第五章组合导航技术的发展
组合导航系统

航空组合导航
航空使用的组合导航系统种类很多。军用组合导航系统常以惯性导航为主,再与其他导航设备组合。民用组 合导航系统常见的有伏尔导航系统、地美依导航系统、罗兰C导航系统、伏尔塔克导航系统、奥米加导航系统的组 合。越洋飞行也用惯性导航与奥米加导航系统组合。
民航使用的新一代组合导航系统是飞行管理系统,把飞行姿态控制、飞行性能管理、导航、气象信息,数字 仪表飞行和彩色屏幕显示等组合在一起,进行综合处理。
关键技术
从本质上看,组合导航系统是多传感器多源导航信息的集成优化融合系统,它的关键技术是信息的融合和处 理 。新的数据处理方法,特别是卡尔曼滤波(见波形估计)方法的应用是产生组合导航的关键。卡尔曼滤波通 过运动方程和测量方程,不仅考虑当前所测得的参量值,而且还充分利用过去测得的参量值,以后者为基础推测 当前应有的参量值,而以前者为校正量进行修正,从而获得当前参量值的最佳估算。当有多种分系统参与组合时, 就可利用状态矢量概念。通常,取误差本身作为状态矢量,不是对速度、方位本身等作出最佳估计,而是对速度 误差、方位误差等作出最佳估计。把这一估算从实际测得的速度、方位中减去,就得到此时此刻的速度、方位等 参量。组合导航实际上是以计算机为中心,将各个导航传感器送来的信息加以综合和最优化数学处理,然后进行 综合显示。
现状以及优势
组合导航系统的组成组合导航系统是利用计算机和数据处理技术把具有不同特点的导航设备组合在一起,以 达到优化的目的,整个系统由输入装置、数据处理和控制部分、输出装置以及外围设备组成。输入装置能够实时、 连续的接收各种测量信息,由计算机将接收的信息进行综合处理,从而得到最优的结果以便于确定航向、航速、 天文以及地文测算等,最后由输出装置例如显示器、打印机等对优化后的信息进行显示。组合导航系统最大的优 势就是能够实现优势互补,提高导航系统的精度和可靠性。
组合导航技术

1、简答题:(1)为什么说组合导航系统是导航发展的方向?GPS/惯性组合导航系统有何特点?答:组合导航系统是指用GPS、无线电导航、天文导航、卫星导航等系统中的一个或几个与惯导组合在一起,形成的综合导航系统。
组合导航是近代导航理论和技术发展的结果。
每种单一导航系统都有各自的独特性能和局限性,传统的单一导航系统由于自身存在各种缺陷已经不能满足现实需求。
惯性组合导航系统的特点如下: 1. GPS/INS组合对改善系统精度有利。
2. GPS/INS组合加强系统的抗干扰能力。
3. 惯性系统提高GPS接收机的跟踪能力。
4. 惯性系统可以解决周跳问题,而且降低对惯导系统的要求。
(2)说明组合导航系统的基本原理和不同校正方式的优缺点。
答:组合导航是将过去单独使用的各种导航设备通过计算机有机地组合在一起,应用卡尔曼滤波等数据处理技术,发挥各自特点,取长补短,使系统导航的精度、可靠性和自动化程度都大为提高,它的实质就是以计算机为中心,将各个导航传感器送来的信息加以综合和最优化处理,然后对导航参数进行综合显示或输出。
校正方式分为输出校正和反馈校正。
利用各导航系统误差的估计值去分别校正各导航系统相应的输出导航参数,以得到导航参数的最优估计,这种方法称为开环方法,也称为输出校正;利用导航系统误差值的估计值去校正导航系统力学编排中相应的导航参数,即将误差估计值反馈到各导航系统的内部,将导航系统中相应的误差量校正掉,这种方法称为闭环法,也称为反馈校正。
输出校正和反馈校正特点如下:1 输出校正中的误差状态是未经校正的误差量,而反馈校正的误差状态已经过校正,因此反馈校正能更接近的反映系统误差状态的真实动态过程。
一般情况下,输出校正要得到与反馈校正相同的精度,应该采用更复杂的模型系统方程。
2 输出校正方式中各导航分系统相互独立工作,互不影响,因此系统可靠性较高;反馈校正属于深度组合,如果某一导航分系统不能正常工作,那么将影响其他导航分系统,因此可靠性相对输出校正较差。
组合导航技术的发展趋势_曾伟一

技术开发与应用组合导航技术的发展趋势曾伟一1 林训超2 曾友州3 贺银平4(1.2.3.4.成都航空职业技术学院,四川成都610100)收稿日期:2011-01-10作者简介:曾伟一(1956 ),男,四川省成都市人,副教授,主要研究方向为电气自动化和微机控制技术。
摘 要:本文揭示了组合导航技术的优越性,论述了组合导航的关键技术,对硅微惯性测量单元的发展和应用情况进行了介绍,指出GNSS/INS 组合中松耦合、紧耦合与深耦合方式的技术特点,展望了耦合技术未来发展方向。
关键词:组合导航 卫星导航 惯性导航中图分类号:TN967 2 文献标识码:B 文章编号:1671-4024(2011)02-0041-04Development Tendency of Integrated Navigation TechnologyZE NG Weiyi 1,LIN Xunchao 2,ZE NG Youzhou 3,HE Yinping 4(1.2.3.4.Chengdu Aeronautic Vocational &Technical College,Chengdu,Sichuan 610100,China)Abstract This paper analyzes the advanta ges of integrated navigation technique and the key inte grated navigation technology,presents the development and application of measuring units of silicon micro inertia,points out the techniques of loose coupling,tight coupling and deep c oupling in the combination of GNSS and INS and prospects the development tendenc y of c oupling technology.Key Words integrated navigation,GNSS,I NS 组合导航是采用两种或两种以上导航系统,形成的性能更高、安全性和可靠性更强的导航方式。
导航技术的发展与应用前景

导航技术的发展与应用前景从古代到现代,人类一直在寻找更好的导航技术。
随着科技的发展,导航技术也得到了极大的进步。
就算是在我们日常生活中,也可以看到导航软件的广泛使用。
那么,导航技术未来的发展及应用前景是怎样的呢?在古代,人们主要依赖天文学来进行导航。
例如,南极探险家阿姆斯特朗使用了星座来确定他的位置。
然而,这样的导航方法有许多限制,例如对夜晚和云层的依赖,不适用于长期航行等。
因此,从17世纪开始,人们开始使用计时器、小数和全球定位系统 (GPS)等新技术进行导航。
而今,对于普通人而言,GPS已经成为了日常生活不可或缺的一部分。
例如,当我们在车内打开导航软件,它会马上找到我们的位置,并指出我们需要行驶的方向。
然而,GPS也有其局限性。
例如,在高墙、隧道或深色建筑群中,信号可能受到干扰,难以获取我们的位置。
还有,当太阳风暴和其它因素影响GPS信号时,我们也可能会受到影响。
然而,科技一直在不断进步,未来将会有更多更好的技术用于导航。
例如,北斗卫星系统,目前是中国自己的导航系统,据说它具备比GPS更可靠、更精准的导航精度。
此外,新技术的引入也将为导航行业带来更大的进步。
例如,室内定位技术,可以在如商场或机场般复杂的环境下,为人们提供更智能的导航方案。
基于这些新技术,未来的导航应用也将更多元化。
例如,自动驾驶汽车,将需要更进一步的导航技术智能,以实现更自主的驾驶。
此外,智能穿戴设备也将带来更好的导航便利。
例如,将来,我们戴上眼睛或耳机就可以享受更贴心的导航体验。
在这个不断变化的世界中,我们相信未来的导航技术也将继续发展。
无论是在商务、交通或冒险中,我们将会看到其极大的应用前景。
未来,人们的视野将不再受到技术所限制,一切将会变得更加方便、更加便利。
GPS与惯导系统的组合导航技术

谢谢观看
LOGO
GPS/INS
INS:
INS 不仅能够提供载体位置、速度参数,还能提 供载体的三维姿态参数,是完全自主的导航方式,在 航空、航天、航海和陆地等几乎所有领域中都得 到了广泛应用。但是,INS 难以克服的缺点是其导航 定位误差随时间累加,难以长时间独立工作。
LOGO
GPS/INS
GPS/INS组合:
LOGO
紧耦合和松耦合
优点:
1.组合结构简单,便于工程实现,便于实现容错 2.两个系统能够独立工作,使得导航系统有一定的 余度
缺点:
1. GPS 输出的位置、速度通常是与时间相关的; 2.INS 和 GPS 信息流动是单向的,INS 无法辅GPS。
LOGO
GPS/INS
紧耦合:
紧耦合模式是指利用 GPS 接收机的的原始信息来和惯 导系统组合,原始信息一般是指伪距、伪距率、载波 相位等。
LOGO
分类:
基于卡尔曼组合数据的融合方法
按照组合中滤波器的设置来分类,可以分成: 集中式的卡尔曼滤波 分布式的卡尔曼滤波 按照对系统校正方法的不同,分为: 开环校正(输出校正) 闭环校正(反馈矫正) 按照组合水平的深度不同,分为: 松耦合 紧耦合 根据卡尔曼滤波器所估计的状态不同,卡尔曼 滤波在组合导航中的应用有: 直接法 间接法
目录
2 3
LOGO
紧耦合和松耦合
基于卡尔曼滤波的组合方式:
利用卡尔曼滤波器设计 GPS/INS 组合导航系统的方法 多种多样按照组合水平的深度不同,分为: 松耦合 紧耦合
LOGO
紧耦合和松耦合
松耦合:
松耦合模式是指直接利用 GPS 接收机输出的定位信 息与 INS 组合,它是一种 低水平的组合。位置、速 度组合是其典型代表,它 采用 GPS 和 INS 输出的位 置和速度信息的差值作为 量测值。
导航技术及其发展

导航技术及其发展导航技术是指通过各种手段确定自身位置、方向和速度的技术,是现代社会中不可或缺的一部分。
它广泛应用于军事、航空、航海、汽车、手机等领域,极大地提高了人们的生活质量和工作效率。
本文将从导航技术的发展历程、主要技术及其应用前景三个方面进行探讨。
一、导航技术的发展历程1. 古代导航技术在古代,人们主要依靠天文导航、地文导航和经验导航进行定位。
天文导航是通过观测天体位置来确定自身位置的方法,如我国古代的航海家郑和就是利用天文导航技术实现了七次下西洋的壮举。
地文导航则是根据地形、地貌等地理特征来确定位置,如古代丝绸之路上的商队就是利用地文导航技术进行贸易往来。
经验导航则是依靠船员的经验和直觉来判断航向和距离。
2. 近代导航技术随着科学技术的发展,近代导航技术逐渐从经验导航向仪器导航转变。
19世纪末,无线电技术的发明为导航技术的发展提供了新的动力。
1906年,德国人布劳恩首次利用无线电波进行航海导航实验,标志着无线电导航技术的诞生。
随后,各种无线电导航系统如罗兰(Loran)、奥米加(Omega)等相继问世,为航海、航空等领域提供了准确的导航服务。
3. 现代导航技术20世纪70年代,美国开始研发全球定位系统(GPS),并于1994年全面建成。
GPS具有全球覆盖、全天候、高精度等特点,迅速成为现代导航技术的主流。
随后,俄罗斯、欧盟等国家和地区也相继研发了自己的全球导航卫星系统(GLONASS、Galileo等),形成了全球导航卫星系统的竞争格局。
我国自主研发的北斗卫星导航系统(BDS)也于2000年发射成功,并于2020年全面建成,成为全球四大卫星导航系统之一。
二、主要导航技术1. 天文导航天文导航是通过观测天体位置来确定自身位置的方法。
古代的天文导航主要依靠肉眼观测,现代天文导航则利用天文望远镜、星敏感器等设备进行观测。
天文导航具有高精度、不受环境限制等优点,但受天气影响较大。
2. 地文导航地文导航是根据地形、地貌等地理特征来确定位置的方法。
导航原理_组合导航

2. 最优综合导航系统
采用卡尔曼滤波器的组合方法
卡尔曼滤波是一种递推线性最小方差估计,它 用“状态”表征系统的各个物理量,而以“状 态方程”和“观测方程”描述系统的动力学特 性。它要求应用对象是线性系统,且已知系统 的某些先验知识,如系统噪声和测量噪声的统 计特性。综合导航系统基本满足这些条件,因 而适合采用卡尔曼滤波。
下面以外部位置信息阻尼方案为例予以说明。 利用天文导航系统得到的外部位置信息实现对
惯导系统阻尼的一种方案如图6.2所示:
r 为外部位置信息,c 为惯导系统的位置信息。
图中,r为外部位置信息, 可由天文导航系统给出,
其和惯导系统输出的纬度信息相比较,以其差值
信号,通过k1,k2,k3环节反馈到系统中去。
些导航参数(分别用
表示)进
行比较,
其差值就包含了惯导某些航参数误差 X I 和其它导航系统的误差 XN ,即
滤波器将这种差值作为测量值,经过滤 波计算,得到滤波器状态(也即包括和 在内的各种误差状态)的估值。其结构 如图6.4所示。
所谓输出校正,就是用导航参数误差的 估值去校正系统输出的导航参数,得到 综合导航系统的导航参数估值
1
非线性系统卡尔曼滤波
采用线性化的方法,称为EKF(扩展卡 尔曼滤波)
若线性化后的系统误差较大,则采用 UKF滤波方法(Unscented Kalman Filter)
Kalman滤波的稳定性问题
4.3 最优组合导航系统
-Kalman滤波在组合导航中的应用
根据KF所估计的状态不同,kalman滤波在组 合导航中的应用有直接法与间接法之分。
组合导航关键技术

组合导航系统是将载体( 飞机、舰船等) 上的导航设备组合成一个统一的系统,利用两种或两种以上的设备提供多重信息,构成一个多功能、高精度的冗余系统。
组合导航系统有利于充分利用各导航系统进行信息互补与信息合作, 成为导航系统发展的方向。
在所有的组合导航系统中,以北斗与惯性导航系统INS 组合的系统最为理想, 而深组合方式是北斗与惯性导航系统( INS) 组合的最优方法。
鉴于GPS 的不可依赖性,北斗卫星导航系统与INS 的组合是我国组合导航系统的发展趋势,我国自主研制北斗/INS深组合导航系统需要解决的关键技术。
1北斗/惯导深组合导航算法深组合导航算法是由INS导航结果推算出伪距、伪距率,与北斗定位系统观测得到的伪距、伪距率作差得到观测量。
通过卡尔曼滤波对INS的误差和北斗接收机的误差进行最优估计,并根据估计出的INS误差结果对INS进行反馈校正, 使INS保持高精度的导航。
同时利用校正后的INS 速度信息对北斗接收机的载波环、码环进行辅助跟踪, 消除载波跟踪环和码跟踪环中载体的大部分动态因素, 以降低载波跟踪环和码跟踪环的阶数,从而减小环路的等效带宽, 增加北斗接收机在高动态或强干扰环境下的跟踪能力。
其组合方式如图1所示,图中只画出了北斗的一个通道,其他通道均相同。
图 1 深组合方式框图组合导航参数估计是组合导航系统研究的关键问题之一。
经典Kalman 滤波方法是组合导航系统中使用最广泛的滤波方法,但由于动态条件下组合导航系统状态噪声和量测噪声的统计信息的不准确,常导致滤波精度的下降,影响组合导航的性能。
滤波初值的选取与方差矩阵的初值对滤波结果的无偏性和稳定性有较大的影响,不恰当的选择可能导致滤波过程收敛速度慢,甚至有可能发散。
另外系统误差模型的不准确也会导致滤波过程的不稳定。
渐消记忆自适应滤波方法通过调节新量测值对估计值的修正作用来减小系统误差模型不准确对滤波过程的影响。
当系统模型不准确时,增强旧测量值对估计值的修正作用,减弱新测量值对估计值的修正作用。