机械手搬运单元控制
机械手工件搬运PLC顺控程序

机械手工件搬运PLC顺控程序机械手工件搬运PLC顺控程序是一种自动化工艺,用于控制和协调机械手和工业车间中的其他设备,以完成物料和零件的搬运。
PLC(可编程逻辑控制器)是这个系统的核心部分,它包含了一个程序,用于控制机械手的动作,并协调搬运过程中的其他元素,例如输送带、传送机和各种传感器。
该系统的主要应用场景是工业生产线,例如汽车、电子和五金制品制造厂等。
其中最大的优点是实现了高效率、高精度和高质量的生产流程。
本文将深入探讨机械手工件搬运PLC顺控程序的构成、原理和应用,以帮助读者更好地理解和应用这个自动化系统。
1. 构件机械手工件搬运PLC顺控程序由以下四个构件组成:机械手、输送带、传送机和PLC控制器。
机械手是核心部件,它包括一个控制系统和一系列从动部件。
控制系统通常由一个工控机和一个专用的PLC控制器组成,它们负责控制机械手的动作,并与其他设备协调工作。
输送带和传送机是用来传输工件和零件的,通常安装在生产线上。
输送带通常是一条长度较长的带式输送机,由电机驱动,可在两端控制速度和停止运行。
传送机通常是一个类似于传送带的机械臂,负责在不同的生产器件之间传输物品。
这两个设备都配备了传感器,用于激活PLC控制器,以便向机械手指示何时进行抓取和卸载操作。
PLC控制器是整个系统的核心,由一个或多个微处理器组成。
它与机械手、输送带和传送机之间建立通信网络,以便管理工作流程,并实现自动化操作。
因为PLC控制器是可编程的,它可以根据需要进行定制操作,满足不同的生产要求。
2. 工作原理该系统的工作过程如下:- 首先,工件或零件通过输送带或传送机传输到机械手前方,触发传感器。
- 传感器激活PLC控制器,PLC控制器发送信号到机械手,让机械手开始运作。
- 机械手进行抓取动作,把工件从输送带或传送机上抓取下来。
- 机械手在特定的位置上停止,等待PLC控制器发送下一道指令。
- PLC控制器向机械手发送下一道指令,指示机械手如何移动或卸载工件。
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是一种自动化设备,广泛应用于工业生产中的物料搬运、装卸、组装等工序。
为了实现搬运机械手的自动化控制,可以采用基于可编程逻辑控制器(PLC)的控制系统。
本文将介绍一个基于PLC的搬运机械手控制系统的设计。
搬运机械手控制系统的主要功能是对机械手的运动进行控制。
基于PLC的控制系统可以实现对机械手的运动、速度和位置等参数进行精确控制,从而提升机械手的工作效率和准确性。
首先,需要确定搬运机械手的运动方式和结构。
常见的机械手运动方式包括直线运动、旋转运动和联动运动等。
根据任务需求,可以选择合适的运动方式和结构。
然后,需要选择合适的PLC设备。
PLC是一种专门用于工业自动化控制的设备,具有高可靠性、灵活性和可扩展性等特点。
根据机械手的规模和工作要求,选择适当的PLC设备。
接下来,需要设计搬运机械手的控制电路。
控制电路是实现机械手运动控制的关键部分,包括传感器、电磁阀、继电器等元件的连接和控制逻辑的设计。
在设计控制逻辑时,可以使用PLC提供的编程软件进行编程。
根据机械手的工作要求和操作流程,编写PLC程序,实现对机械手的自动控制。
此外,还需要设计人机界面(HMI)用于操作和监控机械手的运行状态。
HMI通常使用触摸屏或按钮等输入设备,以及显示屏或指示灯等输出设备。
通过HMI,操作人员可以控制机械手的运动和监控运行状态。
最后,进行系统调试和测试。
在将系统投入使用之前,需要进行调试和测试,确保搬运机械手的运动控制正常,并满足工作要求。
总结起来,基于PLC的搬运机械手控制系统设计包括确定运动方式和结构、选择合适的PLC设备、设计控制电路、编写PLC程序、设计人机界面以及进行系统调试和测试等步骤。
通过PLC控制系统的应用,可以提高机械手的自动化程度,提升生产效率和产品质量。
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是工业生产中常用的一种机器人,目的是为了将物品从一个地方搬到另一个地方,以实现生产线的自动化生产。
为了方便操作和控制机械手的运动,我们常使用PLC进行控制。
本文将详细介绍基于PLC的搬运机械手控制系统设计并分为以下几个部分:系统设计、硬件设计、软件设计和测试与优化。
系统设计在设计搬运机械手的控制系统前,需要明确其基本能力以及操作条件。
本文需要实现的是一个能够在工业生产上自动完成货物的移动,如从一个点到达另一个点,或从一个点将货物取下并放入另一个点的机械手控制系统。
硬件设计在硬件方面,机械手的结构以及体积会影响到设计的复杂度和控制的难度。
机械手的操作部分包括控制电路、执行器驱动电路、电源等。
现在,我们来介绍每个部分的主要内容。
控制电路部分包括PLC、IO模块等。
PLC是机械手控制的核心,负责读取传感器信号并控制执行器的动作。
IO模块则负责将信号转换为PLC能接受的信号进行处理。
执行器驱动电路部分主要负责控制电机动作。
电机的选择与应用需要根据机械手的具体要求而定,需要注意的是,电机的转矩和功率需要协调匹配,还需要注意电机的供电和控制电路之间的配合问题。
电源系统是机械手控制系统的基础之一,电源的大小和控制器的匹配与应用直接关系到系统的正常运行。
需要根据需要提供相应的电压以及功率供给系统。
软件设计在软件设计方面,我们借助PLC程序进行控制,根据机械手的执行需要编写相应的程序,实现机械手的移动、旋转、夹取或放置操作。
具体流程如下:1. 初始化- 设定初始位置和状态等参数;2. 等待操作信号- 根据设定的信号进行等待;3. 传感器检测- 检测对象的位置和状态;4. 判断操作- 根据传感器检测结果进行相应操作;5. 输出控制信号- 控制执行器动作,改变机械手所处的位置和状态。
测试与优化测试与优化是机械手控制系统设计的重要一步,目的是检查系统的稳定性和准确性。
在测试过程中,需要测试机械手的各种运动状态,比如加速度、负载、速度等参数,以确定机械手的质量和性能优化方向。
搬运机械手电气控制系统设计

目录第1章概述 (1)1.1 PLC简介 (1)1.2机械手概述 (1)1.3 机械手控制系统设计步骤 (2)第2章控制方案论证 (3)2.1 搬运机械手的设计原理 (3)2.2 PLC的选取 (4)第3章控制系统硬件电路设计 (7)3.1传送带A,B主电路图及传送带B的控制电路图 (7)3.2PLC控制面板及接口电路图 (8)第4章控制系统软件设计 (10)4.1控制系统的软件设计原理 (10)4.2梯形图 (12)第5章控制系统调试 (14)5.1 控制系统的调试过程 (14)总结 (15)参考文献 (16)附录 (17)第1章概述1.1PLC简介自二十世纪六十年代美国推出可编程逻辑控制器(Programmable Logic Controller,PLC)取代传统继电器控制装置以来,PLC得到了快速发展,在世界各地得到了广泛应用。
同时,PLC的功能也不断完善。
随着计算机技术、信号处理技术、控制技术网络技术的不断发展和用户需求的不断提高,PLC在开关量处理的基础上增加了模拟量处理和运动控制等功能。
今天的PLC 不再局限于逻辑控制,在运动控制、过程控制等领域也发挥着十分重要的作用。
通用PLC应用于专用设备时可以认为它就是一个嵌入式控制器,但PLC相对一般嵌入式控制器而方具有更高的可靠性和更好的稳定性。
实际工作中碰到的一些用户原来采用嵌入式控制器,现在正逐步用通用PLC或定制PLC取代嵌入式控制器。
1.2机械手概述工业机械手是近几十年发展起来的一种高科技自动化生产设备。
工业机械手是工业机器人的一个重要分支。
它的特点是可通过编程来完成各种预期的作业任务,在构造和性能上兼有人和机器各自的优点,尤其体现了人的智能和适应性。
机械手作业的准确性和各种环境中完成作业的能力,在国民经济各领域有着广阔的发展前景。
机械手技术涉及到力学、机械学、电气液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。
项目五--搬运单元

⑸抓取动作完成后,伺服电机驱动机械手装置移动 到装配站物料台的正前方。然后把工件放到装 配站物料台上。其动作顺序与加工站放下工件 的顺序相同。
⑹ 放下工件动作完成2 秒后,抓取机械手装置执行抓 取装配站工件的操作。抓取的顺序与供料站抓取 工件的顺序相同。
⑺ 机械手手臂缩回后,摆台逆时针旋转90°,伺服电 机驱动机械手装置从装配站向分拣站运送工件, 到达分拣站传送带上方入料口后把工件放下,动 作顺序与加工站放下工件的顺序相同。
⑻ 放下工件动作完成后,机械手手臂缩回,然后执行 返回原点的操作。伺服电机驱动机械手装置以 400mm/s 的速度返回,返回900mm 后,摆台顺 时针旋转90°,然后以100mm/s 的速度低速返回 原点停止。
18
放 下 工 件 程 序
19
输送单元运行状态调试工作单
启动按钮按下后
调试内容
是
否
原因
1 HL1指示灯是否点亮
2 HL2指示灯是否常亮
3 设备回零
机械手机构是否回零 直线运动机构是否回零
4 供料站有料时
机械手是否正常抓取工件 直线机构是否运动
5 加工站有料时
机械手是否正常抓取工件 直线机构是否运动
在急停状态,绿色指示灯HL2 以1Hz 的频率闪烁,直 到急停复位后恢复正常运行时,HL2 恢复常亮。
2
3.相关新知识
伺服电动机及其驱动器
原理:伺服电动机又称执行电动机,在自动控制系统中,用做执 行元件,把所收到的电信号转换成电动机轴上的角位移或角速度 输出。分为直流和交流伺服电动机两大类,
3
项目10 PLC控制搬运机械手设计

• 1.垂直气缸、水平气缸选择 • (1)类型选择。 • 现有的工作要求和条件如下: • 1)要求当气缸到达行程终端时无冲击现象和撞击噪声,因此选择缓冲
气缸; • 2)要求重量轻,因此选择轻型气缸; • 3)要求安装空间窄且行程短,因此可选择薄型气缸; • 4)若有横向负载,可选带导杆气缸; • 5)要求制动精度高,应选择锁紧气缸; • 6)若不需要活塞杆旋转,可选择杆不回转气缸。
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• 10. 1. 3材料选择
• 机器人手臂的材料应根据手臂的工作状况来选择,并满足机器人的设 计及制作要求。从设计的思想出发,机器人的手臂要求完成各种运动。 因此,对材料的一个要求是作为运动的部件,它应是轻型材料。另一 方面,手臂在运动过程中往往会产生振动,这必然会大大降低它的运 动精度,所以在选择材料时,需要对质量、刚度、阻尼进行综合考虑, 以便有效地提高手臂的动态性能。此外,机器人手臂选用的材料与一 般的结构材料不同。机器人手臂是一种伺服机构,要受到控制,必须 考虑它的可控性。可控性还要与材料的可加工性、结构性、质量等性 质一起考虑。总之,在选择机器人手臂材料时,要考虑强度、刚度、 重量、弹性、抗振性、外观及价格等多方面因素,下面为几种常见机 器人手臂材料:
上一页 下一页 返回
10. 1搬运机械手设计案例导入
• (1)碳素结构钢和合金结构钢等高强度钢:这类材料强度好,尤其是合 金结构钢强度增加了4~ 5倍,弹性模量大、抗变形能力强,是应用最 为广泛的材料。
• (2)铝、铝合金及其他轻合金材料:其共同特点是重量轻,弹性模量不 大,但是材料密度小,其(E/P)之比仍可与钢材相比。
上一页 下一页 返回
课程设计_PLC搬运物品机械手控制设计

课程设计_PLC搬运物品机械手控制设计PLC(Programmable Logic Controller)搬运物品机械手控制设计是一门工业自动化领域的课程。
在制造业中,物品搬运常常是非常繁琐的工作,因此机械手的出现给了制造业带来极大的便利。
机械手需要通过PLC来进行控制,通过对PLC程序的编程,可以让机械手对物品进行精准搬运。
本文将介绍PLC搬运物品机械手控制设计的相关知识和实践操作。
一、搬运物品机械手控制设计的基本知识1. PLC的基本概念PLC(Programmable Logic Controller)即可编程控制器,是一种专门用于控制工业生产过程的计算机硬件,也是一种特殊的计算机控制系统。
PLC控制器主要由中央处理器(CPU)、输入/输出模块(I/O)、电源部分和编程器四个部分组成。
PLC控制器的任务是将输入设备的信号转换为控制信号去驱动输出设备,从而实现控制过程。
2. 机械手的基本概念机械手(Robotic Arm)是一种可以代替人手进行工业生产操作的机器人。
它主要由机械臂、控制器、传感器、执行器等多个部件组成。
机械手在工业生产中可以起到非常重要的作用,在电子、汽车、食品等工业领域都有广泛应用。
3. 搬运物品机械手的基本工作原理搬运物品机械手的基本工作原理是通过控制机械手的关节转动和末端执行器的运动来实现物品的搬运。
在实际应用中,机械手需要进行复杂的运动规划,通过PLC对机械手进行精准的控制,可以实现对物品的精准搬运。
二、PLC搬运物品机械手控制设计的实践操作在PLC搬运物品机械手控制设计的实践操作中,我们需要通过PLC编程来实现搬运物品机械手的自动化控制。
1. 确定控制策略在控制机械手的过程中,需要明确控制策略,比如机械手的运动轨迹、动作的先后顺序、运动速度等。
在PLC编程中,可以通过编写具体的程序来实现控制的策略。
2. 设计PLC程序在PLC编程之前,我们需要根据机械手控制的策略来设计PLC程序。
请阐述学习机械手循环搬运物料机电控制系统的学习心得体会

请阐述学习机械手循环搬运物料机电控制系统的学习心得体会本系统的核心控制算法由 PLC (控制器)和微处理器构成,各功能模块分别是:①执行机构;②控制指令。
根据 PLC设定的顺序,对机械手进行动作反馈。
执行机构主要由动作执行器、运动速度和位置控制系统组成。
运动元件主要由行走机构和运动控制元件组成。
在机械手可重复进行的动作过程中,运动执行器对机械手进行定位和跟踪操作,当到达预定的目标位置时启动相应的执行机构完成相关指令的操作;在循环作业过程中(如换向),执行机构又对机械手所获得的动作数据进行分析和处理,并及时将结果反馈给控制器,确保产品质量及正常运转;当完成一次循环作业时要停止一次循环工作。
同时在工作过程中,操作人员也要及时做好相应防护工作;当产品质量出现异常或无法达到预定目标时,应停止该操作。
随着社会不断发展进步、生产力水平的不断提高和经济水平的不断提高,自动化已经成为当今工业发展中必不可少的组成部分之一。
随着时代发展及人们需求方面的变化,人们对机械产品要求也逐渐增加.为了满足日益增长的需要.同时也为了提高企业运行效率、节约生产成本.因此机械手越来越受到重视。
但是在实际运用中还是存在很多问题。
1、控制系统机械手的控制系统主要由运动控制器和执行机构两部分组成。
伺服系统的控制逻辑是由伺服电机产生的脉冲控制机械手动作,伺服电机是由伺服电机产生脉冲驱动机械手运行的,它包括伺服电机自动跟踪电机和伺服电机自动检测马达转速的检测装置和伺服电机同步电流信号检测装置。
机械手的动力控制部分是由伺服电机驱动执行器提供强大动能给机械手前进和后退。
机械手的控制包括动作控制、速度控制和位置控制三部分。
伺服电机作为机械装置本身的驱动器,对其伺服运动控制。
机械手在实际作业中是一个连续动作过程,因此伺服电机要保证在相同时间内达到最佳运动速度。
如果伺服电机速度过快就会引起驱动器烧毁、伺服系统出现故障而影响机械操作功能问题。
控制原理为通过控制伺服电机将其速度信号转换为电流信号通过光电传感器进行检测后与 PLC输入的指令进行对比得到值后再将其输出到电机驱动电路上从而完成动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息与电气工程学院
课程设计说明书(2010/2011学年第一学期)
课程名称:可编程控制器应用
题目:机械手搬运单元控制
专业班级:电气0701班
学生姓名:周建林
学号:070060126
指导教师:岑毅南、霍振宇、陆巍等
设计周数:两周
设计成绩:
2011 年1月11日
目录
前言 (2)
1.课程设计目的 (2)
2.系统分析 (2)
3.系统设计 (3)
3.1.控制要求 (3)
3.2.硬件选择 (3)
3.3.输入输出点的地址分配 (5)
4.程序设计 (6)
4.1程序流程图 (6)
4.2内容变量分配表 (6)
4.3西门子S7-200运行程序梯形图 (8)
4.3.1西门子S7-200运行界面 (8)
4.3.2梯形图 (8)
5.课程设计结论和体会 (12)
5.1结论 (12)
5.2体会 (12)
6.参考文献 (13)
前言
本课题是为普通车床配套而设计的上料机械手。
机械手在当今工业中有着举足轻重的作用, 是工业生产的必然产物,能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置,是自动化生产过程中发展起来的一种新型装置。
按照预定要求输送工件或握持工具进行操作的自动化技术设备,对实现工业生产自动化,推动工业生产的进一步发展起着重要作用。
因而具有强大的生命力受到人们的广泛重视和欢迎。
实践证明,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。
工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。
实践证明,它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。
它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途。
因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
1.课程设计目的
课程设计是学生完成本学期教学计划的最后一个极为重要的实践性教学环节,是使学生综合运用所学过的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题而进行的一次基本训练。
这对学生即将从事的相关技术工作和未来事业的开拓都具有一定意义。
其主要目的:
一、培养学生综合分析和解决本专业的一般工程技术问题的独立工作能力,拓宽和深化学生的知识。
二、培养学生树立正确的设计思想,设计构思和创新思维,掌握工程设计的一般程序规范和方法。
三、培养学生树立正确的设计思想和使用技术资料、国家标准等手册、图册工具书进行设计计算,数据处理,编写技术文件等方面的工作能力。
四、培养学生进行调查研究,面向实际,面向生产,向工人和技术人员学习的基本工作态度,工作作风和工作方法。
2.系统分析
将机械手的原点(即原始状态)定位左位,高位,放松状态。
在原始状态下,按下“启动”和“自动”按钮进入启动状态,检测到下工作台有工件时,机械手下降到低位,夹紧工件,上升到高位,右转到右位,下降到低位,机械手放松,上升到高位左转回到原始位置。
当切换按钮转到“手动”位时,重复按下“单步”按钮,进行单步控制。
当按下“复位”键时,机械手回复到原始状态。
其动作逻辑关系图如下:
原位→下降→夹紧→上升→逆时针转180度
↑↓
顺时针180度←上升←放松←下降
1个启动/停止切换按钮,分别完成启动和停止控制。
1个自动/手动切换按钮,分别完成自动和手动控制。
1个复位开关,实现复位功能。
1个单步开关,实现单步控制。
3.系统设计
3.1.控制要求
当工件被送到机械手下方后,机械手将向下运动,然后锁紧夹爪;当工件被夹住后,机械手上升,到达上端后,手臂向右旋转180°。
当到达右侧后夹爪向下并释放工件,然后上升,最后机械手臂向左摆动、复位,并发出信号,将控制权交给下一单元。
技术要求:
(1) 机械夹爪上下运动
(2)机械夹爪锁紧后将有信号产生
(3)机械手臂左右摆动(180°)
(4)只有当机械手臂下降到低端时才能作开合动作
(5)完成动作后,发出信号给下一单元
3.2.硬件选择
从工艺要求中可以看出控制方式为两种,分别完成自动方式(I0.3=0)和手动方式(I0.3=1)的运动,启动/停止按钮I0.0完成启动(I0.0=1)和停止(I0.0=0)功能,复位信号I0.1完成系统的复位,单步按钮I0.2用于控制手动方式的单步控制。
机械手运动的限位开关共有4个,左限位开关I0.6和右限位开关I0.7,高限位开关I1.0、低限位开关I1.1。
机械手锁紧检测信号I1.2(锁紧时I1.2=1,松开时I1.2=0)。
共有9个输入信号。
输出信号有机械手右转驱动信号Q0.0,左转驱动信号Q0.1,下降驱动信号Q0.2,下降机械手夹紧驱动信号Q0.3(夹紧Q0.3=1,放松Q0.3=0)。
共有4个输出信号。
该系统需要输入9点,输出4点。
可选择S7-200系列的CPU224即可满足要求,CPU224作为本控制系统的控制器。
机械手搬运单元控制系统如下图:
3.3.输入输出点的地址分配
4.程序设计
4.1程序流程图
4.2内容变量分配表
右
位 起动
4.3西门子S7-200运行程序梯形图4.3.1西门子S7-200运行界面
4.3.2梯形图
主程序:
子程序:
5.课程设计结论和体会
5.1结论
气压摆动机械手能将工件从一个工位,传到下一个工位的工作,它从外部结构上把自动线中的各台自动机床联系成一个整体。
有一定的握力和工作速度,有准确的定位精度,将零件可靠地装上夹具,能准确可靠的完成预定工作。
5.2体会
通过这次课程设计让我对PLC的理论有了更加深入的了解,同时在具体的设计过程中我们发现现在书本上的知识与实际的应用存在着不小的差距,书本上的知识很多都是理想化后的结论,忽略了很多实际的因素,或者涉及的不全面,可在实际的应用时这些是不能被忽略的,我们不得不考虑这方的问题,这让我们无法根据书上的理论就轻易得到预想中的结果,有时结果甚至差别很大。
通过这次实践使我更深刻的体会到了理论联系实际的重要性,我们在今后的学习工作中会更加的注重实际,避免称为只会纸上谈兵的赵括。
这次的课程设计也让我看到了团队的力量,我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。
很感谢学校和老师给我们安排了这次课程设计,让我真正感受到的是合作的重要,许多时候都是组员的讨论,老师的指导中的一句半句启发了我,就出现的让人欣喜的结果;理论知识同样很重要,有些问题都是由于基础知识掌握不好才出现的。
6.参考文献
[1] 天津大学编写组,工业机械手设计基础,天津科学技术出版社,1980
[2]王承义,机械手及其应用,机械工业出版社,1981
[3]朱龙根,机械系统设计,机械工业出版社,2004
[4]机械工程手册编辑委员会,机械工程手册,补充本(二)机械工业出版社,1981
[5]钟肇新、彭侃编译可编程控制器原理及应用第二版广州:华南理大学出版社,2003.5
[6]钟肇新,范建东主编. 可编程控制器原理及应用. 第三版. 广州:华南理大学出版社,2003.5
[7]求是科技编著 PLC应用开发技术与工程实践北京人民邮电出版社,2005.1
[8]郝海青. 串联关节式机械手的控制系统分析与设计. 万方数据库硕博士论文, 2002。