圆锥曲线典型难题大全集学生版
高三圆锥曲线解答题难点突破专练集学生版

圆锥曲线解答题难点突破专练集1已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.2 已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.3.已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫ ⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.4.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =. (Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.5.已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右焦点分别为F 1,F 2,点P (2,2 )在椭圆C 上,且满足PF 1·PF 2=PF 22.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 2且斜率不为零的直线l 交椭圆C 于不同的两点A ,B ,则在x 轴上是否存在定点M ,使得MO 平分∠AMB ?若存在,求出点M 的坐标;若不存在,请说明理由.6.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.7 给定椭圆C :x 2a 2 +y 2b 2 =1(a >b >0),称圆心在原点O ,半径为a 2+b 2 的圆是椭圆C 的“卫星圆”.若椭圆C 的离心率为22,点(2,2 )在C 上. (1)求椭圆C 的方程和其“卫星圆”的方程;(2)点P 是椭圆C 的“卫星圆”上的一个动点,过点P 作直线l 1,l 2使得l 1,l 2与椭圆C 都只有一个交点,且l 1,l 2分别交其“卫星圆”于点M ,N ,证明:|MN |为定值.8.已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为32 ,F 1,F 2分别为椭圆C 的左、右焦点,M 为椭圆C 上一点,△MF 1F 2的周长为4+23 .(1)求椭圆C 的方程;(2)若P 为圆x 2+y 2=5上任意一点,过点P 作椭圆C 的两条切线,切点分别为A ,B ,试判断PA → ·PB → 是否为定值?若是,求出该定值;若不是,请说明理由.9已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点.以F 1F 2为直径的圆和C 有且仅有两个交点,且直线y =x +6 与C 相切.(1)求椭圆C 的方程;(2)若A ,B 为x 轴上两点,且两点的横坐标之积为4.过A 点的直线交C 于M ,N 两点,直线BM 与C 的另一个交点为S (S 异于点N ),直线BN 与C 的另一个交点为T .设M 关于x 轴的对称点为P ,求证:B ,N ,P 三点共线.10.已知椭圆2222:1(0)x y M a b a b +=>>62斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k . (Ⅰ)2213x y +=;6(Ⅲ)1.。
(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。
圆锥曲线大题专题及答案

解析几何大题专题第一类题型 弦长面积问题1.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.2. (本小题14分) 已知椭圆22:13+=x y C m m,直线:20+-=l x y 与椭圆C 相交于P ,Q 两点,与x 轴交于点B ,点,P Q 与点B 不重合.(Ⅰ)求椭圆C 的离心率;(Ⅱ)当2∆=OPQ S 时,求椭圆C 的方程;(Ⅲ)过原点O 作直线l 的垂线,垂足为.N 若λ=PN BQ ,求λ的值.3.(本小题共14分)已知椭圆2222:1(0)x yC a ba b+=>>离心率等于12,(2,3)P、(2,3)Q-是椭圆上的两点.(Ⅰ)求椭圆C的方程;(Ⅱ),A B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为12,求四边形APBQ面积的最大值.4.(本小题满分14分)已知椭圆C:2231(0)mx my m+=>的长轴长为O为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设点(3,0)A,动点B在y轴上,动点P在椭圆C上,且P在y轴的右侧,若||||BA BP=,求四边形OPAB面积的最小值.5.(本小题共14分)已知椭圆C:2214xy+=,F为右焦点,圆O:221x y+=,P为椭圆C上一点,且P位于第一象限,过点P作PT与圆O相切于点T,使得点F,T在OP两侧.(Ⅰ)求椭圆C的焦距及离心率;(Ⅱ)求四边形OFPT面积的最大值.6.(本小题13分)已知抛物线C:y2=2px经过点P(2,2),A,B是抛物线C上异于点O的不同的两点,其中O为原点.(I)求抛物线C的方程,并求其焦点坐标和准线方程;(II)若OA OB,求△AOB面积的最小值.第二类题型 圆过定点问题( 包括点在圆上 点在圆外 点在圆内)1.(本小题满分14 分)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,椭圆C 与y 轴交于A , B 两点,且|AB |=2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设点P 是椭圆C 上的一个动点,且直线PA ,PB 与直线x =4分别交于M , N两点.是否存在点P 使得以MN 为直径的圆经过点(2,0)?若存在,求出点P 的横坐标;若不存在,说明理由。
圆锥曲线难题集锦(共75题)

圆锥曲线难题集锦徐荣先汇编1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.}2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.)3. 已知椭圆的离心率为,点在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.;4. 已知的顶点,在椭圆上,点在直线:上,且.\(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.—5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.¥}6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.:7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;—(2)当的面积等于时,求的值.【8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.【·9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.}?10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.【11. 已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值若是,求出该值;若不是,说明理由.&:12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.,13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.:?14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.)15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.?¥16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.,17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.#]18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,.求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.{;20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点若过定点,求出定点的坐标;若不过定点,请说明理由.:21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;·(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.·22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且.(1)求直线的斜率;(2)若的面积为,求抛物线的方程.|—24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3)求证:是一个定值./25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.~(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.~26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.【27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.}\28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.;29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.…(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.!30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.~31. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.'32. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.^33. 已知点100(,)P x y 为双曲线22221(8x y b b b -=为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于点2P . (1)求线段12P P 的中点P 的轨迹E 的方程;(2)设轨迹E 与x 轴交于B ,D 两点,在E 上任取一点Q 111()(0)x y y ≠,,直线QB ,QD 分别交于y 轴于M ,N 两点.求证:以MN【@34. 如图,已知圆G :222(2)x y r -+=是椭圆2216x y +=1的内接ABC △的内切圆,其中A 为椭圆的左顶点. (1)求圆G 的半径r ;(2)过点M (0,1)作圆G 的两条切线交椭圆于E ,F 两点,证明:直线EF 与圆G 相切.—x35. 设点00(,)P x y 在直线(01)x m y m m =≠±<<,上,过点P 作双曲线221x y -=的两条切线,PA PB ,切点为,A B ,定点10M m ⎛⎫⎪⎝⎭,. (1)过点A 作直线0x y -=的垂线,垂足为N ,试求AMN △的垂心G 所在的曲线方 程;(2)求证:A M B 、、三点共线."36. 作斜率为13的直线l 与椭圆22:1364x y C +=交于,A B 两点(如图所示),且P 在直线l 的左上方.(1)证明:PAB ∆的内切圆的圆心在一条定直线上; (2)若60oAPB ∠=,求PAB ∆的面积.《AxyOPB37. 如图,椭圆22122:1(0)x y C a b a b+=>>3x 轴被曲线22:C y x b =-截得的线段长等于1C 的长半轴长.(1)求1C ,2C 的方程;(2)设2C 与y 轴的焦点为M ,过坐标原点O 的直线l 与2C 相交于点A,B ,直线MA,MB 分别与1C 相交与,D E .①证明:MD ME ⊥;¥②记MAB ∆,MDE ∆的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =请说明理由.】38. 已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D . (1)证明:点F 在直线BD 上; (2)设89FA FB =,求BDK ∆的内切圆M 的方程 .!39. (,)()o o o P x y x a ≠±是双曲线2222:1(0,0)x y E a b a b-=>>上一点,,M N 分别是双曲线E 的左、右顶点,直线,PM PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于,A B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.…40.已知以原点O 为中心,F 为右焦点的双曲线C 的离心率e =(1)求双曲线C 的标准方程及其渐近线方程;(2)如图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求△OGH 的面积.41.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛ ⎝⎭都在椭圆上,其中e 为椭圆的离心率. ~(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若12AF BF -=1AF 的斜率; (ii )求证:12PF PF +是定值.;42.如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.(43.设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥若存在,求m 的值;若不存在,请说明理由.…44../45. 已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆=2其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在点D,E,G ,使得ODE ODG OEG S S S ∆∆∆===判断△DEG 的形状;若不存在,请说明理由.%46.如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由《47. 平面内与两定点12(,0),(,0)(0)->A a A a a 连线的斜率之积等于非零常数m 的点的轨迹,加 上A 1、A 2两点所在所面的曲线C 可以是圆、椭圆或双曲线.(Ⅰ)求曲线C 的方程,并讨论C 的形状与m 的位置关系;(Ⅱ)当m=-1时,对应的曲线为C 1:对给定的(1,0)(0,)m ∈-+∞,对应的曲线为C2, ;设F 1、F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面 积2S m a =,若存在,求12tan F NF 的值;若不存在,请说明理由.:48.已知一条曲线C 在y 轴右边,每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m ,对于过点M (m ,0)且与曲线C 有两个交点A,B 的任一直线,都有0FA FB •<若存在,求出m 的取值范围;若不存在,请说明理由。
32个经典圆锥曲线问题

圆锥曲线32题1. 如图所示,,分别为椭圆:()的左、右两个焦点,,为两个顶点,已知椭圆上的点到,两点的距离之和为.(1)求椭圆的方程;(2)过椭圆的焦点作的平行线交椭圆于,两点,求的面积.2. 已知椭圆:的离心率为,过左焦点且倾斜角为的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)若动直线与椭圆有且只有一个公共点,过点作的垂线,垂足为,求点的轨迹方程.3. 已知椭圆的离心率为在上.(1)求的方程;(2)直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.证明:直线的斜率与直线的斜率的乘积为定值.4. 已知的顶点,在椭圆上,点在直线:上,且.(1)当边通过坐标原点时,求的长及的面积;(2)当,且斜边的长最大时,求所在直线的方程.5. 已知椭圆的中心为坐标原点,一个长轴顶点为,它的两个短轴顶点和焦点所组成的四边形为正方形,直线与轴交于点,与椭圆交于异于椭圆顶点的两点,,且.(1)求椭圆的方程;(2)求的取值范围.6. 已知抛物线的焦点为,是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于,过作垂直于轴,垂足为,的中点为.(1)求抛物线的方程;(2)若过作,垂足为,求点的坐标.7. 已知圆过定点,且与直线相切,圆心的轨迹为,曲线与直线相交于,两点.(1)求曲线的方程;(2)当的面积等于时,求的值.8. 已知直线与椭圆相交于两个不同的点,记与轴的交点为.(1)若,且,求实数的值;(2)若,求面积的最大值,及此时椭圆的方程.9. 如图,设抛物线()的焦点为,抛物线上的点到轴的距离等于.(1)求的值;(2)若直线交抛物线于另一点,过与轴平行的直线和过与垂直的直线交于点,与轴交于点.求的横坐标的取值范围.10. 已知点在椭圆上,且点到两焦点的距离之和为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,以为底作等腰三角形,顶点为,求的面积.11. 已知椭圆的离心率为.(1)求椭圆的方程;(2)若,是椭圆上的两个动点,且使的角平分线总垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.12. 已知椭圆:的离心率为.其右顶点与上顶点的距离为,过点的直线与椭圆相交于,两点.(1)求椭圆的方程;(2)设是中点,且点的坐标为当时,求直线的方程.13. 设,分别是椭圆的左,右焦点,是上一点且与轴垂直.直线与的另一个交点为.(1)若直线的斜率为的离心率;(2)若直线在轴上的截距为,且,.14. 在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.(1)求点的轨迹的方程;(2)过动点作曲线的两条切线,切点分别为,,求证:的大小为定值.15. 已知中心在原点的双曲线的右焦点为,右顶点为.(1)求该双曲线的方程;(2)若直线:与双曲线左支有两个不同的交点,,求的取值范围.16. 己知椭圆与抛物线共焦点,抛物线上的点到轴的距离等于,且椭圆与抛物线的交点满足.(1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点作抛物线的切线交椭圆于,两点,设线段的中点为,求的取值范围.17. 已知右焦点为的椭圆:关于直线对称的图形过坐标原点.(1)求椭圆的方程;(2)过点且不垂直于轴的直线与椭圆交于,两点,点关于轴的对称原点为,证明:直线与轴的交点为.18. 在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.(1)求抛物线的方程;(2)设点,在抛物线上,直线,分别与轴交于点,,求直线的斜率.19. 已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴正半轴上,是否存在某个确定的点,过该点的动直线与抛物线交于,两点,使得为定值.如果存在,求出点坐标;如果不存在,请说明理由.20. 左、右焦点分别为,的椭圆经过点,为椭圆上一点,的重心为,内心为,.(1)求椭圆的方程;(2)为直线上一点,过点作椭圆的两条切线,,,为切点,问直线是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.21. 已知抛物线,为其焦点,过点的直线交抛物线于,两点,过点作轴的垂线,交直线于点,如图所示.(1)求点的轨迹的方程;(2)直线是抛物线的不与轴重合的切线,切点为,与直线交于点,求证:以线段为直径的圆过点.22. 已知椭圆,其短轴为,离心率为.(1)求椭圆的方程;(2)设椭圆的右焦点为,过点作斜率不为的直线交椭圆于,两点,设直线和的斜率为,,试判断是否为定值,若是定值,求出该定值;若不是定值,请说明理由.23. 在平面直角坐标系中,抛物线的焦点为,准线交轴于点,过作直线交抛物线于,两点,且(1)求直线的斜率;(2)若的面积为,求抛物线的方程.24. 过双曲线的右支上的一点作一直线与两渐近线交于,两点,其中是的中点;(1)求双曲线的渐近线方程;(2)当坐标为时,求直线的方程;(3是一个定值.25. 如图,线段经过轴正半轴上一定点,端点,到轴的距离之积为,以轴为对称轴,过,,三点作抛物线.(1)求抛物线的标准方程;(2)已知点为抛物线上的点,过作倾斜角互补的两直线,,分别交抛物线于,,求证:直线的斜率为定值,并求出这个定值.26. 如图,已知椭圆的左右顶点分别是,,离心率为.设点,连接交椭圆于点,坐标原点是.(1)证明:;(2)若三角形的面积不大于四边形的面积,求的最小值.27. 已知抛物线的焦点为,过的直线交于,两点,为线段的中点,为坐标原点.,的延长线与直线分别交于,两点.(1)求动点的轨迹方程;(2)连接,求与的面积比.28. 已知抛物线过点.过点作直线与抛物线交于不同的两点,,过点作轴的垂线分别与直线,交于点,,其中为原点.(1)求抛物线的方程,并求其焦点坐标和准线方程;(2)求证:为线段的中点.29. 如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,离心率为,两准线之间的距离为.点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线,的交点在椭圆上,求点的坐标.30. 如图:中,,,,曲线过点,动点在上运动,且保持的值不变.(1)建立适当的坐标系,求曲线的标准方程;(2)过点且倾斜角为的直线交曲线于,两点,求的长度.35. 已知椭圆的焦点在轴上,中心在坐标原点;抛物线的焦点在轴上,顶点在坐标原点.在,上各取两个点,将其坐标记录于表格中:(1)求,的标准方程;(2)已知定点,为抛物线上一动点,过点作抛物线的切线交椭圆于,两点,求面积的最大值.36. 已知点为椭圆:的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线与椭圆有且仅有一个交点.(1)求椭圆的方程;(2)设直线与轴交于,过点的直线与椭圆交于不同的两点,,若的取值范围.圆锥曲线32题答案1. (1)由题设知:,即.将点代入椭圆方程得,解得.所以,故椭圆方程为.(2)由()知,,所以,所以所在直线方程为,由得,设,,则,所以所以2. (1)因为椭圆的离心率为,所以.解得,故椭圆的方程可设为,则椭圆的左焦点坐标为,过左焦点且倾斜角为的直线方程为:.设直线与椭圆的交点为,,由消去,得,解得,.因为,解得.故椭圆的方程为.(2)①当切线的斜率存在且不为时,设的方程为,联立直线和椭圆的方程,得消去并整理,得.因为直线和椭圆有且只有一个交点,所以.化简并整理,得.因为直线与垂直,所以直线的方程为.联立方程组解得所以把代入上式得②当切线的斜率为时,此时或,符合式.③当切线的斜率不存在时,此时或符合式.综上所述,点的轨迹方程为.3. (1)由题意得解得,.所以的方程为.(2)设直线(,),,,.将代入,得.故,.于是直线的斜率所以直线的斜率与直线的斜率的乘积为定值.4. (1)因为,且通过原点,所以所在直线的方程为.由得,两点坐标分别是,.所以.又因为边上的高等于原点到直线的距离.所以,.(2)设所在直线的方程为,由得.因为,两点在椭圆上,所以,即.设,两点坐标分别为,,则,且,.所以又因为的长等于点到直线的距离,即所以.当时,边最长.(显然).所以,所在直线的方程为.5. (1)由题意,知椭圆的焦点在轴上,设椭圆方程为,由题意,知,,又,则,所以椭圆方程为.(2)设,,由题意,知直线的斜率存在,设其方程为,与椭圆方程联立,即消去,得,,由根与系数的关系,知又,即有,所以.则所以.整理,得,又时等式不成立,所以,得,此时.所以的取值范围为.6. (1)抛物线的准线为,所以,所以抛物线方程为.(2)由(1)知点的坐标是,由题意得,.又因为,所以.因为,所以所以的方程为的方程为由联立得所以的坐标为.7. (1)设圆心的坐标为,由题意,知圆心到定点和直线的距离相等,故圆心的轨迹的方程为.(2)由方程组消去,并整理得.设,,则设直线与轴交于点,则.所以因为,所以,解得.经检验,均符合题意,所以.8. (1)因为,所以设点的坐标为,点的坐标为由得则则,解得.(2)设点的坐标为,点的坐标为,由得,得,则.由得,解得,代入上式得:,则,,当且仅当时取等号,此时,又则,解得.所以,面积的最大值为,此时椭圆的方程为.9. (1)由题意可得,抛物线上点到点的距离等于点到直线的距离,由抛物线的定义,即.(2)由(1)得,抛物线方程为,,可设,,.因为不垂直于轴,可设直线:,由消去得,故又直线的斜率为的斜为.从而得直线:,直线:.所以设,由,,三点共线得,于是所以或.经检验,或满足题意.综上,点的横坐标的取值范围是.10. (1)因为,所以.又点在椭圆上,所以,解得,所以椭圆的方程为.(2)设直线的方程为.由得,设,的坐标分别为,,的中点为,则因为是等腰的底边,所以.所以的斜率.此时方程为,解得,,所以,所以.此时,点到直线的距离,所以的面积11. (1)因为椭圆的离心率为,所以,.因为,解得,,所以椭圆的方程为.(2)法1:因为的角平分线总垂直于轴,所以与所在直线关于直线对称.设直线的斜率为,则直线的斜率为所以直线的方程为,直线的方程为.设点,,由消去,得因为点在椭圆上,所以是方程的一个根,则.所以.同理.所以.又.所以直线的斜率为所以直线的斜率为定值,该值为法2:设点,,则直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即因为点,在椭圆上,所以由得,得同理由得由得,化简得由得得.得,得所以直线的斜率为为定值.法3:设直线的方程为,点,,则,,直线的斜率,直线的斜率.因为的角平分线总垂直于轴,所以与所在直线关于直线对称.所以,即化简得.把,代入上式,并化简得由消去得则,,代入得,整理得,所以或.若,可得方程的一个根为,不合题意.若时,合题意.所以直线的斜率为定值,该值为.12. (1)由题意可知:,又,,所以,,所以椭圆的方程为:.(2)①若直线的斜率不存在,此时为原点,满足,所以,方程为.②若直线的斜率存在,设其方程为,,将直线方程与椭圆方程联立可得即,可得设,则,,由可知,解得或,将结果代入验证,舍掉.此时,直线的方程为.综上所述,直线的方程为或.13. (1)根据及题设知,.将代入,解得或故的离心率为(2)由题意,得原点为的中点,轴,所以直线与轴的交点是线段的中点,故,即由得设,由题意知,则即代入的方程,得将及代入得.解得,,故,.14. (1)据题意,为点到直线的距离,连接,因为为线段的中垂线与直线的交点,所以所以点的轨迹是抛物线,焦点为,准线为直线所以曲线的方程为.(2)据题意,,过点的切线斜率存在,设为,则切线方程为:,联立抛物线方程可得,由直线和抛物线相切,可得,即因为,所以方程存在两个不等实根,设为,,因为,,由方程可知,所以切线,所以,结论得证.15. (1)由题意设双曲线方程为.由已知得,,再由,得.故双曲线的方程为.(2)设,,将代入,得.由题意知解得.所以的取值范围为.16. (1)因为抛物线上的点到轴的距离等于,所以点到直线的距离等于点到焦点的距离,得是抛物线的准线,即解得,所以抛物线的方程为;可知椭圆的右焦点,左焦点,由,得,又,解得,由椭圆的定义得,所以,又,得,所以椭圆的方程为.(2)显然,,由消去,得,由题意知,得,由消去,得,其中,化简得,又,得,解得,设,,则,由所以的取值范围是.17. (1)由题意可得:,又,解得.所以椭圆的方程为:.(2)设直线的方程为:,代入椭圆方程可得:,由,解得.设,,,所以,,则直线的方程为:,令,可得所以直线与轴的交点为.18. (1)依题意,设抛物线的方程为.由抛物线且经过点,得,所以抛物线的方程为.(2)因为所以,所以,所以直线与的倾斜角互补,所以.依题意,直线的斜率存在,设直线的方程为:,将其代入抛物线的方程,整理得.设,则,,所以.以替换点坐标中的,得.所以所以直线的斜率为19. (1)联立方程有,有,由于直线与抛物线相切,得,所以,所以.(2)假设存在满足条件的点,直线,有,设,,有,,,,,当,满足为定值,所以.20. (1)因为椭圆焦点在轴上,且过点,所以.设内切圆的半径为,点的坐标为,则的重心的坐标为,因为,所以.由面积可得即,则解得,,即所求的椭圆方程为则椭圆方程为.(2)设,,,则切线,的方程分别为,.因为点在两条切线上,所以,.故直线的方程为.又因为点为直线上,所以,即直线的方程可化为,整理得,由解得因此,直线过定点21. (1)由题意可得:直线的斜率存在,设方程为:,设,,动点,由可得.可得.;;由可得即点的轨迹方程为(2)设直线的方程为:(且),由可得,可得,因为直线与抛物线相切,所以,可得,可得,又由可得可得,所以以线段为直径的圆过点.22. (1)由题意可知:,,椭圆的离心率,则,所以椭圆的标准方程:.(2)设直线的方程为.消去整理得:.设,,则,,所以为定值.23. (1)过,两点作准线的垂线,垂足分别为,,易知,,因为所以,所以为的中点,又是的中点,所以是的中位线,所以而,所以所以,,所以,而,所以;(2)因为为的中点,是的中点,所以,所以,所以,所以抛物线的方程为.24. (1)双曲线的,,可得双曲线的渐近线方程为,即为.(2)令可得,解得,(负的舍去),设,,由为的中点,可得,,解得,,即有,可得的斜率为,则直线的方程为,即为.(3)设,即有,设,,由为的中点,可得,,解得,,则为定值.25. (1)设所在直线的方程为,抛物线方程为,联立两方程消去得.设,,则.由题意知,,且,所以,所求抛物线的方程为.(2)由点为抛物线上的点,得.由题意知直线,的斜率均存在,且不为,设直线的方程为,则直线的方程为.由得,因而由得,因而从而直线的斜率26. (1)由题意可知:,,所以椭圆的标准方程:,设直线的方程,则整理得:,解得:,,则点坐标,故直线的斜率,直线的斜率所以所以;(2)由(Ⅰ)可知:四边形的面积,则三角形,,由,整理得:,则,所以,的最小值.27. (1)设,,由题知抛物线焦点为,设焦点弦方程为,代入抛物线方程得,有,解之得,由韦达定理:,所以中点横坐标:,代入直线方程,中点纵坐标:为,消参数,得其方程为:,当线段的斜率不存在时,线段中点为焦点,满足此式,故动点的轨迹方程为:.(2)设,代入,得,,联立,得,同理,,所以,又因为,故与的面积比为.28. (1)因为过点,所以,解得所以抛物线方程为,所以焦点坐标为,准线为(2)设过点的直线方程为,,所以直线为,直线为:,由题意知,,由可得,所以,,所以,所以为线段的中点.29. (1)由题意可知:椭圆的离心率,则椭圆的准线方程,由由解得:,,则,所以椭圆的标准方程:.(2)方法一:设,时,与相交于点,与题设不符,当时,则直线的斜率的方程,直线的斜率,则直线的斜率,直线的方程,联立解得:则,由,在椭圆上,,的横坐标互为相反数,纵坐标应相等或相反,则或,所以或,则解得:则或无解,又在第一象限,所以的坐标为:.方法二:设,由在第一象限,则,,当时,不存在,解得:与重合,不满足题意,当时,,,由,,则,,直线的方程的方程联立解得:,则,由在椭圆方程,由对称性可得:,即,或,由,在椭圆方程,解得:或无解,又在第一象限,所以的坐标为:.30. (1)设中点为,中点为,以,所在的直线分别为轴,轴,为原点建立直角坐标系.因为,动点的轨迹是以,为焦点的椭圆,设其长、短半轴的长分别为,,半焦距为,则,,,所以曲线的方程为:.(2)直线的方程为,设,,由方程组得方程,,,故.35. (1)设,由题意知,点一定在椭圆上,则点也在椭圆上,分别将其代入,得,,解得,,所以的标准方程为.设,依题意知,点在抛物线上,代入抛物线的方程,得,所以的标准方程为.(2)设,,,由知,故直线的方程为,即,代入椭圆的方程,整理得,,,,所以设点到直线的距离为,则所以当且仅当时,取等号,此时满足.综上,面积的最大值为.36. (1)由题意,得,,则椭圆为.由得.因为直线与椭圆有且仅有一个交点,所以,所以椭圆的方程为.(2)由(1)得.因为直线与轴交于,所以当直线与轴垂直时,,所以当直线与轴不垂直时,设直线的方程为,,,由,依题意得,,且,所以所以,因为,所以.综上所述,的取值范围是.。
圆锥曲线44道大题特训(含答案)
圆锥曲线44道特训(只要做不死就给死里做)1.已知双曲线12222=-by a x C :的离心率为3,点)0,3(是双曲线的一个顶点.(1)求双曲线的方程;(2)经过的双曲线右焦点2F 作倾斜角为30°直线l ,直线l 与双曲线交于不同的B A ,两点,求AB 的长.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,7AB CD +=.(1)求椭圆的方程;(2)求AB CD +的取值范围.3.已知椭圆C :2222+1(0)x y a b a b=>>的一个焦点为(1,0)F ,离心率为22.设P 是椭圆C 长轴上的一个动点,过点P 且斜率为1的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)求22||||PA PB +的最大值.4.已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,短轴的一个端点B 到F 的距离等于焦距.(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于不同的两点M ,N ,是否存在直线l ,使得△BFM 与△BFN 的面积比值为2?若存在,求出直线l 的方程;若不存在,说明理由.5.已知椭圆C :2222x y a b+=1(a >b >0)过点P(-1,-1),c 为椭圆的半焦距,且c 2b .过点P 作两条互相垂直的直线l 1,l 2与椭圆C 分别交于另两点M ,N .(1)求椭圆C 的方程;(2)若直线l 1的斜率为-1,求△PMN 的面积;(3)若线段MN 的中点在x 轴上,求直线MN 的方程.6.已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率e = (1)求椭圆E 的方程;(2)若直线:l y kx m =+(0k ≠)与椭圆E 交于不同的两点A 、B ,且线段AB 的垂直平分线过定点1(,0)2P ,求实数k 的取值范围.7.已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率2e =. (1)求椭圆E 的方程;(2)设直线:l y x m =+(0m ≠)与椭圆E 交于A 、B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求TAB V 面积的最大值.8.已知椭圆错误!未找到引用源。
圆锥曲线23道经典题(含答案)
= 1(a > b > 0)左、右焦点为 F1、 F2离心率为
3 3
过
F2
的直线
l交C于A、
B两点,若 Δ AF1B的周长为 4 3则C的方程为( )
A.
x2 3
+
y2 2
=1
B.
x2 3
+ y2
=1
C.
x2 12
+
y2 8
=1
D.
x2 12
+
y2 4
=1
3(2014重庆8,5分)
设
F1
F2 分别为双曲线
11
12
13
14 抛物线的标准方程为 x2 = -12y ,由此可以判断焦点在 y 轴上且开口向下且 p=6, 所以其准线方程为 y=3 15
16
17 18
19
20 21
22
23
24
− y0y
=
1与直线AF相交于点M,与直线
x
=
3 2
相交于点N。证明:当点P在C上移动时,
∣N
F
∣ 恒为定值,并求出此定值。
19(2014陕西,20,13分)
2
如图,曲线C
由上半椭圆
C1
y2 a2
+
x2 b2
= 1(a > b > 0, y ⩾ 0)和部分抛物线
C2 : y = −x2 + 1(y ⩽ 0)连接而成, C1与 C2的公共点为A,B,其中 C1的离心率为
1)作斜率为
−
1 2
的直线与椭圆
C
:
x2 a2
+பைடு நூலகம்
高中数学圆锥曲线难题
高中数学圆锥曲线难题1.题目:找出以原点为中心,主轴长度为10,次轴长度为6的椭圆的方程。
答案:方程为x^2/25+y^2/9=1。
2.题目:确定以顶点(-5,0)和(5,0),焦点(-8,0)和(8,0)的双曲线的标准形式方程。
答案:方程为x^2/9-y^2/16=1。
3.题目:已知方程为4x^2+9y^2-24x+36y+39=0的椭圆,求其中心、轴长和离心率。
答案:中心为(3,-2),主轴长度为10,次轴长度为6,离心率为√(55/36)。
4.题目:找出以焦点(2,3)和准线为y=1的抛物线的方程。
答案:方程为(x-2)^2=4(y-3)。
5.题目:确定以焦点(±7,0)和次轴长度为8的椭圆的标准形式方程。
答案:方程为x^2/49+y^2/16=1。
6.题目:已知方程为9x^2-4y^2-54x+32y-107=0的双曲线,求其中心、焦点和渐近线。
答案:中心为(3,2),焦点为(5,2)和(1,2),渐近线为y=x/3+1/3和y=-x/3+11/3。
7.题目:找出以顶点(0,0)和准线为y=-4的抛物线的方程。
答案:方程为y^2=16x。
8.题目:确定以顶点(0,±7)和离心率为√(10/3)的双曲线的标准形式方程。
答案:方程为x^2/49-y^2/24=1。
9.题目:已知方程为25x^2-36y^2+150x+48y-1516=0的双曲线,求其中心、焦点和渐近线。
答案:中心为(-3,-2),焦点为(-5,-2)和(1,-2),渐近线为y=-x/3-4/3和y=x/3+2/3。
10.题目:找出以焦点(±6,0)和主轴长度为10的椭圆的方程。
答案:方程为x^2/25+y^2/9=1。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线典型难题大全集目录题型一:数形结合确定直线和圆锥曲线的位置关系5 题型二:弦的垂直平分线问题7题型三:动弦过定点的问题10题型四:过已知曲线上定点的弦的问题12题型五:共线向量问题14题型六:面积问题18题型七:弦或弦长为定值问题20题型八:角度问题21问题九:四点共线问题24问题十:围问题(本质是函数问题)25问题十一、存在性问题:28直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。
解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y ,k(斜率)的取值围(8)目标:弦长,中点,垂直,角度,向量,面积,围等等运用的知识:1、中点坐标公式:1212,y 22x x y y x ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。
2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-两条直线垂直,则直线所在的向量120v v =4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值围规律提示:通过直线的代数形式,可以看出直线的特点:=+⇒过定点(,)l y kx:101过定点(,0)=+⇒-l y k x:(1)1过定点(,2)-=+⇒-l y k x:2(1)1证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。
练习:1、过点P(3,2) 和抛物线232-xy只有一个公共点的直线有()条。
=x-A.4 B.3 C.2 D.1规律提示:含焦点的区域为圆锥曲线的部。
(这里可以用公司的设备画图)一、过一定点P和抛物线只有一个公共点的直线的条数情况:(1)若定点P在抛物线外,则过点P和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P在抛物线上,则过点P和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P 在抛物线,则过点P 和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有一个交点。
二、过定点P 和双曲线只有一个公共点的直线的条数情况:(1)若定点P 在双曲线,则过点P 和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P 在双曲线上,则过点P 和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P 在双曲线外且不在渐近线上,则过点P 和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P 在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P 和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条渐近线平行的直线;(5)若定点P 在两条渐近线的交点上,即对称中心,过点P 和双曲线只有一个公共点的直线不存在。
题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。
例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的32倍,将k 确定,进而求出0x 的坐标。
例题3、已知椭圆1222=+y x 的左焦点为F ,O 为坐标原点。
(Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程;(Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值围。
技巧提示:直线过定点设直线的斜率k ,利用韦达定理,将弦的中点用k 表示出来,韦达定理就是同类坐标变换的技巧,是解析几何中解决直线和圆锥曲线问题的两大技巧之第一个技巧。
再利用垂直关系将弦AB 的垂直平分线方程写出来,就求出了横截距的坐标(关于k 的函数)。
直线和圆锥曲线中参数的围问题,就是函数的值域问题。
练习1:已知椭圆)0(1:2222>>=+b a by a x C 过点)23,1(,且离心率21=e 。
(Ⅰ)求椭圆方程;(Ⅱ)若直线)0(:≠+=k m kx y l 与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点)0,81(G ,求k 的取值围。
规律总结:如果只说一条直线和椭圆相交,没有说直线过点或没给出直线的斜率,就直接设直线的方程为:y kx m =+,再和曲线联立,转化成一元二次方程,就能找到解决问题的门路。
本题解决过程中运用了两大解题技巧:与韦达定理有关的同类坐标变换技巧,与点的纵、横坐标有关的同点纵横坐标变换技巧。
解决直线和圆锥曲线的问题的关键就是充分、灵活的运用这两大解题技巧。
练习2、设1F 、2F 分别是椭圆22154x y +=的左右焦点.是否存在过点(5,0)A 的直线l 与椭圆交于不同的两点C 、D ,使得22F C F D =?若存在,求直线l 的方程;若不存在,请说明理由.规律总结:通过以上2个例题和2个练习,我们可以看出,解决垂直平分线的问题,即对称问题分两步:第一步,有弦所在的直线和曲线联立,转化为一元二次方程(或类一元二次方程),通过判别式得不等式,由韦达定理得出弦中点的坐标;第二步是利用垂直关系,得出斜率之积为-1,或者是利用中点坐标和对称轴直线的斜率,写出垂直平分线的方程,就可以解决问题。
需要注意的一点是,求出的参数一定要满足判别式。
题型三:动弦过定点的问题圆锥曲线自身有一些规律性的东西,其中一些性质是和直线与圆锥曲线相交的弦有关系,对这样的一些性质,我们必须了如指掌,并且必须会证明。
随着几何画板的开发,实现了机器证明几何问题,好多以前我们不知道的、了解不深入的几何或代数性质,都如雨后春笋般的出来了,其部分都有可以遵循的规律,高考出题人,也得设计好思维,让我们在他们设好的路上“走”出来。
下面我们就通过几个考题领略一下其风采。
例题4、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论。
例题5、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
规律经验:在直线和圆锥曲线的位置关系题中,以弦为直径的圆经过某个点,就是“弦对定点直角”,也就是定点和弦的两端点连线互相垂直,得斜率之积为1-,建立等式。
直线不过定点,也不知道斜率,设出m kx y l +=:,是经常用的一招,在第二讲中就遇到了这样设的直线。
练习:直线m kx y l +=:和抛物线22y px =相交于A 、B ,以AB 为直径的圆过抛物线的顶点,证明:直线m kx y l +=:过定点,并求定点的坐标。
规律总结:这个题是课本上的很经典的题,例题5就是在这个题的基础上,由出题人迁移得到的,解题思维都是一样的,因此只要能在平时,把我们腾飞学校老师讲解的容理解透,在高考中考取140多分,应该不成问题。
本题解决过程中,有一个消元技巧,就是直线和抛物线联立时,要消去一次项,计算量小一些,也运用了同类坐标变换——韦达定理,同点纵、横坐标变换-------直线方程的纵坐标表示横坐标。
其实解析几何就这么点知识,你发现了吗?题型四:过已知曲线上定点的弦的问题若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。
下面我们就通过例题领略一下思维过程。
例题6、已知点A 、B 、C 是椭圆E :22221x y a b+=(0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
练习1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论。
,练习2、:已知,椭圆C 以过点A (1,32),两个焦点为(-1,0)(1,0)。
(1) 求椭圆C 的方程;(2) E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值。