13理论力学讲义第十三讲PPT课件
合集下载
理论力学 ppt课件

相对运动:动点相对于动系的运动。
相对速度用
vr
;
牵连运动:动系相对于静系的运动。
牵连速度用
ve
;
二、牵连速度的概念:牵连点的速度; 牵连点: 1、瞬时量;
2、在动系上;
三、点的速度合成定理:
3、与动点相重合的那一点;
四、用速度合成定理解题的步骤:
A、选取动点和动系:注意动点必须与动系有相对运动,
FN
FN'
rW 且知F '
fsR
max
rW R
代入上式
F1min
1 a
(FN'
b
Fmax c)
F1min
Wr ( aR
b fs
c)
ppt课件
FOy FOx
F’N
F1 F’max
19
[练2] 结构如图,AB=BC=L,重均为P,A,B处为铰链,
C处靠在粗糙的铅垂面上。平衡时两杆与水平面的夹角均为α,
方向:
R
aa
ae
ωαB
避开 ar ,向垂直于 ar 的方向投影得
aRen
M
ar
aa cos aan sin aC ae
求:C处的摩擦系数fS=?
FAx
A
P
解:1)分析整体
M
A
0,
FNC
2L sin
2P
L 2
cos
0
2)分析BC
FAy
α α
B
FNC
C
Fmax
P
FBy FBx
M
B
0,
FNC
L
sin
Fmax
L
cos
《理论力学课件》PPT课件

1、物体的受力分析:分析物体(包括物体系)受哪些力, 每个力的作用位置和方向,并画出物体的受力图。
2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、力系的平衡条件:建立各种力系的平衡条件,并应用这 些条件解决一些工程实际问题 。
.
14
在各种工程中,都有大量的静力学问题。 起重机
8
上课时主动思考,跟上教学进度。尽量不缺课。
按时独立做好布置的作业,作业中的图要画清楚,算式 要写清楚。
要做大量的习题和思考题。
.
9
2 在学习中遇到困难怎么办?
阅读相关教材和习题解答 找老师答疑 答疑时间: 答疑地点:
发送电子邮件 Email: cyliu@
访问扬州大学理论力学教学网 /course2/lllx
.
7
理论力学的学习方法
1 如何学好理论力学
学习理论力学必须深刻地反复地理解它的基本概念和公 理或定律
要透彻理解由基本概念、公理或定律导出的定理和结论, 以及由这些定理和结论引出的基本方法,它们是理论力 学的主要内容。
掌握抽象化的方法,理论联系实际,要逐步培养把具体 实际问题抽象成为力学模型的能力
.
但是这种变形,往往非常小,在研究平衡问题以及研究力与运 动变化关系的问题时,可以完全忽略。因此在理论力学中,通 常我们假设所处理的对象均为刚体。
.
21
§0-3 结构的构件与分类
工程结构:由工程材料制成的构件,按合理方式组成为能支承 荷载,传递力,起骨架作用的整体或某一部分。 构件按几何特征可分为三类:杆、板壳、块体
理论力学课件
扬州大学水利科学与工程学院
.
1
绪论
*理论力学的研究对象和内容 *学习目的和学习方法 *教学参考书
2、力系的等效替换(或简化):用一个简单力系等效代替 一个复杂力系。 3、力系的平衡条件:建立各种力系的平衡条件,并应用这 些条件解决一些工程实际问题 。
.
14
在各种工程中,都有大量的静力学问题。 起重机
8
上课时主动思考,跟上教学进度。尽量不缺课。
按时独立做好布置的作业,作业中的图要画清楚,算式 要写清楚。
要做大量的习题和思考题。
.
9
2 在学习中遇到困难怎么办?
阅读相关教材和习题解答 找老师答疑 答疑时间: 答疑地点:
发送电子邮件 Email: cyliu@
访问扬州大学理论力学教学网 /course2/lllx
.
7
理论力学的学习方法
1 如何学好理论力学
学习理论力学必须深刻地反复地理解它的基本概念和公 理或定律
要透彻理解由基本概念、公理或定律导出的定理和结论, 以及由这些定理和结论引出的基本方法,它们是理论力 学的主要内容。
掌握抽象化的方法,理论联系实际,要逐步培养把具体 实际问题抽象成为力学模型的能力
.
但是这种变形,往往非常小,在研究平衡问题以及研究力与运 动变化关系的问题时,可以完全忽略。因此在理论力学中,通 常我们假设所处理的对象均为刚体。
.
21
§0-3 结构的构件与分类
工程结构:由工程材料制成的构件,按合理方式组成为能支承 荷载,传递力,起骨架作用的整体或某一部分。 构件按几何特征可分为三类:杆、板壳、块体
理论力学课件
扬州大学水利科学与工程学院
.
1
绪论
*理论力学的研究对象和内容 *学习目的和学习方法 *教学参考书
理论力学13—动能定理概论

上两式可写成矢量点乘积形式
δW F dr
W M2 F dr M1
称为矢径法表示的功的计算公式。
在直角坐标系中
F Fx i Fy j Fz k , dr dxi dy j dzk
δW Fxdx Fydy Fzdz
W
M2 M1
(
Fx
dx
Fy
dy
Fz
dz
)
上式称为直角坐标法表示的功的计算公式,也称为功
的解析表达式。
13.1 力的功
13.1.3 常见力的功
1) 重力的功
设质点的质量为m,在重力 作用下从M1运动到M2。建立如图 坐标,则
z M1
z1 O
Fx 0, Fy 0, Fz mg x
代入功的解析表达式得
M mg M2 y
z2
W12
z2 z1
(mg)dz
mg(z1
z2
)
常见力的功
d(r
r)
1 2r
drห้องสมุดไป่ตู้2
dr
于是
W12
r2 r1
k(r
l0 )dr
1 2
k
(r1
l0 )2
(r2
l0 )2
或
W12
1 2
k (d 12
d
2 2
)
弹性力作的功只与弹簧在初始和末了位置的变形量有 关,与力的作用点A的轨迹形状无关。
常见力的功
3) 定轴转动刚体上作用力的功
z
设作用在定轴转动刚体上A点的力为F,
4)平面运动刚体上力系的功
平面运动刚体上力系的功,等于刚体上所受各力作功的代数和。
平面运动刚体上力系的功,也等于力系向质心简化所得的力与力
理论力学第13章

滚轮C的运动方程:
m a F2 Fs 2kh ( 3)
1 2 m R ( Fs 2kh) R 2
R a, 1 m a Fs 2kh ( 4) 2
式(1)+(2)+(3)+(4),得:
2015/11/15
理论力学第13章
11
3. 动能定理能解决的两类问题:
(1)如果外力功已知(或外力功容易计算), 则由动能定理可以求出终点、起点的动能差。 (2)如果终点、起点的速度已知(或容易计 算),则由动能定理就可以求出外立功。如果 外力、位移比较简单,则还可以进一步求出外 力。
2015/11/15
有用功 动能增加 输入功
2015/11/15
理论力学第13章
20
13-5 势力场.势能.机械能守恒
1. 势力场 如果物体受力大小、方向与物体的空间位置有 关,则这个空间称为力场。 物体运动时,如果力场所作的功仅与物体的起 始位置和终了位置有关,而与物体运动轨迹无 关,则这种力场称为有势力场。
2015/11/15
理论力学第13章
10
2. 质点系的动能定理: 质点i,质量mi,速度vi ,所受外力Fi ,位移 dsi :
1 2 d ( m v 2 i i ) Fi dsi dW i 1 1 2 2 d ( mi vi ) - d ( mi vi ) dW 2 2 终点 起点
滚轮作平面运动,它受到的外力有:绳子拉力, 弹簧拉力,重力,地面反力,摩擦力。由平面 运动方程,得
理论力学课件第13章:动能定理

求:切削力F的最大值。
解: P有用 P输入 P无用 3.78kw
P有用
F
F
d · n
2 30
60
60 3.78
F dn P有用 0.1 42 17.19kN
当 n 112r / min 时
F 60 3.78 6.45kN
0.1112
例13-8:
已知 :m ,l0 ,k , R , J。
系的所有力的功率的代数和.
机床
dT dt
P输入 P有用 P无用
或
P输入
P有用
P无用
dT dt
3、机械效率
有效功率 机械效率
P有效
P有用
dT dt
P有效
P输入
多级传动系统 12 n
例13-7
已知: P输入 5.4kw, P无用 P输入 30%
d 100mm, n 42r / min , n ' 112r / min
2 1
M
zd
若 M z 常量
则 W12 M z (2 1)
4. 平面运动刚体上力系的功
由 vi vC viC 两端乘dt,有 dri drC driC 作用在 Mi 点的力 Fi 的元功为 δWi F idri Fi drC Fi driC
其中 Fi driC Fi cos MC d M C (Fi )d
W
Fxdx
Fy dy
Fz dz
力 F 在 M1 ~ M 2 路程上的功为
W12
M2 M1
δW
M2 M1
F ·dr
三、几种常见力的功 1、重力的功
质点
Fx Fy 0 Fz mg
W12
z2 z1
理论力ppt课件

力矩对时间的累积等于物体角 动量的变化率。
角动量守恒的条件
系统不受外力矩或所受外力矩 的矢量和为零。
角动量守恒定律
不受外力矩作用的系统,其总 角动量保持不变。
应用领域
广泛应用于航天、航空、航海 等领域,用于分析系统的旋转
运动规律和设计。
CHAPTER 04
质点和刚体的动力学应用
质点和刚体的直线运动
理论力学的历史与发展
理论力学的起源可以追溯到古代,如阿基米德等人的贡献。 然而,真正意义上的理论力学是在牛顿发表《自然哲学的数 学原理》之后发展起来的。
随着数学和物理学的不断发展,理论力学也不断完善和深化 ,形成了多个分支。近年来,随着计算机科学的进步,理论 力学与数值计算方法的结合为解决复杂问题提供了更有效的 手段。
弹性力学的基本方程
01
02
03
平衡方程
根据牛顿第二定律,描述 了物体在力的作用下保持 平衡的状态。
几何方程
描述了物体在外力作用下 产生的变形。
物理方程
描述了物体的应力与应变 之间的关系。
弹性力学的应用实例
桥梁和建筑物的设计
材料科学的研究
通过弹性力学,可以分析桥梁和建筑 物的受力情况,从而设计出更加安全 和经济的结构。
连续性假设
物质没有空隙地连续充满所占据的空 间,或者说物质所占据空间的场内, 物质分布函数的值是连续的。
完全弹性假设
当外力撤去后,所有的变形全部恢复 ,并且不出现残余的应变。
各向同性假设
弹性性质与方向无关,也就是说,在 各个方向上,弹性模量是常数。
小变形假设
物体在外力作用下产生的变形量远远 小于物体原来的尺寸,即可以忽略不 计。
基础运动形式
角动量守恒的条件
系统不受外力矩或所受外力矩 的矢量和为零。
角动量守恒定律
不受外力矩作用的系统,其总 角动量保持不变。
应用领域
广泛应用于航天、航空、航海 等领域,用于分析系统的旋转
运动规律和设计。
CHAPTER 04
质点和刚体的动力学应用
质点和刚体的直线运动
理论力学的历史与发展
理论力学的起源可以追溯到古代,如阿基米德等人的贡献。 然而,真正意义上的理论力学是在牛顿发表《自然哲学的数 学原理》之后发展起来的。
随着数学和物理学的不断发展,理论力学也不断完善和深化 ,形成了多个分支。近年来,随着计算机科学的进步,理论 力学与数值计算方法的结合为解决复杂问题提供了更有效的 手段。
弹性力学的基本方程
01
02
03
平衡方程
根据牛顿第二定律,描述 了物体在力的作用下保持 平衡的状态。
几何方程
描述了物体在外力作用下 产生的变形。
物理方程
描述了物体的应力与应变 之间的关系。
弹性力学的应用实例
桥梁和建筑物的设计
材料科学的研究
通过弹性力学,可以分析桥梁和建筑 物的受力情况,从而设计出更加安全 和经济的结构。
连续性假设
物质没有空隙地连续充满所占据的空 间,或者说物质所占据空间的场内, 物质分布函数的值是连续的。
完全弹性假设
当外力撤去后,所有的变形全部恢复 ,并且不出现残余的应变。
各向同性假设
弹性性质与方向无关,也就是说,在 各个方向上,弹性模量是常数。
小变形假设
物体在外力作用下产生的变形量远远 小于物体原来的尺寸,即可以忽略不 计。
基础运动形式
理论力学说课PPT课件

机械运动实例
总结词
机械运动是理论力学的传统应用领域,涉及 各种实际机械系统的运动规律。
详细描述
机械运动是理论力学中最为常见的应用领域 之一。各种实际机械系统,如汽车、飞机、 机器和机器人等的运动规律,都需要通过理 论力学进行分析和描述。通过研究机械运动, 可以深入理解力矩、动量、动能等力学概念, 以及它们在机械系统中的具体应用。
自我评价
通过本课程的学习,我掌握了理论力 学的基本知识和分析方法,对物理学
的理解更加深入
我认为自己的逻辑思维、抽象思维和 创新能力得到了提高,解决问题的能 力也有所增强
建议
建议增加一些与实际应用相关的案例 和实验,以更好地理解理论力学的应 用价值
对于一些较难理解的概念和公式,希 望能够有更多的解释和练习题
详细描述
力的分析方法包括矢量表示法、直角坐标表示法和极坐标表 示法等。通过力的合成与分解,可以确定物体运动状态的变 化。力矩的计算则涉及到转动惯量、角速度和动量矩等概念 。
运动分析方法
总结词
运动分析方法主要研究物体运动轨迹、速度和加速度等参数。
详细描述
运动分析方法包括对质点和刚体的运动学分析,通过求解运动微 分方程或积分方程,可以确定物体的运动轨迹、速度和加速度等 参数。这些参数对于理解力学系统的运动规律和相互作用至关重 要。
本课程总结
提高了学生解决实际问题的能力 改进方向
针对不同专业需求,调整教学内容和深度,更好地满足学生需求
本课程总结
01
加强实验和实践环节,提高学生 的动手能力和实践经验
02
引入更多现代技术和方法,更新 教材和教学方法,保持课程的前 沿性
力学发展历程与展望
力学发展史
理论力学13Hppt课件-PPT精品文档

1 2 T mv C 2
2.定轴转动刚体
vi=ri
ri
mi
vi
2 2 1mv2 1 T ( m r i i i i ) 2 2
2 2 1 m ir i 2
1 T J z 2
2
15
3.平面运动刚体
1 T J P 2 2
(P为速度瞬心
JP JC md2 )
d vd m r F d r d t
r m d v d F d r d t
1 2 将上式沿路径M1M2积分, d ( mv ) W 12
第三篇 《动力学》
第十章 第十一章 第十二章 第十三章 第十四章 第十五章 质点动力学的基本方程 动量定理 动量矩定理 动能定理 达朗伯原理 虚位移原理
1
第十三章
§13–1 §13–2 §13–3 力的功
动能定理
质点和质点系的动能 动能定理
§13–6
动力学普遍定理及综合应用
3
§ 13-1
力的功
一.常力的功
二.变力的功
三.常见力的功 1.重力的功 2.弹性力的功 3.定轴转动刚体上作用力的功,力偶的功
4
一.常力的功 质点作直线运动,路程为S, (M1→M2),力在位移方向
上的投影为Fcos ,力F在路程S 中所作的功为:
W FS cos
FS
力的功是代数量:
2
时,正功;
d r d x i d y j d z k
∴
θ
F d r F d x F d y F d z x y z
W F d x F d y F d z x y z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:相同的速度和加速度?
A1
z
rArBBA
rA A
drA drB dBA dt dt dt
vAvB aAaB
O
rB B
x
退出
结论:刚体平动的问题,可归结为点的运动问题
B1
y
§8-1 刚体的平行移动
7
7 例8-1:曲柄滑块机构中,当曲柄OA在平面上绕定轴O转动时
,通过滑槽连杆中的滑块A的带动,可使连杆在水平槽中沿直 线往复滑动。若曲柄OA的半径为r,曲柄与x轴的夹角为ф=ωt ,其中ω是常数,求此连杆在任一瞬时的速度及加速度。
d
dt
d d dt d
/2
d d
an
0
0
an r
a r
a a2an2 a
ωα
a a2an2r12
arcatgarc1tg1.77
an
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
退出
ωα at
aθ
an
φ
x
O
§8-3 转动刚体内各点的速度与加速度
例如:转动刚体从静止开始,以匀角加速度α逆时针转动,分析角位移
为0。90。时OM线上的切向加速度、法向加速度和全加速度的分布
O
at=xa
Mo
α
a 0。时OM线上at、an和a的分布: t
vr0
an r2 0
M
a r an r2 ?
9 9
转动的度量: φ=φ(t) 刚体的定轴转动方程
φ角位移
y
φ
x
O
Mo
位置角ф对时间的变化率就是角速度ω
角速度ω对dd时t 间的 变化率就是角加26速0n度α
退出
d
dt
§8-3 转动刚体内各点的速度与加速度
10 10
y ω
v
已知刚体的定轴转动方程 φ=φ(t)
刚体上任一点M:
运动方程、速度、加速度?
§8-3 转动刚体内各点的速度与加速度
11
11 sr(t) vr a r
an r2
a a 2 a n 2(r)2 (r2 )2 r 24
arctaagn arctg2
结论:
转动刚体内任一点的速度和加速度的 大小都与该点至转轴的距离成正比;
同一瞬时,刚体内所有各点的全加速 度与半径都有相同的偏角。
退出
§8-1 刚体的平行移动
平面刚体运动形式:
平行移动、定轴转动、平面运动
A B
O
5 5
A2 A1
B1
退出
A3 B2
§8-1 刚体的平行移动
定理:
当刚体平动时,刚体内各点的轨迹形状都相同 ,且在同一瞬时各点都具有相同的速度和加速 度。
证明:
B3 设平动刚体,任取两点A、B,初始位 置A1、B1,经过dt时间到A2、B2,经过 dt时间到A3、B3,……An、Bn。
因为:A1B1//A2B2//A3B3.//……//AnBn A1B1=A2B2=A3B3.=……=AnBn
所以:折线A1A2A3…An//折线B1B2B3…Bn dt->0, A、B两条轨迹线完全相同
§8-1 刚体的平行移动
6
6 定理:当刚体平动时,刚体内各点的轨迹形状都相同
,且在同一瞬时各点都具有相同的速度和加速度。
理论力学
第十三讲
2 2
退出
第二部分 运动学
第七章
点的运动
点的运动方程、速度、加速度数学描述
第八章
刚体的基本运动
刚体的基本运动:平动和转动
第九章
点(刚体上)的运动合成
相对运动、绝对运动、牵连运动的速度合成
第十章
刚体的平面运动
刚体平面运动的速度合成
习题课
第八章 刚体的基本运动
3 3
§8-1 刚体的平行移动 §8-2 刚体的定轴转动 §8-3 转动刚体内各点的速度与加速度 §8-4 绕定轴转动刚体的传动问题
r
s
φ
vdsrdr
dt dt
转动刚体内任一点速度的代数值等于该 点至转轴的距离与刚体角速度的乘积。
a
dvrdr
dt dt
转动刚体内任一点的切向加速度等于该 点至转轴的距离与刚体角加速度的乘积
退出
an
v2 r
(r )2 r
r
2
转动刚体内任一点的法向加速度等于该点 至转轴的距离与刚体角速度平方的乘积
y
解: (1)取M点代表连杆
A
(2)取坐标系Oxy
r
ф
M
x
xMrcost
O
vMrsi nt
退出
aMr2cots
§8-2 刚体的定轴转动
8 8
定轴转动:
当刚体运动时,刚体内某一直线上的所有各 点始终保持不动,这种运动称为刚体的定轴 转动,简称转动,这条不动的直线称为转轴
退出
转动的度量?
§8-2 刚体的定轴转动
You Know, The More Powerful You Will Be
13
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
14