小值,∴f′(2)=0,解得:t=2或t=6,经检验,t=2符合题意,故答案为:2.5.函数y=x3+x2+ax在x∈R上单调递增,则实数a的取值范围是1,+∞).故答案为:﹣2,2﹣2,﹣1)递增,在(﹣1,1)递减,在(1,21,).【考点】利用导数研究函数的单调性.【分析】先对函数进行求导,根据导函数大于0时原函数单调递增,导函数小于0时原函数单调递减得解.【解答】解:因为f(x)定义域为(0,+∞),又f'(x)=4x﹣,由f'(x)=0,得x=.据题意,,解得1≤k<故答案为:1,e1,e1,e1,e1,e1,e1,e1,e1,aa,e1,e1,e1,e1,e1,e1,e1,e0,+∞)上为增函数;当x<0时,f′(x)=﹣e x﹣xe x=﹣e x(x+1),由f′(x)=0,得x=﹣1,当x∈(﹣∞,﹣1)时,f′(x)=﹣e x(x+1)>0,f(x)为增函数,当x∈(﹣1,0)时,f′(x)=﹣e x(x+1)<0,f(x)为减函数,所以函数f(x)=|xe x|在(﹣∞,0)上有一个极大值为f(﹣1)=﹣(﹣1)e﹣1=,要使方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,令f(x)=m,则方程m2+tm+1=0应有两个不等根,且一个根在内,一个根在内,再令g(m)=m2+tm+1,因为g(0)=1>0,则只需g()<0,即,解得:t<﹣.所以,使得函数f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根的t的取值范围是.故答案为.14.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,设出A,B的坐标,代入导函数,由函数在A,B处的导数等于0列式,换元后得到关于a的一元二次方程,结合线性规划知识求得a的取值范围.【解答】解:由f(x)=ax+sinx+cosx,得f′(x)=a+cosx﹣sinx,设A(x1,y1),B(x2,y2),则f′(x1)=a+cosx1﹣sinx1,f′(x2)=a+cosx2﹣sinx2.由,得a2+a+(cosx1﹣sinx1)(cosx2﹣sinx2)+1=0.令m=cosx1﹣sinx1,n=cosx2﹣sinx2,则m∈,.∴a2+(m+n)a+mn+1=0.△=(m+n)2﹣4mn﹣4=(m﹣n)2﹣4,∴0≤(m﹣n)2﹣4≤4,.当m﹣n=时,m+n=0,又=.∴﹣1≤a≤1.∴函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.故答案为:.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.【考点】逆变换与逆矩阵.【分析】利用特征值与特征向量的定义,可求a;利用A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1),可求k的值.【解答】解:设特征向量为α=,对应的特征值为λ,则=λ,即因为k≠0,所以a=2.…因为A﹣1=,所以A=,即=,所以2+k=3,解得k=1.综上,a=2,k=1.…16.袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球部放回,直到其中有一人去的白球时终止.用X表示取球终止时取球的总次数.(1)求袋中原有白球的个数;(2)求随机变量X的概率分布及数学期望E(X).【考点】离散型随机变量的期望与方差;等可能事件的概率;离散型随机变量及其分布列.【分析】(1)由题意知本题是一个等可能事件的概率的应用问题,试验发生包含的所有事件是从9个球中取2个球,共有C92种结果,而满足条件的事件是从n个球中取2个,共有C n2种结果,列出概率使它等于已知,解关于n的方程,舍去不合题意的结果.(2)用X表示取球终止时取球的总次数,由题意知X的可能取值为1,2,3,4,结合变量对应的事件,用等可能事件的概率公式做出结果,写出分布列和期望.【解答】解:(1)由题意知本题是一个等可能事件的概率的应用问题,试验发生包含的所有事件是从9个球中取2个球,共有C92种结果而满足条件的事件是从n个球中取2个,共有C n2种结果设袋中原有n个白球,则从9个球中任取2个球都是白球的概率为,由题意知=,即,化简得n2﹣n﹣30=0.解得n=6或n=﹣5(舍去)故袋中原有白球的个数为6.(2)用X表示取球终止时取球的总次数,由题意,X的可能取值为1,2,3,4.;;;P(X=4)=.∴取球次数X的概率分布列为:∴所求数学期望为E(X)=1×+2×+3×+4×=.17.已知二阶矩阵A=.(1)求矩阵A的特征值和特征向量;(2)设向量=,求A2016.【考点】特征值与特征向量的计算;特征向量的意义.【分析】(1)由矩阵A的特征多项式f(λ),令f(λ)=0,求得特征值,代入二元一次方程组求得其特征向量;(2)由(1)的结论,向量是属于特征值为﹣2的一个特征向量,利用特征向量的定义与性质即可求得A2016.【解答】解:(1)矩阵A的特征多项式f(λ)=λE﹣A==(λ﹣3)(λ+2),令f(λ)=0,解得:λ1=3,λ2=﹣2,将λ1=3,代入二元一次方程组得:,解得y=0,矩阵A属于特征值3的特征向量为,将λ2=﹣2,代入二元一次方程组得:,当x=1时,y=﹣1,∴矩阵A属于特征值﹣2的特征向量为;(2)A2016==.∴A2016=.18.全美职业篮球联赛(NBA)某年度总决赛在雷霆队与迈阿密热火队之间角逐,比赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.因两队实力相当,故每场比赛获胜的可能性相等.据以往资料统计,第一场比赛组织者可获门票收入2000万美元,以后每场比赛门票收入比上场增加100万美元,当两队决出胜负后,问:(1)组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)某队在比赛过程中曾一度比分落后2分以上,最后取得全场胜利称为“逆袭”,求雷霆队“逆袭”获胜的概率;(3)求此次决赛所需比赛场数的分布列及数学期望.【考点】离散型随机变量的期望与方差;相互独立事件的概率乘法公式.【分析】(1)先确定至少要比赛6场,再求出相应的概率,即可求出组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少?(2)雷霆队“逆袭”获胜,可能通过6场或7场获胜,分类求概率,即可求雷霆队“逆袭”获胜的概率;(3)所需比赛场数ξ是随机变量,其取值为4,5,6,7.求出相应的概率,即可求此次决赛所需比赛场数的分布列及数学期望.【解答】解:(1)因2000+2100+2200+2300+2400+2500=13500,故至少要比赛6场.当进行比赛6场时,某一队获胜的概率为,当进行比赛7场时,某一队获胜的概率为,所以收入不少于13500万元的概率为.(2)雷霆队“逆袭”获胜,可能通过6场或7场获胜.当6场获胜时,则1、2场败,3、4、5、6胜,概率为;当7场获胜时,则4胜3败,①若前2场都败,则另外1败可以任意发生在第3、4、5、6中的一场,所以“逆袭”获胜概率为.②若前2场1胜1败,则第3、4场必须败,所以“逆袭”获胜概率为,故雷霆队“逆袭”获胜的概率为.(3)所需比赛场数ξ是随机变量,其取值为4,5,6,7.若比赛最终获胜队在第k场获胜后结束比赛,则显然在前面k﹣1场中获胜3场,从而,k=4,5,6,7.①分布列为:ξ 4 5 6 7P②所需比赛场数的数学期望是.19.已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.(1)若x∈,不等式f(x)≤f′(x)恒成立,求a的取值范围;(2)解关于x的方程f(x)=|f′(x)|;(3)设函数,求g(x)在x∈时的最小值.【考点】利用导数求闭区间上函数的最值;函数恒成立问题.【分析】(1)根据f(x)≤f′(x),可得x2﹣2x+1≤2a(1﹣x),分离参数,确定右边函数的最大值,即可求a的取值范围;(2)由f(x)=|f′(x)|,可得|x+a|=1+a或|x+a|=1﹣a,再分类讨论,即可得到结论;(3)由f(x)﹣f′(x)=(x﹣1),,对a进行分类讨论,即可确定g(x)在x∈时的最小值.【解答】解:(1)因为f(x)≤f′(x),所以x2﹣2x+1≤2a(1﹣x),又因为﹣2≤x≤﹣1,所以在x∈时恒成立,因为,所以.(2)因为f(x)=|f′(x)|,所以x2+2ax+1=2|x+a|,所以(x+a)2﹣2|x+a|+1﹣a2=0,则|x+a|=1+a或|x+a|=1﹣a.①当a<﹣1时,|x+a|=1﹣a,所以x=﹣1或x=1﹣2a;②当﹣1≤a≤1时,|x+a|=1﹣a或|x+a|=1+a,所以x=±1或x=1﹣2a或x=﹣(1+2a);③当a>1时,|x+a|=1+a,所以x=1或x=﹣(1+2a).(3)因为f(x)﹣f′(x)=(x﹣1),①若,则x∈时,f(x)≥f′(x),所以g(x)=f′(x)=2x+2a,从而g(x)的最小值为g(2)=2a+4;②若,则x∈时,f(x)<f′(x),所以g(x)=f(x)=x2+2ax+1,当时,g(x)的最小值为g(2)=4a+5,当﹣4<a<﹣2时,g(x)的最小值为g(﹣a)=1﹣a2,当a≤﹣4时,g(x)的最小值为g(4)=8a+17.③若,则x∈时,当x∈1﹣2a,4hslx3y3h时,g(x)最小值为g(1﹣2a)=2﹣2a.因为,(4a+5)﹣(2﹣2a)=6a+3<0,所以g(x)最小值为4a+5.综上所述,.20.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性;(3)设斜率为k的直线与函数f(x)的图象交于两点A(x1,y1),B(x2,y2),(x1<x2),证明:.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;不等式的证明.【分析】(1)利用导数的几何意义即可得出;(2)通过求导得到g′(x),通过对a分类讨论即可得出其单调性;(3)证法一:利用斜率计算公式,令(t>1),即证(t>1),令(t>1),通过求导利用函数的单调性即可得出;证法二:利用斜率计算公式,令h(x)=lnx﹣kx,通过求导,利用导数研究其单调性即可得出;证法三::令,同理,令,通过求导即可证明;证法四:利用斜率计算公式,令h(x)=x﹣x1lnx+x1lnx1﹣x1,及令m(x)=x﹣x2lnx+x2lnx2﹣x2,通过求导得到其单调性即可证明.【解答】解:(1)依题意得g(x)=lnx+ax2+bx,则,由函数g(x)的图象在点(1,g(1))处的切线平行于x轴得:g'(1)=1+2a+b=0,∴b=﹣2a﹣1.(2)由(1)得=.∵函数g(x)的定义域为(0,+∞),∴当a=0时,,由g'(x)>0得0<x<1,由g'(x)<0得x>1,即函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当a>0时,令g'(x)=0得x=1或,若,即时,由g'(x)>0得x>1或,由g'(x)<0得,即函数g(x)在,(1,+∞)上单调递增,在单调递减;若,即时,由g'(x)>0得或0<x<1,由g'(x)<0得,即函数g(x)在(0,1),上单调递增,在单调递减;若,即时,在(0,+∞)上恒有g'(x)≥0,即函数g(x)在(0,+∞)上单调递增,综上得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)单调递减;当时,函数g(x)在(0,1)单调递增,在单调递减;在上单调递增;当时,函数g(x)在(0,+∞)上单调递增,当时,函数g(x)在上单调递增,在单调递减;在(1,+∞)上单调递增.(3)证法一:依题意得,证,即证,因x2﹣x1>0,即证,令(t>1),即证(t>1)①,令(t>1),则>0,∴h(t)在(1,+∞)上单调递增,∴h(t)>h(1)=0,即(t>1)②综合①②得(t>1),即.证法二:依题意得,令h(x)=lnx﹣kx,则,由h'(x)=0得,当时,h'(x)<0,当时,h'(x)>0,∴h(x)在单调递增,在单调递减,又h(x1)=h(x2),∴,即.证法三:令,则,当x>x1时,h'(x)<0,∴函数h(x)在(x1,+∞)单调递减,∴当x2>x1时,,即;同理,令,可证得.证法四:依题意得,令h(x)=x﹣x1lnx+x1lnx1﹣x1,则,当x>x1时,h'(x)>0,∴函数h(x)在(x1,+∞)单调递增,∴当x2>x1时,h(x2)>h(x1)=0,即x1lnx2﹣x1lnx1<x2﹣x1令m(x)=x﹣x2lnx+x2lnx2﹣x2,则,当x<x2时,m'(x)<0,∴函数m(x)在(0,x2)单调递减,∴当x1<x2时,m(x1)>h(x2)=0,即x2﹣x1<x2lnx2﹣x2lnx1;所以命题得证.2016年10月17日。
2021-2022学年江苏省南通市重点中学高二下学期期中数学试题(解析版)

2021-2022学年江苏省南通市重点中学高二下学期期中数学试题一、单选题1.设x 、y ∈R ,向量(),1,1a x =,()1,,1b y =,()3,6,3c =-且a c ⊥,//b c ,则a b +=( )A .B .C .4D .3【答案】D【分析】利用空间向量垂直与共线的坐标表示求出x 、y 的值,求出向量a b +的坐标,利用空间向量的模长公式可求得结果.【详解】因为a c ⊥,则3630a c x ⋅=-+=,解得1x =,则()1,1,1a =, 因为//b c ,则136y=-,解得2y =-,即()1,2,1b =-,所以,()2,1,2a b +=-,因此,413a b +=+. 故选:D.2.3245A C -=( )A .9B .12C .14D .4【答案】C【分析】利用排列数公式可组合数公式可求得结果.【详解】324554A C 432142⨯-=⨯⨯-=. 故选:C.3.对图中的A ,B ,C 三个区域染色,每块区域染一种颜色,有公共边的区域不同色,现有红、黄、蓝三种不同颜色可以选择,则不同的染色方法共有( )A .22种B .18种C .12种D .6种【答案】C【分析】根据染色的规则排列组合即可. 【详解】先给A 选色,有13C 种方法; 再给B 选色,有12C 种方法;再给C 选色,有12C 种方法;共有111322C C C 12= 种方法;故选:C.4.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a ,b ,()0m m >为整数,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020C C 2C 2=+⋅+⋅++a 202020C 2⋅,()mod10a b ≡,则b 的值可以是( )A .2022B .2021C .2020D .2019【答案】B【分析】利用二项式定理可得()10101a =-,再利用二项式定理展开即可得解.【详解】因为0122202020C C 2C 2=+⋅+⋅++a 202020C 2⋅()()201010129101=+==-0101928910101010C 10C 10C 10C 1011(mod10)=⋅-⋅+⋅--⋅+≡,四个选项中,只有2021b =时,除以10余数是1. 故选:B .5.已知空间中三点()1,0,0A ,()2,1,1B -,()012C -,,,则点C 到直线AB 的距离为( )ABCD【答案】A【分析】根据点到直线的向量坐标公式计算即可求解. 【详解】依题意得()()1,1,2,1,1,1AC AB =--=- 则点C 到直线AB 的距离为22AC AB d AC AB ⎛⎫⋅⎪=-== ⎪⎝⎭故选:A6.如图所示,空间四边形OABC 中,OA a =,OB b =,OC c =,点M 在OA 上,且,M 为OA 中点,N 为BC 中点,则MN 等于( )A .111222a b c -++B .111222a b c ++C .122121a b c +-D .111222a b c -+【答案】A【分析】根据空间向量的加减运算,即可求得答案.【详解】由题意得:11111()22222MN ON OM OB OC OA a b c =-=+-=-++,故选:A7.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过2次测试恰好将2个次品全部找出的概率( ) A .115B .215C .415D .1415【答案】A【分析】把6个产品编号,用列举法写出两次测试的所有可能,计数后由概率公式计算可得.【详解】2个次品编号为1,2,4个合格品编号为a b c d ,,,,不考虑前后顺序时两次测试的可能情形是:12,1,1,1,1,2,2,2,2,,,,,,a b c d a b c d ab ac ad bc bd cd 共15种,考虑前后顺序时两次测试的可能情形有30种,其中12,21这两种情形表示经过2次测试恰好将2个次品全部找出, 因此概率为213015P ==. 故选:A .8.若将整个样本空间想象成一个1×1的正方形,任何事件都对应样本空间的一个子集,且事件发生的概率对应子集的面积.则如图所示的涂色部分的面积表示( )A .事件A 发生的概率B .事件B 发生的概率C .事件B 不发生条件下事件A 发生的既率D .事件A 、B 同时发生的概率 【答案】A【分析】根据题意结合条件概率的公式,推出阴影部分的面积,可得其含义,即得答案. 【详解】由题意可知:阴影部分面积为:(|)()(|)(1())()(|)()P A B P B P A B P B P AB P A B P B ⋅+⋅-=+⋅ ()()()P AB P AB P A =+= ,故选:A 二、多选题9.我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中正确的有( )A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:m n mn n C C -=B .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r r n n n C C C -+=+C .由“第n 行所有数之和为2n ”猜想:0122nn nn n n C C C C ++++=D .由“11111=,211121=,3111331=”猜想51115101051= 【答案】ABC【分析】根据杨辉三角的性质结合二项式定理即可判断.【详解】由杨辉三角的性质以及二项式定理可知A 、B 、C 正确; 5505142332415555555111011010101010161051C C C C C C ,故D 错误.故选:ABC.【点睛】本题考查杨辉三角的性质和二项式定理,属于基础题.10.已知空间向量(2,1,1)a =--,(3,4,5)b =,则下列结论正确的是( ) A .(2)//a b a +B .5||3||a b =C .(56)a a b ⊥+D .a 与b 【答案】BC【分析】根据空间向量平行的坐标表示,模的坐标运算,垂直的坐标表示,数量积的定义计算后判断.【详解】解:因为2(1,2,7)a b +=-,(2,1,1)a =--,而121211≠≠--,故A 不正确; 因为||6a =,||52b =,所以5||3||a b =,故B 正确:因为2(56)565(411)6(645)0a a b a a b ⋅+=+⋅=⨯+++⨯--+=,故C 正确;又5a b ⋅=-,cos ,6a b <>==,故D 不正确.故选:BC.11.下列说法中,正确的选项是( ). A .所有元素完全相同的两个排列为相同排列.B .()()()A 121mn n n n n m =---+.C .若组合式C C x mn n =,则x m =成立.D .222232341C C C C C n n +++++=.【答案】BD【分析】根据排列的而定义判断A;根据排列数公式判断B;根据组合数的性质判断C ,D.【详解】对于A ,因为排列是有顺序的,因此元素相同顺序可能不同,这样的排列是不同的排列,故A 错误;对于B ,根据排列数的公式()()()A 121mn n n n n m =---+,正确;对于C ,组合式C C x mn n =,则x m =或x m n += ,故C 错误;对于D ,22223222322323234334441C C C C C C C C C C C C C C n n n n n n +++++=++++=+++==+=,故D 正确, 故选:BD12.有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的30%,30%,40%,则下列选项正确的有( ) A .任取一个零件是第1台生产出来的次品概率为0.06 B .任取一个零件是次品的概率为0.053C .如果取到的零件是次品,且是第2台车床加工的概率为1553D .如果取到的零件是次品,且是第3台车床加工的概率为2053【答案】BCD【分析】记事件A :车床加工的零件为次品,记事件i B :第i 台车床加工的零件,则1(|)6%P A B =,23(|)(|)5%P A B P A B ==,1()30%P B =,2()30%P B =,3()40%P B =,再依次求选项中的概率即可.【详解】记事件A :车床加工的零件为次品,记事件i B :第i 台车床加工的零件, 则1(|)6%P A B =,23(|)(|)5%P A B P A B ==,1()30%P B =,2()30%P B =,3()40%P B =,对于选项A ,任取一个零件是第1台生产出来的次品概率为1()6%30%0.018P AB =⨯=,故错误;对于选项B ,任取一个零件是次品的概率为123()()()()6%30%5%30%5%40%0.053P A P AB P AB P AB =++=⨯+⨯+⨯=,故正确;对于选项C ,如果取到的零件是次品,且是第2台车床加工的概率为2222()(|)()5%30%(|)()150.0535)3(P AB P A B P B P B A P A P A ⨯====,故正确; 对于选项D ,如果取到的零件是次品,且是第3台车床加工的概率为3333()(|)()5%40%(|)()200.0535)3(P AB P A B P B P B A P A P A ⨯====,故正确; 故选:BCD . 三、填空题13.若()()()()17217012171111x a a x a x a x -=+++++++,则012317a a a a a +++++=_________.【答案】-1【分析】运用赋值法,令x =0即可求解. 【详解】令x =0,则 ()1711x -=- , ()()()21701217012171111a a x a x a x a a a a +++++++=++++=- ,故答案为:-1.14.若直线l 的方向向量为()2,0,1v =,平面α的一个法向量为()2,2,0n =-,则直线l 与平面α所成角的正弦值为_________.【答案】105【分析】利用空间向量的夹角公式,即可求出直线l 与平面α所成角的正弦值. 【详解】直线l 的方向向量为(2,0,1)v =,平面α的一个法向量为(2,2,0)n =-, ∴直线l 与平面α所成的角的正弦值为410cos ,54144v n -==+⋅+, 故答案为:105. 15.将某商场某区域的行走路线图抽象为一个223⨯⨯的长方体框架(如图),小红欲从A 处行走至B 处,则小红行走路程最近的路线共有_________.(结果用数字作答)【答案】210【分析】由题意分析得路线应该是3次向上,2次向右,2次向前,从而得到答案. 【详解】由题意,最近的路线应该是3次向上,2次向右,2次向前,一共走7次,所以路线共有3274C C 210=,故答案为:210 四、双空题16.将5个不同小球装入编号为1,2,3,4的4个盒子,不允许有空盒子出现,共________种放法;若将5个相同小球放入这4个盒子,允许有空盒子出现,共________种放法.(结果用数字作答) 【答案】 240 56【分析】5个不同的球按个数1,1,1,2分成四组,放入4个不同盒子可得第一空答案;第二空由于5个球相同,不同放法只是球的个数不同,因此可先借4个球,相当于9个球,用隔板法分成四组后放入盒子,用组合数定义可得.【详解】5个不同小球分成4组,每组个数分别为1,1,1,2,不同的分组情况有2510C =种方法,再将4组球放入4个不同盒子,共2454240C A ⋅=种方法.5个相同小球放入4个盒子,若允许有空盒子,可先借4个小球,共9个小球,再用隔板法分成4组放入盒子,共3856C =种方法.故答案为:240;56. 五、解答题17.如图所示,四边形ABCD 为矩形,四边形BCEF 为直角梯形,BF CE ∥,BC CE ⊥,4DC CE ==,2BC BF ==,平面ABCD ⊥平面BCEF .(1)求证:AF ∥平面CDE ;(2)平面ADE 与平面BCEF 所成锐二面角的大小. 【答案】(1)证明见解析(2)π4【分析】(1)建立空间直角坐标系,求得()0,2,4AF =-,求出平面CDE 的一个法向量CB ,计算0AF CB ⋅=,即可证明结论;(2)求得平面ADE 的一个法向量,再求得平面BCEF 一个法向量,根据向量的夹角公式求得答案. 【详解】(1)证明:∵四边形BCEF 为直角梯形,四边形ABCD 为矩形, ∴BC CE ⊥,BC CD ⊥,又∵平面ABCD ⊥平面BCEF ,且平面ABCD 平面BCEF BC =, ∴DC ⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y 轴,CD 所在直线为z 轴建立如图所示空间直角坐标系.根据题意可得以下点的坐标:()2,0,4A ,()2,0,0B ,()0,0,0C ,()0,0,4D ,()0,4,0E ,()2,2,0F ,则()0,2,4AF =-,()2,0,0CB =.∵BC CD ⊥,BC CE ⊥,CD CE C =,CD 、CE ⊂平面CDE , ∴BC ⊥平面CDE ,∴CB 为平面CDE 的一个法向量.又()0220400AF CB ⋅=⨯+⨯+-⨯=,且AF ⊂/平面CDE , ∴AF ∥平面CDE .(2)设平面ADE 的一个法向量为(),,n x y z =, 则()2,0,0AD =-,()0,4,4DE =-,20440AD n x DE n y z ⎧⋅=-=⎨⋅=-=⎩, 令1y =,可取得()0,1,1n =, ∵DC ⊥平面BCEF ,∴平面BCEF 一个法向量为()0,0,4CD =,设平面ADE 与平面BCEF 所成锐二面角的大小为α, 则42cos 42CD n CD nα⋅==⨯⋅ 因此,平面ADE 与平面BCEF 所成锐二面角的大小为π4. 18.(1)解方程:2399x x C C x N -=∈();(2)解不等式:1996x x A A x N ->∈()【答案】(1)3x =或4;x =(2){}2,3.【分析】(1)根据组合数的性质,得到关于x 的方程,解得x 的值;(2)根据排列数的公式,得到关于x 的分式不等式,解出x 的范围,再结合x ∈N ,得到答案【详解】解:()1因为2399x x C C -=,所以23x x =-或239x x +-=, 解得3x =或4;x =()19926x x A A ->,解原不等式即()()9!69!9!91!x x ⨯>--+,整理得106x ->,即4x <119x x -≥⎧⎨≤⎩,所以92x ≤≤ 所以得到24x ≤<, 而x ∈N 故2x =或3.∴原不等式的解集为{}2,3.【点睛】本题考查解组合数方程和排列数不等式,属于中档题.19.已知在()12nx +的展开式中,第3项的二项式系数与第2项的二项式系数的比为5:2.(1)求n 的值;(2)求含2x 的项的系数;(3)求()()6121n x x +⨯+展开式中含2x 的项的系数. 【答案】(1)6n = (2)60 (3)147【分析】(1)利用二项式系数的比值求出n ;(2)在第一问求出的n 的基础上,写出展开式的通项公式,求出含2x 的项的系数;(3)利用通项公式分别写出()612x +与()61x +的符合题意得项,相乘再相加即可.【详解】(1)∵211C :C =5:22n n n -=, ∴6n =.(2)设()12nx +的展开式的通项为1r T +,则16C 2r r r r T x +=⋅⋅,令2r =. ∴含2x 的项的系数为226C 260⋅=; (3)由(1)知:()()()()666121121n x x x x +⨯+=+⨯+展开式中含2x 项的系数为:220111002666666C 2C 1C 2C 1C 2C 1147⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= 所以展开式中含2x 项的系数为14720.今年春季新型冠状病毒肺炎疫情又有爆发趋势,上海医疗资源和患者需求之间也存在矛盾,海安决定支持上海市.在接到上级通知后,某医院部门马上召开动员会,迅速组织队伍,在报名请战的6名医生(其中男医生4人、女医生2人)中,任选3人奔赴上海新冠肺炎防治一线.(1)求所选3人中恰有1名女医生的概率;(2)设“男医生甲被选中”为事件A ,“女医生乙被选中”为事件B ,求()P B 和()P B A . 【答案】(1)35 (2)()12P B =,()25P B A = 【分析】(1)根据古典概型的概率公式即可求出;(2)根据古典概型的概率公式以及条件概率的概率公式即可求出.【详解】(1)设所选3人中恰有1名女医生为事件M ,()214236C C 3C 5P M ==, 故所选3人中恰有1名女医生的概率为35. (2)()()2536C 1C 2P B P A ===,()1436C 1C 5P AB ==,()()()125|152P AB P B A P A ===. 21.如图,正三角形ABE 与菱形ABCD 所在的平面互相垂直,2AB =,60ABC ∠=︒,M 是AB 的中点.(1)求证:EM AD ⊥;(2)求点B 到平面EAC 的距离;(3)已知点P 在线段EC 上,且直线AP 与平面ABE 所成的角为45°,求出EP EC 的值. 【答案】(1)证明见解析(2)2155 (3)23EP EC = 【分析】(1)由面面垂直可得线面垂直,进而可得线线垂直.(2)根据空间向量求点面距离.(3)在空间直角坐标系中,利用空间向量求解线面角,进而可知点的位置,进而可求解.【详解】(1)∵EA EB =,M 是AB 的中点,∴EM AB ⊥,∵平面ABE ⊥平面ABCD ,平面ABE 平面ABCD AB =,EM ⊂平面ABE , ∴EM ⊥平面ABCD ,AD ⊂平面ABCD ,∴EM AD ⊥.(2)由(1)知EM ⊥平面ABCD ,CM ⊂平面ABCD ,∴EM CM ⊥,菱形ABCD 中,60ABC ∠=︒,所以ABC 是正三角形, ∴MC AB ⊥.∴,,ME MC MB 两两垂直.建立如图所示空间直角坐标系M -xyz .则()0,0,0M ,()1,0,0A -,()1,0,0B ,()3,0C ,(3E ,()1,3,0AC =,(3AE =,()2,0,0BA =-,设(),,m x y z =是平面ACE 的一个法向量, 则3030m AC x m AE x z ⎧⋅==⎪⎨⋅==⎪⎩, 令1z =,得()3,1,1m =-,设点B 到平面EAC 的距离为d ,则232155m BAd m ⋅===∴点B 到平面EAC(3)因为y 轴垂直平面ABE ,所以设平面ABE 的法向量为()0,1,0n =(AE =,(EC =,设()0,,EP EC λ==,()01λ≤≤,则()1,AP AE EP =+=,∵直线AP 与平面ABE 所成的角为45°, sin 45cos ,AE nAP n AP n ⋅︒=<>=⋅== 由01λ≤≤,解得23λ=, ∴23EP EC =. 22.请先阅读:在等式()2cos22cos 1x x x =-∈R 的两边求导,得:()()2cos 22cos 1x x ''=-,由求导法则,得()()sin 224cos sin x x x -⋅=⋅-,化简得等式:sin 22cos sin x x x =⋅.利用上述的想法,结合等式()01221C C C C n n n n n n n x x x x +=++++(x ∈R ,正整数2n ≥). (1)求1231010101010C 2C 3C 10C ++++的值.(2)求证:()212223221C 2C 3C C 12n n n n n n n n n -++++=+. 【答案】(1)5120(2)证明见解析【分析】(1)在等式()01221C C C C n n n n n n n x x x x +=++++两边对x 求导,然后令1x =,10n =,可求得所求代数式的值;(2)由(1)可得出()1122331C 2C 3C C n n n n n n n nx x x x x n x -+=++⋅++⋅,在此等式两边对x求导,然后令1x =可证得结论成立.【详解】(1)解:在等式()01221C C C C n n n n n n n x x x x +=++++(x ∈R ,正整数2n ≥),两边对x 求导得:()1123211C 2C 3C C n n n n n n n n x x x n x --+=++⋅++⋅①,令1x =,10n =,可得()91291010101010C 2C 9C 10C 10115120++++=⨯+=.(2)证明:①式两边同时乘以x 得()1122331C 2C 3C C n n n n n n n nx x x x x n x -+=++⋅++⋅②,②式两边对x 求导得:()()()1212223221111C 2C 3C C n n n n n n n n n x n n x x x x n x ---++-+=++⋅++⋅,令1x =,得()()21222321221C 2C 3C C 21212n n n n n n n n n n n n n n ---++⋅++=⋅+⋅-=⋅+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南通中学2018—2018学年第二学期期中考试
高二理科数学试卷
一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填写在答题纸指定位置.
1、
=-3545C A ____________.2、已知x
x
x f +=1)1(,则1
0()e f x dx -=⎰ .
3、
2
(2)(1)12i i i
++=-_________ .4、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为____(用数字作答)
5、复数2(,12m i
z m R i i
-=
∈+为虚数单位)在复平面上对应的点不可能...位于第 象限.
6、某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这两道工序出废品是彼此无关的,那么产品的废品率是____________.
7、在2
3
1(3)2n
x x -
的展开式中含有常数项,则正数n 的最小值是___________.8、抛掷两颗质量均匀的骰子各一次,向上的点数之和为7时,其中有一个的点数是3的概率是______________.
9、类比平面几何中的勾股定理:若直角三角形ABC 中的两边AC AB ,互相垂直,则三角形边长之间满足关系:.2
2
2
BC AC AB =+若三棱锥BCD A -的三个侧面ABC 、ACD 、
ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为
________________________.
10、已知n 为正偶数,且n
x
x )21(2
-
的展开式中第4项的二项式系数最大,则第4项的系数是____________(用数字作答).
11、9本不同的书分给甲、乙、丙三人,其中一人5本,其余两人各2本,则共有______种
分法(用数字作答).
12、设离散型随机变量ξ可能取的值为1,2,3,4.()P k ak b ξ==+(k =1,2,3,4)。
又ξ的数学期望3E ξ=,则a b +=_______.
13、已知等式101099221052)1()1()1()1()22(+++++++++=++x a x a x a x a a x x ,其中(0,1,2,
,10)i a i =为实常数,则10
1
n n na =∑=_______.
14、对任意正整数n ,定义n 的双阶乘n!!, 如下:当n 为偶数时,
246.....)4)(2(!!⨯⨯⨯⨯--=n n n n ;当n 为奇数时,1
35.....)4)(2(!!⨯⨯⨯⨯--=n n n n 现有四个命题:
(1);!2009!)!2008(!)!2009
(=⋅(2);!!2008!!2009!)!2008(!)!2008
(-=⋅(3)2018!!的个位数字为5;
(4)⋅
∈+=+)(!!!!!)!(*N b a b a b a 、其中所有正确命题的序号是__________
二、解答题:本大题共6小题,共90分.在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15、(本小题15分)
一共有3个教师和3个学生,分别回答下列问题:(1)坐成一排,教师坐在两端,有多少种排法? (2)师生相间坐成一排,有多少种排法?
(3)3个学生要相邻坐在一起,坐成一排,有多少种排法? (4)学生顺序一定,坐成一排,有多少种排法? (5)6人坐成二排,有多少种排法?
16、(本小题14分)
已知n n n x a x a x a a x )1(.......)1()1()1(2210-++-+-+=+,(2,*
≥∈n N n )
(1)当n=5时, 求543210a a a a a a +++++的值; (2)设
3
2
2
-=
n n a b ,n n b b b b T ........432+++=用数学归纳法证明:当2≥n 时,3
)
1)(1(-+=
n n n T n
17、(本小题15分)
设P 、Q 是复平面上的点集,
(1)P 、Q 分别表示什么曲线?
(2)设 求.
18、(本小题15分)
某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望; (Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率.
19、(本小题15分)
{}
{}.
,2,05)(3P z iz Q z z i z z z P ∈===+-+⋅=ωω,,21Q z P z ∈∈2
1z z -
在曲线)0(2≥=x x y 上某一点A 处作一切线使之与曲线以及x 轴所围成图形的面积为
12
1
,试求(1)切点A 的坐标;(2)过切点A 的切线方程.
20、(本小题16分)
已知公差d 为正数的等差数列{}n a 和公比为q (1q >)的等比数列{}n b . (1)若10a >,且
11
n n n n
a b a b ++≤
对一切*n N ∈恒成立,求证:11d a q a ≤-; (2)若d >1,集合{}{}{}345345,,,,1,2,3,4,5a a a b b b ⋃=,求使不等式
128
n p n n
n
a b p a b ++++≤
成立的自然数n 恰有4个的正整数p 的值.
命题、校对:高二备课组 责审:杨建楠 审定:教务处
高二数学期中考试答卷
一、填空题: 1._____________
2.______________
3._______________
4._____________
5.______________
________
6._______________
7._____________ 8.______________ 9.____________________ 10.____________ 11._____________ 12.______________ 13.____________ 14._____________
二、解答题:
15.
16.17.
18.
19.
20.。