2015-2016第一学期《概率统计》期末考试试卷

合集下载

概率论与数理统计期末考题(有答案)

概率论与数理统计期末考题(有答案)

概率统计期末统考试题答案考试日期1.(15分)已知)3,1(~2N X , ),4,0(~2N Y 且X 与Y 的相关系数.21-=XY ρ设,23Y X Z -= 求)(Z D 及.XZ ρ解因,3)(2=X D ,4)(2=Y D 且XY Y D X D Y X ρ)()(),cov(=⎪⎭⎫⎝⎛-⨯⨯=2143,6-= ---3分所以⎪⎭⎫ ⎝⎛-=23)(Y X D Z D ⎪⎭⎫⎝⎛-+=2,3cov 2)(41)(91Y X Y D X D),cov(21312)(41)(91Y X Y D X D ⨯⨯-+=,7= ---5分 又因⎪⎭⎫ ⎝⎛-=23,cov ),cov(Y X X Z X ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=2,cov 3,cov Y X X X),cov(21),cov(31Y X Y X -=,6),cov(21)(31=-=Y X X D ---4分 故 .772736)()(),cov(=⋅==Z D X D Z X XZ ρ ---3分 2.(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤.解 根据中心极限定理有 ---4分(1430)P X ≤≤≈Φ-Φ ---5分 (2.5)( 1.5)=Φ-Φ-0.9938(1.5)10.99380.93321=+Φ-=+- ---6分 0.927=.3.(15分)设二维随机变量(,)X Y 联合密度函数为01,01(,)0x y y x p x y +<<<<⎧=⎨⎩其它,求X 与Y 的协方差及相关系数。

解由于 1+0-1()d 01()=(,)d 20X x y y x x p x p x y y ∞∞⎧+=+<<⎪=⎨⎪⎩⎰⎰其它; ---2分101117E ()d +23412X x x y =+==⎰, 12201115E ()d +24612X x x y =+==⎰,2225711D =E (E )()1212144X X X -=-=, ---5分 类似地有,711,12144EY DY ==---2分 11000<<10<<11E ()d d d ()d 3x y XY xy x y x y x xy x y y =+=+=⎰⎰⎰⎰ ---2分2171cov(,)=E E E ()312144X Y XY X Y -⋅=-=-, ---2分11441(,1114411X Y ρ-==-. ---2分4.(10分)在设计导弹发射装置时, 重要事情之一是研究弹着点偏离目标中心的距离的方差.对于一类导弹发射装置, 弹着点偏离目标中心的距离服从正态分布),(2σμN , 这里22100米=σ, 现在进行了25次发射试验, 用2S 记这25次试验中弹着点偏离目标中心的距离的样本方差. 试求2S 超过502米的概率.解根据抽样定理,有),1(~)1(222--n S n χσ于是 ---3分⎭⎬⎫⎩⎨⎧->-=>222250)1()1(}50{σσn S n P S P ⎭⎬⎫⎩⎨⎧⨯>=1005025)24(2χP ---4分 }12)24({2>=χP }401.12)24({2>>χP .975.0=(查表) ---3分于是我们可以以超过%5.97的概率断言, 2S 超过50 米2. ---1分5. (15分)设总体X 具有概率概率密度⎩⎨⎧≤>=--θθλθλθλx x e x f x ,0,),,()( 其中θλ,0>均为未知参数. n X X X ,,,21Λ是来自总体X 的样本, 求λθ,的矩估计量.解 ()1()d e d +x EX x f x x x x λθθλθλθλ+∞+∞---∞===⎰⎰,,; ---2分222()2211()d e d (+)+x EX x f x x x x λθθλθλθλλ+∞+∞---∞===⎰⎰,,, ---3分故由 2211111(+)+n i i X X n θθλλλ==+=∑, ---4分得到θλ,的矩估计量12211ˆˆ(X X)ni i X n θλ-=⎡⎤==-⎢⎥⎣⎦∑。

概率统计考试题及答案

概率统计考试题及答案

湖北汽车工业学院概率论与数理统计考试试卷一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为则)35(+X E 等于)(A 8. )(B 2. )(C 5-. )(D 1-.【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而}5{},4{21+≥=-≤=μμY P p X P p ,则)(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >.【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是)(A 3213211X X X ++=μ. )(B 2223212X X X++=μ. )(C 3333213X X X ++=μ. )(D 4443214X X X++=μ. 【D 】5。

设)(~n t X ,则~2X)(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F .【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于)(A 2αu . )(B 2)1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上):1. 设样本空间{},2,3,4,5,61=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61。

2015概率统计试卷A

2015概率统计试卷A
第1页
2
D. S 是 的极大似然估计量.
2
2
共5页
8. 设 X1 ,
, X n 是 N (, 2 ) 的样本, 未知, X
1 n 1 n 2 X , S ( X i X )2 ,则 2 的置 i n i 1 n 1 i 1
[ ]
信度为 0.95 的置信区间为
2.已知随机变量 X ~ U (2, 2), 且Y X ,求(1)Y的概率密度(2)求 P( Y>X).
2
第3页 共6页
x 1 e ,x 0 3.总体 X 的概率密度函数 f ( x) , 0 。 X1 , 0, x 0
, X n 为 X 的样本,求 的极大似然
A. (
(n 1)S 2 (n 1) S 2 , ) (2n ) (0.025) (2n) (0.975)
S n
B.
(
(n 1)S 2 (n 1)S 2 , ) (2n1) (0.025) (2n1) (0.975)
S n
近似服从 [ ]
C. X t( n1) (0.025)
得分
2.总体 X ~ N (1 , 2 ) , Y ~ N (2 , 2 ) ,且 X 与 Y 相互独立,设 X1 , X 2 ,
, X m 是来自于 X 的样本,
Y1 , Y2 ,
, Yn 是 来 自 于 Y 的 样 本 , S , S 分 别 是 这 两 个 样 本 的 样 本 方 差 , 证 : 对 于 任 意 常 数
2.设袋中有 6 只红球,4 只白球,甲乙两人先后从中任取一只,已知乙取到白球,则甲取到的是红球
3.在区间(0,1)中随机取两个数,两数之和小于 1.4 的概率为 4. 设 X 为随机变量, E( X ) 0, E(2 X 1) 8, D(2 X 1) 2 ,则 E(X)= B.2

概率统计试卷2015-1016B(上)解答部分

概率统计试卷2015-1016B(上)解答部分

华北电力大学 2015 --2016 学年 第 1学期概率论与数理统计 试卷(B )附表:2χ分布的上分位点一、填空题 (每空3分,共15分)1. 设事件A 和B 相互独立,A 和B 同时发生的概率为0.04,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 0.2 。

2.从9,,2,1,0 等十个数字中任意选出三个不同的数字,则{取到的三个数字中不含0或5}的概率为 14/15 。

3. 设由来自总体),(~2σμN X 容量为10的简单随机样本,计算得样本均值为20x =,样本标准差为s =2,则未知参数μ的置信度为0.95的置信区间是20±0.025(9) 。

4. 设4321,,,X X X X 是来自正态总体()22,0N 的容量为4的简单随机样本,()2212342X aX b X X X =++-,则当 a b 、分别为 1/a b ==1/4,装 订 线 内 不 得 答 题自觉遵 守 考 试 规 则,诚 信 考 试,绝 不作 弊时统计量X 服从2χ分布。

5.设随机变量X 的概率密度⎩⎨⎧<<=else x x x f ,010,2)(,以Y 表示对X 的三次独立重复观察事件{0.1}X ≤出现的次数,则EY = 0.03 。

二、(16分)甲乙丙三台机器加工同一种零件,第一台废品率0.07,第二台废品率0.04,第三台废品率0.08,第一台加工的数量比第二台多一倍,第三台加工的数量为前两台的总和,求任意取出一件是合格品的概率;又若任意取出一件是废品,求它是由第三台机器生产的概率。

(1)0.93 (2)4/7三、(15分)设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤-+=else x x x x x f ,010,101,1)(求(1)1()2P X < ;(2)EX ;(3)X 的分布函数()F x 。

(1)7/8 (2)0(3)220111022()1012211x x x x F x x x x x <-⎧⎪⎪++-≤≤⎪=⎨⎪+-<≤⎪⎪≥⎩四、(10分)设二维随机向量(,)X Y 服从{(,)01,01}D x y x y =≤≤≤≤上的均匀分布,求 min(,)Z X Y =的概率密度函数。

概率统计期末考试试题及答案

概率统计期末考试试题及答案

概率统计期末考试试题及答案试题一:随机变量的概率分布某工厂生产的产品合格率为0.9,不合格率为0.1。

假设每天生产的产品数量为100件,求下列事件的概率:1. 至少有80件产品是合格的。

2. 至多有5件产品是不合格的。

试题二:连续型随机变量的概率密度函数设随机变量X的概率密度函数为f(x) = 2x,0 ≤ x ≤ 1,0 其他,求:1. X的期望E(X)。

2. X的方差Var(X)。

试题三:大数定律与中心极限定理假设某银行每天的交易量服从均值为100万元,标准差为20万元的正态分布。

求:1. 该银行连续5天的总交易量超过500万元的概率。

2. 根据中心极限定理,该银行连续20天的总交易量的平均值落在90万元至110万元之间的概率。

试题四:统计推断某工厂生产的零件长度服从正态分布,样本数据如下:95, 96, 97, 98, 99, 100, 101, 102, 103, 104求:1. 零件长度的平均值和标准差。

2. 零件长度的95%置信区间。

试题五:假设检验某公司对两种不同品牌的打印机进行了效率测试,测试结果如下:品牌A:平均打印速度为每分钟60页,标准差为5页。

品牌B:平均打印速度为每分钟55页,标准差为4页。

样本量均为30台打印机。

假设两种打印机的平均打印速度没有显著差异,检验假设是否成立。

答案一:1. 至少有80件产品是合格的,即不合格的产品数少于或等于20件。

根据二项分布,P(X ≤ 20) = Σ[C(100, k) * (0.1)^k *(0.9)^(100-k)],k=0至20。

2. 至多有5件产品是不合格的,即不合格的产品数不超过5件。

根据二项分布,P(X ≤ 5) = Σ[C(100, k) * (0.1)^k * (0.9)^(100-k)],k=0至5。

答案二:1. E(X) = ∫[2x * x dx],从0到1,计算得 E(X) = 2/3。

2. Var(X) = E(X^2) - [E(X)]^2 = ∫[2x^2 * x dx] - (2/3)^2,从0到1,计算得 Var(X) = 1/18。

2013-2015概率统计试题及解答

2013-2015概率统计试题及解答

(2) 设 Y 为 150h 内烧坏的电子管数,则 Y ~ B(3, p) , p = P{X < 150} = F (150) = 1 。(3 分)
3
所求为 P{Y ≥ 2} = C32 (1 3)2 (2 3) + (1 3)3 = 7 27 。(2 分)
∫ ∫ ∫ ∫ ∫ 三、1. (1) 由
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
题号
一 二 三 四 总分
标准分 24 16 30 30
得分
注 请填写清楚左侧装订线内的所有信息,并在交卷时保持三页试卷装订完好。
A 一、填空题和选择题 (每题 3 分,共 24 分)
1. 已知 P(A) = 0.5 , P(B) = 0.6 , P ( B A) = 0.8 ,则 P ( A ∪ B) =
⎪⎩ 0,
其它.
cov( X ,Y ), ρXY , D( X − Y ) 。
姓名:
学号: 线
专业班级: 订
专业班级: 全校工科、经管、理科各专业 [该项由出卷人填写]

第( 2 )页共( 3 )页
姓名:
2014~2015 学年 第一学期试卷 课程名称:概率统计 考试形式:闭卷 试卷: A
A 四、计算下列各题 (共 30 分) 1. (7 分) 某单位设置一电话总机,共有 100 架电话分机。设每个电话分机是否使用外线通话 是相互独立的,且每时刻每个分机有 10%的概率要使用外线通话。问总机需要多少外线才能
36
6
36
∫ ∫ ∫ ∫ E(XY ) =
+∞
+∞
xyf (x, y)dxdy =

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论期末测试E

概率论期末测试E

2015-2016秋季学期《概率论与数理统计》复习题 E考试题型分值选择题:15题,每题3分,共45分计算题:4题,10分+15分+15分+15分=55分 复习题1.B A ,为随机事件,4.0)(=A P ,3.0)(=B P ,()0.6P A B =,则()P AB = 0.3 。

2.已知()P B A =0.3 ,()P A B -=0.2,则()P A = 2 / 7 。

3.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为 。

4. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___2633____。

5. 3人独立破译一密码,他们能单独译出的概率为41,31,51,则此密码被译出的概率为___35___。

6.随机变量X 能取1,0,1-,取这些值的概率为35,,248c c c ,则常数c =_815_。

7.随机变量X 分布律为5,4,3,2,1,15)(===k kk X P ,则(35)P X X ><=__。

8.02,()0.420,10x F x x x <-⎧⎪=-≤<⎨⎪≥⎩是X 的分布函数,则X 分布律为__200.40.6i X p -⎛⎫⎪⎝⎭__。

9.已知随机变量X 的分布律为⎪⎪⎪⎭⎫⎝⎛1.07.02.04324πππP X ,则随机变量函数X Y sin =的分布律为___10.7Y ⎛⎫⎪⎪⎝⎭__。

10. 假设X 服从的分布是(0,1)N ,则2+1X 服从的分布是 (1,4)N 。

11.设()()~2,9,~1,16X N Y N ,且,X Y 相互独立,则~X Y +__2(3,5)N ___。

12. 随机变量()5,0.2XB ,则(23)E X +=__5__,()23D X +=___,2(21)E X -=__2.6__,。

13. 随机变量()0,2XU ,则()3E X --=__-4__,()3D X --=__13__。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A 卷)
2015-2016学年第 1 学期 考试科目: 概率论与数理统计 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业
一、选择题(本大题共 8 小题,每小题 3 分,共 18 分) 1、下列命题正确的是(

(A )若事件A 发生的概率为1,则A 为必然事件;
(B )若随机变量X 与Y 不独立,则()()()E X Y E X E Y +=+不一定成立; (C )若X 是连续型随机变量,且()f x 是连续函数,则()Y f X =
一定是连续型随机变量;
(D )设A ,B 是任意两个事件,则AB A B = 。

2、设随机变量X 的概率密度为()2
69
x
x f x -+-=,若()()P X c P X c >=≤,
则c 的值为( ) (A )0;
(B )3;
(C )
(D )3-。

3、设总体()0,1X N ,()1,,n X X 是其简单随机样本,2X S ,分别是其样本均值和样本方差,则下列各式正确的是( ) (A )()0,1X N ; (B )()0,1nX N ; (C )
()1X
t n S
- ;
(D )()()2211n S n χ-- 。

4、设随机变量()0,1X N ,()0,1Y N ,则下列结论正确的是( ) (A )X Y +服从正态分布;
(B )22X Y +服从2χ分布;
(C )2
2X Y
服从F 分布;
(D )22X Y 和都服从2χ分布。

5、在假设检验的U 检验中,对给定的检验水平α,下列判断正确的是( ) (A )若00:H μμ=,对10:H μμ≠,则拒绝域为{}
W αμμμ=>;
(B )若00:H μμ=,对10:H μμ<,则拒绝域为12W αμμμ-
⎧⎫⎪⎪
=>⎨⎬⎪⎪⎩⎭;
(C )若00:H μμ=,对10:H μμ>,则拒绝域为12W αμμμ-
⎧⎫⎪⎪
=>⎨⎬⎪⎪⎩⎭;
(D )若00:H μμ=,对10:H μμ≠,则拒绝域为2W αμμμ⎧⎫⎪⎪
=≥⎨⎬⎪⎪⎩⎭。

6、设总体()2,X N μσ ,σ未知,从中抽取容量为16的样本,其样本均值为X ,样本方差为2S ,则未知参数μ的置信度为0.95的置信区间是( )
(A )0.02516S
X u
; (B )()0.0251516S
X t
; (C )()0.025154
S
X t ;
(D )0.0254
S
X u 。

二、填空题(本大题共 7 小题,每小题 3 分,共 21 分)
1、随机变量1,,n X X 独立且服从同一分布,数学期望为μ,方差为2σ,这n 个随机变量的简单算术平均数为X ,则()i D X X -=。

2、若事件A 与B 相互独立,()()(),0.3,0.7P A P B P A B α=== ,则α=。

3、设()210,X N σ ,且()10200.3P X <<=,则()010P X <<=。

4、设某物体的质量(),0.01X N μ ,为使未知参数μ的置信度为0.95的置信区间的长度不超过0.1,则至少应测量 次。

5、设随机变量X 的分布函数为()0,
00.1,010.3,
120.6,231,
3
x x F x x x x <⎧⎪≤<⎪⎪
=≤<⎨⎪≤<⎪≥⎪⎩,
则{}0.5 2.5P X ≤≤=。

6、某机器生产的零件长度X (cm )服从参数10.05,0.06μσ==的正态分布,规定长度在范围10.050.12±(cm )内为合格,则从中抽取一产品为不合格品的概率为 。

(已知()2=0.9772Φ)
7、设123,,X X X 是来自正态总体()2,X N μσ 的简单随机样本,其中
1123131ˆ5102X X X μ
=++,2123115ˆ3412X X X μ
=++,3123111
ˆ333
X X X μ=++都是μ的无偏估计,则其中 在μ的估计中最有效。

三、解答题(本大题共 6 小题,第3题11分,其它各题10分,共 61 分)
1、甲、乙两人轮流投篮,甲先投,一般来说,甲、乙两人独立投篮的命中率分别为0.7和0.6.但由于心理因素的影响,如果对方在前一次投篮中投中,紧跟在后面投篮的这一方的命中率就会有所下降,甲、乙的命中率分别变为0.4和0.5.试求:(1)乙在第一次投篮中投中的概率;(2)甲在第二次投篮中投中的概率。

2、已知随机变量X 服从区间(0,1)上的均匀分布,令21Y X =+,求Y 的概率密度函数。

3、设随机变量X 的概率密度为(),02
20,
a a x x f x ⎧
-<<⎪=⎨⎪⎩其它,试求 (1)常数a ;(2)X 的分布函数()F x ;(3)条件概率112P X X ⎧⎫
>≤⎨⎬⎩⎭。

4、已知健康人的红血球直径服从均值为7.2m μ的正态分布。

今在某患者血液中随机测得9个红血球的直径如下:
7.8, 9.0, 7.1, 7.6, 8.5, 7.7, 7.3, 8.1, 8.0.
问该患者红血球平均直径与健康人的差异是否显著不同()0.05α=? (已知()()()()0.0250.050.0250.058 2.3060;8 1.860;9 2.262;9 1.833t t t t ====) 5、设总体X 的概率密度函数为()1
,01,0f x x θ=<<>,其中θ为未知参
数,设12,,,n x x x 是来自总体的简单随机样本观测值,试求θ的矩估计和最大似然估计。

6、设某经销商与某出版社订购下一年的挂历,根据该经销商以往多年的经销经验,他得出需求量分别为150本、160本、170本、180本的概率分别为0.1, 0.4, 0.3, 0.2,各种订购方案的获利()1,2,3,4i X i =(百元)是随机变量,经计算,
(2)为使期望利润最大且风险最小,经销商应订购多少本挂历?。

相关文档
最新文档