实数化简运算习题
数学综合算式专项练习题实数与代数式的运算

数学综合算式专项练习题实数与代数式的运算数学综合算式专项练习题:实数与代数式的运算在数学中,实数与代数式的运算是我们学习的基本内容之一。
它不仅在高中数学中占据重要地位,而且在其他数学领域如代数、几何、概率等的学习中也有广泛应用。
本文将针对实数与代数式的运算进行专项练习题的介绍,通过解析和计算实例,帮助读者更好地掌握相关知识与技巧。
一、实数的四则运算实数的四则运算是数学中最基本的运算之一。
下面我们通过一些具体的练习题来帮助读者巩固实数的四则运算。
题目一:计算下列各式的值,并化简结果。
1. $(-9) + (-5) - (-7)$2. $(-2) \times 4 - (-3) \times (-2)$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right)$解析:1. $(-9) + (-5) - (-7) = -9 - 5 + 7 = -7$2. $(-2) \times 4 - (-3) \times (-2) = -8 - 6 = -14$3. $\frac{7}{3} - \frac{1}{4} + \frac{2}{5} = \frac{35}{12} -\frac{3}{12} + \frac{2}{5} = \frac{57}{20}$4. $(-1)^2 \times \left(\frac{8}{3} - \frac{5}{2}\right) = 1 \times\left(\frac{16}{6} - \frac{15}{2}\right) = 1 \times \frac{2}{6} =\frac{1}{3}$题目二:计算下列各式,并化简结果。
1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right)$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right)$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2$4. $\frac{8 - 6 \times 5}{10}$解析:1. $\frac{1}{2} + \left(\frac{3}{4} - \frac{2}{5}\right) = \frac{1}{2} + \frac{15}{20} - \frac{8}{20} = \frac{7}{10}$2. $\frac{5}{6} \times \left(\frac{2}{3} - \frac{1}{4}\right) = \frac{5}{6} \times \frac{8}{12} - \frac{5}{6} \times \frac{3}{12} = \frac{20}{36} -\frac{15}{36} = \frac{5}{36}$3. $(\frac{3}{4})^2 - (\frac{2}{3})^2 = \frac{9}{16} - \frac{4}{9} =\frac{81}{144} - \frac{64}{144} = \frac{17}{144}$4. $\frac{8 - 6 \times 5}{10} = \frac{8 - 30}{10} = \frac{-22}{10} = -2.2$通过对以上题目的计算,读者可以看出实数运算的基本规律,并掌握化简结果的方法。
实数运算100道题

实数运算100道题1. 计算:(-3) + 5 = ?2. 计算:2.5 - 1.3 = ?3. 计算:4 × 3.2 = ?4. 计算:7 ÷ 2 = ?5. 计算:(-2) × (-4) = ?6. 计算:(-5) ÷ 2 = ?7. 计算:3.5 + 2.7 = ?8. 计算:(-6) - (-3) = ?9. 计算:1.2 × 0.5 = ?10. 计算:(-8) ÷ (-2) = ?11. 计算:(-4) + 6 = ?12. 计算:3.8 - 2.1 = ?13. 计算:5 × (-2) = ?14. 计算:(-9) ÷ 3 = ?15. 计算:2.5 + (-1.7) = ?16. 计算:(-5) - 3 = ?18. 计算:(-7) ÷ (-1) = ?19. 计算:(-2) + (-3) = ?20. 计算:4.9 - 1.2 = ?21. 计算:(-6) × 2 = ?22. 计算:7 ÷ (-2) = ?23. 计算:1.5 + 2.3 = ?24. 计算:(-4) - (-7) = ?25. 计算:0.8 × (-0.5) = ?26. 计算:(-9) ÷ (-3) = ?27. 计算:(-3) + (-4) = ?28. 计算:2.7 - 1.4 = ?29. 计算:6 × (-2) = ?30. 计算:(-8) ÷ 4 = ?31. 计算:(-5) + 7 = ?32. 计算:3.9 - 2.6 = ?33. 计算:4 × (-3) = ?35. 计算:1.7 + (-2.5) = ?36. 计算:(-4) - 2 = ?37. 计算:0.5 × 0.3 = ?38. 计算:(-7) ÷ 1 = ?39. 计算:(-2) + 3 = ?40. 计算:4.2 - 1.9 = ?41. 计算:(-6) × (-3) = ?42. 计算:7 ÷ (-3) = ?43. 计算:1.8 + 2.6 = ?44. 计算:(-4) - (-6) = ?45. 计算:0.9 × (-0.4) = ?46. 计算:(-9) ÷ (-1) = ?47. 计算:(-3) + (-5) = ?48. 计算:2.9 - 1.7 = ?49. 计算:5 × (-3) = ?50. 计算:(-8) ÷ (-4) = ?52. 计算:3.5 - 2.2 = ?53. 计算:4 × (-4) = ?54. 计算:(-6) ÷ (-3) = ?55. 计算:1.9 + (-2.3) = ?56. 计算:(-5) - 4 = ?57. 计算:0.4 × 0.2 = ?58. 计算:(-7) ÷ (-1) = ?59. 计算:(-2) + (-4) = ?60. 计算:4.5 - 1.8 = ?61. 计算:(-6) × 3 = ?62. 计算:7 ÷ (-4) = ?63. 计算:1.2 + 2.8 = ?64. 计算:(-4) - (-8) = ?65. 计算:0.7 × (-0.3) = ?66. 计算:(-9) ÷ (-3) = ?67. 计算:(-3) + (-6) = ?69. 计算:6 × (-3) = ?70. 计算:(-8) ÷ 2 = ?71. 计算:(-5) + 9 = ?72. 计算:3.2 - 2.1 = ?73. 计算:4 × (-2) = ?74. 计算:(-6) ÷ (-2) = ?75. 计算:1.5 + (-2.7) = ?76. 计算:(-4) - 1 = ?77. 计算:0.6 × 0.5 = ?78. 计算:(-7) ÷ 2 = ?79. 计算:(-2) + 4 = ?80. 计算:4.8 - 1.3 = ?81. 计算:(-6) × (-2) = ?82. 计算:7 ÷ (-2) = ?83. 计算:1.3 + 2.7 = ?84. 计算:(-4) - (-5) = ?85. 计算:0.8 × (-0.6) = ?86. 计算:(-9) ÷ (-3) = ?87. 计算:(-3) + (-7) = ?88. 计算:2.7 - 1.3 = ?89. 计算:5 × (-2) = ?90. 计算:(-8) ÷ 4 = ?91. 计算:(-5) + 6 = ?92. 计算:3.8 - 2.5 = ?93. 计算:4 × (-3) = ?94. 计算:(-6) ÷ (-3) = ?95. 计算:1.7 + (-2.3) = ?96. 计算:(-4) - 3 = ?97. 计算:0.5 × 0.4 = ?98. 计算:(-7) ÷ 1 = ?99. 计算:(-2) + 3 = ?100. 计算:4.2 - 1.5 = ?这是一百道实数运算题,涵盖了加法、减法、乘法和除法。
化简求值练习题及答案

化简求值练习题及答案化简求值练习题及答案化简求值是数学中的一项重要技巧,它可以将复杂的表达式简化为更简单的形式,并且得到准确的数值结果。
在学习化简求值的过程中,练习题是必不可少的。
下面,我将为大家提供一些化简求值练习题及其答案,希望能够帮助大家更好地掌握这一技巧。
1. 将以下表达式化简并求值:(2 + 3) × (4 - 1) ÷ 5答案:首先,根据运算的优先级,我们先计算括号内的表达式,即2 + 3 = 5,4 - 1 = 3。
然后,将结果代入原表达式中,得到5 × 3 ÷ 5 = 3。
2. 化简并求值:(8 - 4) × (7 + 2) ÷ 6答案:同样地,我们先计算括号内的表达式,即8 - 4 = 4,7 + 2 = 9。
然后,将结果代入原表达式中,得到4 × 9 ÷ 6 = 6。
3. 将以下表达式化简并求值:(10 + 5) × (6 - 3) × 2答案:首先,根据运算的优先级,我们先计算括号内的表达式,即10 + 5 = 15,6 - 3 = 3。
然后,将结果代入原表达式中,得到15 × 3 × 2 = 90。
4. 化简并求值:(12 - 7) × (9 + 4) × 3答案:同样地,我们先计算括号内的表达式,即12 - 7 = 5,9 + 4 = 13。
然后,将结果代入原表达式中,得到5 × 13 × 3 = 195。
通过以上几个例子,我们可以看到,化简求值可以将复杂的表达式简化为更简单的形式,从而更容易计算。
这在实际的数学运算中非常有用,尤其是在解决较为复杂的问题时。
除了简单的四则运算外,化简求值还可以应用于更复杂的数学问题中。
例如,我们可以利用化简求值的技巧来计算多项式的值。
下面,我将通过一个例子来说明这一点。
假设我们有一个多项式:f(x) = 2x^3 + 3x^2 - 4x + 1。
初三实数的运算练习题

初三实数的运算练习题在初三学习实数的运算过程中,练习题是帮助学生巩固知识、培养技能的重要途径。
通过练习题的答题过程,学生能够更深入地理解和掌握实数的四则运算、绝对值运算、分数运算等内容。
以下是一些关于初三实数运算的练习题,供学生进行练习。
1. 计算下列各式的结果:a) $5 + \sqrt{4}$b) $(3 + \sqrt{2})^2$c) $3 - |2 - 5|$d) $\frac{2}{3}+\frac{3}{4}$e) $\frac{1}{2} - \left(\frac{2}{3} - \frac{1}{4}\right)$2. 将下列分数化为小数形式:a) $\frac{5}{8}$b) $\frac{4}{25}$c) $\frac{7}{20}$d) $\frac{3}{11}$e) $\frac{9}{16}$3. 将下列小数化为分数形式:a) $0.75$b) $0.3\overline{7}$c) $0.6\overline{12}$d) $1.234$e) $0.142857\overline{142857}$4. 计算下列各式并给出结果的近似值(保留小数点后两位):a) $\sqrt{5} + \sqrt{3}$b) $\sqrt{5} - \sqrt{2}$c) $\sqrt{7} \times \sqrt{2}$d) $\frac{\sqrt{12}}{\sqrt{3}}$e) $\frac{\sqrt{15}}{\sqrt{8} - \sqrt{5}}$5. 利用实数运算的性质简化以下各式:a) $(3 + \sqrt{2}) - (2 + \sqrt{2})$b) $(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$c) $2\sqrt{6} + 3\sqrt{6} + \sqrt{6}$d) $\sqrt{3} \times \sqrt{2} \times \sqrt{7}$e) $\sqrt{8} \div \sqrt{2}$以上是初三实数的运算练习题,请同学们按照题目要求进行计算和简化。
八年级上-实数运算练习题500道加强版

实数的运算大全1. 计算:8×24;2. 计算: 52;3. 计算: 3 ×(21-12+1)4. 计算: 2-21 ;5.化简:316437-;6.计算: 212+348 ; 7.化简:348-; 8. 计算:)515(5-9.计算:252826-+ 10.计算:2022(()3-+- 11.计算:|-2|-(3-1)0+121-⎪⎭⎫⎝⎛121314.化简:5312-⨯15.化简:2236+⨯16.计算:(25+1)2 17.计算:)12)(12(-+ 18.计算:(1)2095⨯19.计算:8612⨯ 20.计算:(1+3)(2-3) 21.计算:(132-)2 22.计算:(2+5)223.计算:21850-⨯ 24.计算:)82(2+ 25.计算:3721⨯ 26.计算:10405104+27.计算: 2)313(-28.计算:250580⨯-⨯ 29.计算: (1+5)(5-2)30.计算:(1)(1-2+3)(1-2-3) 31.计算:)623)(623(-++- 32.计算:320-45-51 33.x =2-3时,求(7+43)x 2+(2+3)x +3的值.34.计算:32221(4)3(--⨯+) 35.计算:222321+-36.计算:0211(1)124π-+---+37.计算:∣-2∣-2338.先化简,再求值:5x 2-(3y 2+5x 2)+(4x 2+7xy ),其中x =-1,y =139a 的值。
40.计算:221213-41.计算:(18).221+;42.若a=3 -10,求代数式a 2-6a -2的值;43.计算: 348-1477137+; 44.数轴上,点A1,点B表示3AB 间的距离;45.计算:2)2(182--⋅46.计算:2)525(-47.已知xy=2,x -y=125-,求(x +1)(y -1)的值;48.计算:)—()(23322332⨯+ ;49.计算:13.14⎛⎫ ⎪⎝⎭-1+(-π)250.计算:)32)(32(-+ 51.计算:210(2)(1--- 52.计算:2)4(|3|ππ-+-53.4)12(2=-x x :求 54.计算:3322323--+ 55.已知32b ,32a -=+=,求下列各式的值:(1)ab (2)a 2+b 256.计算:328-57.计算: 21850-⨯58.计算:)56)(56(-+59.计算: 316437-60.计算:13327-+61.计算:25.05116.021- 62.计算:22)2332()2332(--+63.计算:32 -321+2;64.计算:)483814122(22-+ 656667.求x 的值: 9)2(2=-x68.求x 的值:52=+x 69.计算:527×23322 70.计算:x 932+64x —2x x171.计算:33232- +233-72.计算:(5+6)(52—23) 73.计算:9)21()4()4()2(278233233-⨯-+-⨯---74.求x: (2x+1)2—0.01=0 75.求x: 4(1—3x)3=16176.)7581()3125.0(--- 77.)32223(-1251359⨯÷78.计算:1831627+-;79.计算:10754254⨯÷; 80.计算:)3225)(65(-+; 81.计算:50)2131(6-+⋅82.计算:22108117-83.计算:2731331103.0+-- 84.计算:322123-+- ;85.计算:8122-- ; 86.计算:)2161(32+÷;87.计算:)3225)(65(-+; 88.计算:18812131212---- ; 89.计算:182⋅; 93.计算:31648+; 90.计算:405214551252021515-+-+ 91.计算:21102112736112⨯÷; 92.计算:()()3234341222++--⨯-;93.计算:(1)182825-+ ; 94.计算:xxx x 1244932-+; 95.计算:32)6122(⋅-+ ; 96.计算:27)3148(÷+97.解方程:03222=-x 98.计算:)(50815.0-- 99.解方程: 0342=--x x 100.计算:103273175.02-+101.已知x =2,y =3,求yxx y -的值102.计算:2)322223324(÷+-; 103.计算:)7581()3125.0(---; 104.计算:451-491+2)21(- ;105.计算: (3-2)2·(5+26);106.计算:4520215115-+ ;107.计算:251765265⨯÷ ; 108.计算:)23(321312+-++; 109.计算:)755181(3125.032---+ 110.计算:22)73()73)(73(2)73(++-+--111.计算:()()()221131321--+-+⎪⎭⎫⎝⎛- ;112.计算: 25341122÷⨯;113.计算:(6-215)×3-621; 114.计算:621624++5; 115.计算: 263862421++-;116.计算:()1525- ;117.计算:123127+-; 118.计算:()()131381672-++- ;119.计算:364141636.0--⋅ 120.解方程:012552=-x121.解方程:54)32(413=+x122.已知163+x 的立方根是4,求x; 123.已知b a b a 2462+==,求,; 124.计算:27412732+- 125.计算:(1+32)(1—32)126.计算:483314124--127.计算:52)15(2+-128.计算:24×(22—33) 129.计算:31215-130. 求x : 02783=+x ;131.计算:23-+23-+22- 132.求x :1)1(3-=-x133.求x :1)32(412=+x134.计算:311—3(精确到0.01)135.计算:16191271029453++--136.计算:11243)1(6425)5()2.0()5(-÷⨯+-⨯-⋅-137.计算:7523⨯138.计算:3104812-+ 139.求x :641212=x 140.求x :02433=-x141.求x :22)7()5(-=-x 142.求x :222129-143.计算:31000511003631- 144.计算:1691691271943--+ 145.计算-146.计算147.求x: 24360x -= 148.求x:3(1)8x +=-149.计算:44.141264.0+- 150.计算:21316121831++- 151.计算:1224323•⎪⎪⎭⎫⎝⎛- 152.计算:121242764810+-153.计算:()()()2232525--+-154.已知实数a 有两个平方根x 和y ,且满足125=-y x ,求a;155.若5x +19的算术平方根是8,求x .156.一个Rt △的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积。
化简求值经典练习五十题(带答案解析)

化简求值经典练习五十题(带答案解析)化简求值经典练习五十题一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.7 二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b ﹣(2ab﹣a2b)﹣其中a=﹣1,b=﹣2.第1页(共20页)4a2]﹣ab2,5.(2017秋•巢湖市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),个中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),个中a=﹣2,b=3.第2页(共20页)9.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),个中x=﹣1.11.(2015秋•淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),个中12.(2015秋•包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],个中a=﹣3.13.(2014秋•成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.第3页(共20页),.14.(2014秋•合肥期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4双方同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)假如a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.第4页(共20页)18.(2013秋•蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),个中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),个中x=20.(2013秋•包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,个中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.第5页(共20页).23.(2012秋•包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b ﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y 的值见数轴表示:第6页(共20页)28.(2012秋•泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式31.(2010秋•包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:第7页(共20页)与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn),y=﹣3.32.(2008秋•牡丹江期末)先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.第8页(共20页)36.(2017秋•利辛县期末)先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),个中x=,y=﹣137.(2017秋•鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋•埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),个中x=﹣5,y=﹣.39.(2017秋•南平期末)先化简,再求值:(5x+y)﹣(3x+4y),个中x=,y=.40.(2016秋•武安市期末)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y的值,个中第9页(共20页).41.(2016秋•崇安区期末)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.第10页(共20页)46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a2﹣2b+4ab的值.47.(2017秋•岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右匍匐2个单元长度抵达点B,点A透露表现的数n为﹣,设点B所透露表现的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.第11页(共20页)参考谜底与试题剖析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2 =4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.第12页(共20页)=.5.解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.第13页(共20页)10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣当x=﹣2,y=﹣2时,原式=17.解:(1)∵a2+a=0,第14页(共20页)x+y2,.∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.第15页(共20页)25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;时,原式=﹣42+4×﹣6=﹣21.xy+y2,(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).第16页(共20页)∵x=﹣2,∴原式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式∴m=2,n=3,与﹣2xmy3是同类项,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:原式=3a﹣3a+abc﹣c2+c2﹣c第17页(共20页)=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=第18页(共20页).40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计较的成效也是精确的.45.解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;第19页(共20页)(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn。
专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。
七年级实数计算题20道

七年级实数计算题20道一、实数计算题20道。
1. √(4)+√(9)- 解析:- 先分别计算根号内的值,√(4) = 2,因为2^2=4;√(9)=3,因为3^2 = 9。
- 然后将结果相加,2 + 3=5。
2. √(16)-√(25)- 解析:- √(16)=4,√(25) = 5。
- 所以√(16)-√(25)=4 - 5=-1。
3. √(0)+√(1)- 解析:- √(0)=0,√(1)=1。
- 则√(0)+√(1)=0 + 1=1。
4. √(27)-√(3)- 解析:- 将√(27)化简,√(27)=√(9×3)=3√(3)。
- 所以√(27)-√(3)=3√(3)-√(3)=2√(3)。
5. √(48)+√(12)- 化简√(48)=√(16×3)=4√(3),√(12)=√(4×3)=2√(3)。
- 则√(48)+√(12)=4√(3)+2√(3)=6√(3)。
6. (√(5))^2-√(25)- 解析:- (√(5))^2 = 5,√(25)=5。
- 所以(√(5))^2-√(25)=5 - 5=0。
7. √(81)÷√(9)- 解析:- √(81)=9,√(9)=3。
- 则√(81)÷√(9)=9÷3 = 3。
8. 2√(3)+3√(3)-√(3)- 解析:- 因为同类二次根式可以合并,这里2√(3)、3√(3)和-√(3)是同类二次根式。
- 所以2√(3)+3√(3)-√(3)=(2 + 3-1)√(3)=4√(3)。
9. √(18)×√(2)- 解析:- 根据二次根式乘法法则√(a)×√(b)=√(ab)。
- 所以√(18)×√(2)=√(18×2)=√(36)=6。
10. √(72)÷√(8)- 同样根据二次根式除法法则√(a)÷√(b)=√(frac{a){b}}。