博弈论习题集
博弈论习题(1-4)

博弈论作业题第一章4.“囚徒的困境”的内在根源是什么?举出现实中囚徒困境的具体例子。
5.博弈有哪些分类方法?有哪些主要的类型?9.你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则0.35的概率你将收益300万元(包括投资),而0.65的概率你将全部亏损掉;如果你不开,则你能保住本钱但也不会有利润。
请你(a )用得益矩阵和扩展表示该博弈;(b )如果你是风险中性的,你会怎样选择?(c )如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d )如果你是风险偏好的,期望得益折扣系数为1.2,你的选择又是什么?10. 一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得1000元奖金。
请分别用得益矩阵和扩展形表示该博弈,并作简单分析。
第二章4.求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
博弈方2T 博弈方1B5.下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?博弈方2T 博弈方1 M B6.设古诺模型中有n 家厂商。
q i 为厂商i 的产量,Q=q 1+…+q n 为市场总产量。
P 为市场出清价格,且已知P=P(Q)=a-Q (当Q<a 时,否则P=0)。
假设厂商i 生产q i 产量的总成本为C i =C i (q i )=cq i ,也就是说没有固定成本且各厂商的 边际成本都相同,为常数c (c<a )。
假设各厂商同时选择产量,该模型的纳什均衡是什么?当n 趋于无穷大时博弈分析是否仍然有效?7.两寡头古诺模型,P(Q)=a-Q 等与上题相同,但厂商的边际成本不同,分别为c 1和c 2。
如果0<c i <a/2,问纳什均衡产量各位多少?如果c 1<c 2<a ,但2c 2>a+c 1,则纳什均衡产量又为多少?8.甲、乙两公司分属两个国家,在开发某种新产品方面有下面得益矩阵表示的博弈关系(单位:百万美元)。
博弈论练习题 第一组 参考答案

4
6.一个支付组合是帕累托有效率的,当且仅当没有任何其他的支付组合可以同时 改善所有人的处境。假定A和B两人组成一个社会,可能的支付组合如下:
组合1(200,200),组合2(0,300),组合3(300,0),组合4(100,100), (这里(200,200)表示A的支付为200,B的支付为200)。 (1)假定只有如上可能的四个支付组合。找出下列支付组合中帕累托有效率的
2. 某博弈中甲乙双方各有三个策略,其相应的支付矩阵如下图所示: 问: (1)甲会不会采用策略A,为什么? (2)请剔除上述支付矩阵里的占劣策略。 (3)请找出该博弈的纯策略纳什均衡。
A 甲B
C
D 3,7 4,2 3,7
乙 E
3,5 2,7 4,8
F 1,2 6,4 2,5
1
答案:1)甲不会采用策略A,策略A是甲的劣策略,它是劣于C的。 2)对于甲而言,A是一个劣策略。对于乙而言,F是一个劣策略(做到这一步即
A.S+T>200
B.S<T, T>100
C.S<0,T>100
D.以上都不是
解答,答案为C,写出这个博弈的支付矩阵如下:
乙
合作
斗争
合作 (100, 100) (S, T) 甲 斗争 (T, S) (0, 0)
由于这个博弈是对称的,因此,只需要解其中一个人的最优反应即可(对于 对称博弈而言,两个人的占优策略及其支付是完全相同的),我们不妨解 乙的反应。要使“斗争”为占优策略,意味着无论甲选择什么行动,对于 乙而言,斗争总是好于合作,于是,若甲选择合作,那么乙选择斗争的收 益是T,选择合作的收益是100,因此T>100;若甲选择斗争,乙选择斗争的 收益是0,选择合作的收益是S,要使对于乙而言斗争好于合作,则0>S。因 此要选C。
博弈论习题

博弈论习题一、判断1、纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合。
错,只要任一博弈方单独改变策略不会增加得益,策略组合就是纳什均衡了。
本题说的是严格纳什均衡。
2、若一博弈有两个纯战略纳什均衡则一定还存在一个混合战略纳什均衡。
对的,NE的基本性质之一——奇数性所保证的。
3、博弈中混合策略纳什均衡一定存在,纯战略的不一定存在。
对4、上策均衡一定是帕累托最优的均衡。
错,囚徒困境,(坦白,坦白)是上策均衡但不是帕累托最优。
5、在动态博弈中,因为后行为的博弈方可以先观察到对方行为后再做选择,因此总是有利的。
错,先动优势6、动态博弈本身也是自己的子博弈之一。
错,根据子博弈的定义,整个博弈本身不是自己的子博弈。
7、如果动态博弈的一个策略组合不仅在均衡路径上是纳什均衡,而且在非均衡路径上也是纳什均衡,就是该动态博弈的一个子博弈完美纳什均衡。
对,8逆推归纳法并不能排除所有不可置信的威胁、错,逆推归纳法最基本的特征就是能排除动态博弈中所有不可信行为,包括不可信威胁和不可信承诺。
9、颤抖手均衡与第二章的风险上策均衡都是在有风险和不确定情况下的稳定策略组合,因为她们本质上是一样的。
错,区别很大。
前者是针对很小的犯错误导致的偏离概率的均衡概念,对博弈方的理性假设与完全理性假设基本接近,且本身是纳什均衡。
10、有限次重复博弈的子博弈完美纳什均衡每次重复均采用的都是原博弈的纳什均衡。
错,对于有两个以上纯策略纳什均衡博弈的有限次重复博弈,SPNE在前面某些次重复时采用的可以不是原博弈的NE,例如许多出发策略。
11、有限次重复博弈的子博弈完美纳什均衡的最后一次重复必定是原博弈的一个纳什均衡。
对,因为最后一次重复就是动态博弈对的最后一个阶段,根据SPNE的要求,博弈方在该阶段的选择必须构成纳什均衡。
最后一次博弈就是原博弈本身12、无限次重复博弈的均衡解一定优于原博弈均衡解的得益。
错,对于严格竞争的零和博弈或者不满足合作条件的其他博弈来说,无限次重复博弈并不意味着效率的提高,得益不一定高。
博弈论习题集

PROBLEM SET I OF GAME THEOR Y1. State whether the following gameshave unique pure strategy solutions, and if so whatthey are and how they can be found.2. Draw the normal form gamefor the following gameand identify both thepure-a nd mixed-strategy equilibria. In the mixed-strategy Nash equilibrium determine each firm ' s expected profit level if it enters the market.There are two firms that are con sideri ng en teri ng a new market, and must make their decision without knowing what the other firm has done. Unfortun ately the market is on ly big eno ugh to support one of the two firms. If both firms enter the market, then they will each makea loss of £onlyPlayer 1⑵Player 1⑶Player 1Player 2Player 2one firm enter s the market, th at firm will earn a profit of £ 50m, and the other firm will just break even.3. Con vert the follow ing exte nsive form game into a no rmal form game, and identifythe Nash equilibria and subgame perfect Nash equilibria.Finally, what is the Nash equilibrium if both players maketheir movessimulta neously4. Consider an economy consisting of one government and two people. Let X i be thechoice of the people, where X i € X = {x L, x 叫x H}, and i=1,2, and y the choice of the government, where y € Y={ y L, y M y H}. Thepayoffs to the government-household are given by the values of u i(x 1, X2, y) and u 2(x 1, x 2, y) = u 1 (x 2,x 1, y) . These payoffs are entered in the following table:12government' s policy. Enter the blank with value ranges such that the Nash equilibria are supported.(2) Suppose the government moves first, find Nash Equilibria, the subgame perfect Nashequilibria, and the subgame perfect outcome. Is the outcome efficie nt Why(3) Show whether there exists Nash equilibrium (in pure strategies) forthe one-period economy when households and the government move simultaneously.(4) lf the household choose first, do question (2) again.5. Assume that two players are faced with Rosenthal ' s centipede game.Use Bayes' theorem to calculate the players ' reputation for being co-operative in the follow ing situati ons if they play across.(1) At the beginning of the gameeach player believes that there is a 50/50 chanee thatthe other player is rational or co-operative. It is assumed that a co-operative player always plays across. Furthermore supposethat a rati onal player will play across with a probability of(2) At their second movethe players again moveacross. (Continue to assumethat the probability that a rati onal player plays across rema ins equal .(3) How would the players ' reputation have changed after the first movehad the other player believed that rational players always play across. (Assume all other probabilities rema in the same.)(4) Fin ally, how would the players ' reputati on have cha nged after the first move hadthe other player believed that rati onal players n everplay across. (Aga in assume all other probabilities rema in the same.)6. Assume there are midentical Stackelberg leaders in an industry,indexed j =1,…, m and n identical Stackelberg followers, indexed k=1,…,n. All firms have a constant marginal cost of c and no fixed costs. The market price, Q, is determ ined accord ing to the equatio nP - a - C, where Q is total industry output, and a is a constant. Findthe subgame perfect Nash equilibrium supply for the leaders and the followers.Confirm the duopoly results for both Cour not competiti on and Stackelbergcompetitio n, and the gen eralized Cour not result for n firms derived in Exercise . 7. Assume that there are i =1,…,n identical firms in an industry, each with con sta ntmargi nal costs of c and no fixed costs. If the marketprice, P, is determined by the equation , where Qis totalindustry output and a is a constant, determine the Cournot-Nash equilibrium outputlevel for each firm. Where happe ns as n—、8. Find the separating equilibrium behaviour of the low-cost incumbent in the follow ingtwo-period model. The in cumbe nt has marginal costsequal to either £ 4or £ 2.0nly the incumbent initially knows its exact costs. Theentrant observes the incumbent ' s output decision in thefirst period and only enters the market in the second period if it believes that theincumbent has high marginal costs. If entry does occur, the two firms Cour notcompete, and we assumethat at this stage in the game the incumbent ' s true costs are revealed. Price, P, isdetermined by the following equation 卜「./.::■-』,where Qis the combinedoutput of the two firms. Finally, it is assumed that the firms ' discount factor is equal to .9. In the text we argued that a weak government can exploit the privatesector ' s uncertainty about the government ' s preferences topartially avoid the inflationary bias associated withtime-i neon siste nt mon etary policy .In this exercise we provided a simple model that illustrates this result.Assume that the government, via its monetary policy, can perfectly con trol in flati on. Furthermore the gover nment can be one of two types. Either it is strong or it is weak. A strong government is only concerned about the rate of in flati on, and so n ever in flates the economy. A weak government, however, is concerned about both inflation and unemployment.Specially, its welfare in time-period t is given by the followingequation :where 严and g are the rates of inflation and unemployment intime-period t respectively, and c, d and e are all positive parameters.It is assumed the gover nment does not disco unt future welfare, and so a weak gover nment attempts to maximize the sum of its per-period welfare over all current and future periods. The constraint facing the government is given by the expectations-augmented Phillips curve. This is written as=山-也#where is the expected rate of in flati on in period t determ ined at thebeg inning of that period, and aga in a and b are positive parameters. The private sector formulates its expectati ons rati on ally in accorda nee with Bayes' Theorem. Finally, it is assumed that this policy game lasts foronly two periods.(1) Determine the subgame perfect path of inflation if it is common knowledge thegovernment is weak.(2) Determine the sequential equilibrium path of inflation if there is incomplete informationand the private sector 's prior probabilitythat the government is strong is . (Hint: initially determine the necessary condition for the weak government to be indifferent between inflating and not inflating theeconomy.)。
博弈论习题(1-4)

博弈论习题(1-4)博弈论作业题第⼀章4.“囚徒的困境”的内在根源是什么?举出现实中囚徒困境的具体例⼦。
5.博弈有哪些分类⽅法?有哪些主要的类型?9.你正在考虑是否投资100万元开设⼀家饭店。
假设情况是这样的:你决定开,则0.35的概率你将收益300万元(包括投资),⽽0.65的概率你将全部亏损掉;如果你不开,则你能保住本钱但也不会有利润。
请你(a )⽤得益矩阵和扩展表⽰该博弈;(b )如果你是风险中性的,你会怎样选择?(c )如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d )如果你是风险偏好的,期望得益折扣系数为1.2,你的选择⼜是什么?10.⼀逃犯从关押他的监狱中逃⾛,⼀看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕⽅向正确就⼀定能抓住逃犯。
逃犯逃脱可少坐10年牢,但⼀旦被抓住则要加刑10年;看守抓住逃犯能得1000元奖⾦。
请分别⽤得益矩阵和扩展形表⽰该博弈,并作简单分析。
第⼆章4.求出下图中得益矩阵所表⽰的博弈中的混合策略纳什均衡。
博弈⽅2T 博弈⽅1B5.下⾯的得益矩阵表⽰两博弈⽅之间的⼀个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?博弈⽅2T 博弈⽅1 M B6.设古诺模型中有n 家⼚商。
q i 为⼚商i 的产量,Q=q 1+…+q n 为市场总产量。
P 为市场出清价格,且已知P=P(Q)=a-Q (当Q7.两寡头古诺模型,P(Q)=a-Q 等与上题相同,但⼚商的边际成本不同,分别为c 1和c 2。
如果0a+c 1,则纳什均衡产量⼜为多少?8.甲、⼄两公司分属两个国家,在开发某种新产品⽅⾯有下⾯得益矩阵表⽰的博弈关系(单位:百万美元)。
该博弈的纳什均衡有哪些?如果⼄公司所在国政府想保护本国公司利益,有什么好的⽅法?⼄公司甲公司开发不开发第三章4.如果开⾦矿博弈中第三阶段⼄选择打官司后的结果尚不能确定,即右图中a、b的数值不确定。
试讨论本博弈可能有哪⼏种可能的结果。
“博弈论”习题及参考答案

“博弈论”习题及参考答案《博弈论》习题⼀、单项选择题1.博弈论中,局中⼈从⼀个博弈中得到的结果常被称为()。
A. 效⽤B. ⽀付C. 决策D. 利润2.博弈中通常包括下⾯的内容,除了()。
A.局中⼈B.占优战略均衡C.策略D.⽀付3.在具有占优战略均衡的囚徒困境博弈中()。
A.只有⼀个囚徒会坦⽩B.两个囚徒都没有坦⽩C.两个囚徒都会坦⽩D.任何坦⽩都被法庭否决了4.在多次重复的双头博弈中,每⼀个博弈者努⼒()。
A.使⾏业的总利润达到最⼤B.使另⼀个博弈者的利润最⼩C.使其市场份额最⼤D.使其利润最⼤5.⼀个博弈中,直接决定局中⼈⽀付的因素是()。
A. 策略组合B. 策略C. 信息D. ⾏动6.对博弈中的每⼀个博弈者⽽⾔,⽆论对⼿作何选择,其总是拥有惟⼀最佳⾏为,此时的博弈具有()。
A.囚徒困境式的均衡B.⼀报还⼀报的均衡C.占优策略均衡D.激发战略均衡7.如果另⼀个博弈者在前⼀期合作,博弈者就在现期合作;但如果另⼀个博弈者在前⼀期违约,博弈者在现期也违约的策略称为()。
A.⼀报还⼀报的策略B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致()。
A.博弈双⽅都获胜B.博弈双⽅都失败C.使得先采取⾏动者获胜D.使得后采取⾏动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。
A. 当⼀个垄断竞争⾏业是由⼀个主导企业控制时B.当⼀个寡头⾏业⾯对的是重复博弈时C.当⼀个垄断⾏业被迫重复地与⼀个寡头⾏业博弈时D. 当⼀个寡头⾏业进⾏⼀次博弈时10.⼀个企业采取的⾏为与另⼀个企业在前⼀阶段采取的⾏为⼀致,这种策略是⼀种()。
A.主导策略B.激发策略C.⼀报还⼀报策略D.主导策略11.关于策略式博弈,正确的说法是()。
A. 策略式博弈⽆法刻划动态博弈B. 策略式博弈⽆法表明⾏动顺序C. 策略式博弈更容易求解D. 策略式博弈就是⼀个⽀付矩阵12.下列关于策略的叙述哪个是错误的():A. 策略是局中⼈选择的⼀套⾏动计划;B. 参与博弈的每⼀个局中⼈都有若⼲个策略;C. ⼀个局中⼈在原博弈中的策略和在⼦博弈中的策略是相同的;D. 策略与⾏动是两个不同的概念,策略是⾏动的规则,⽽不是⾏动本⾝。
博弈论习题集

博弈论习题集1.在下表所示的战略式博弈中,找出重复删除劣战略的占优均衡表1.12.(投票博弈)假定有三个参与人(1、2和3)要在三个项目6、B和C)中选中一个。
三人同时投票,不允许弃权,因此,每个参与人的战略空间Si二{A, B, C}。
得票最多的项目被选中,如果没有任何项目得到多数票,项目A被选中。
参与人的支付函数如下:U1(A)=U2(B)=U3(C)=2U1(B)=U2(C)=U3(A)=1U1(C)=U2(A)=U3(B)=0求解以上博弈的所有纯战略纳什均衡。
3.求解以下战略式博弈的所有纳什均衡表1.34.考虑一个工作申请的博弈。
两个学生同时向两家企业申请工作,每家企业只有一个工作岗位。
工作申请规则如下:每个学生只能向其中一家企业申请工作;如果一家企业只有一个学生申请,该学生获得工作;如果一家企业有两个学生申请,则每个学生获得工作的概率为1/2。
现在假定每家企业的工资满足:W1/2<W2<2W1,则问:a.写出以上博弈的战略式描述b.求出以上博弈的所有纳什均衡5.(库诺特博弈)假定有n个库诺特寡头企业,每家企业生产成本函数为cq,市场逆需求函数是P=a-Q,其中P是价格,Q=E qi是总供给,a是大于c的常数。
企业i的战略是选择自身产量qi最大化自己的利润,即其他企业的产量q-i;选择自身产量最大化自己的利润。
求解以上博弈的纳什均衡,以及均衡产量和价格如何随n的变化而变化。
6.(伯川德博弈)假定两个寡头企业之间进行价格竞争,两企业生产的产品是完全替代的,并且两家企业的生产成本函数为cq。
市场逆需求函数是P=a-Q, Q=Z qi是总供给,a是大于c的常数。
求出企业i所面临市场需求以及纳什均衡时的价格。
7.(差异价格竞争)假定两个寡头企业进行价格竞争,但产品并不完全相同,企业i的市场需求q(p ,p ) = a - p + p j(i, j = 1,2),两家企业的生产成本函数为cq,求两个寡头同时选择价格时的纳什均衡。
“博弈论”习题参考附标准答案

《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。
A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。
A.局中人B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中()。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。
A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。
A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。
A.一报还一报的策略B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致()。
A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。
A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D. 当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。
A.主导策略B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是()。
A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的():A. 策略是局中人选择的一套行动计划;B. 参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PROBLEM SET I OF GAME THEORY1. State whether the following games have unique pure strategy solutions, and if so what they are and how they can be found.(1) Player 2Player 1(2) Player 2Player 1(3) Player 2Player 12. Draw the normal form game for the following game and identify both the pure-and mixed-strategy equilibria. In the mixed-strategy Nashequilibrium determine each firm ’s expected profit level if it enters the market.There are two firms that are considering entering a new market, and must make their decision without knowing what the other firm has done. Unfortunately the market is only big enough to support one of the two firms. If both firms enter the market, then they will each make a loss of £ onlyone firm enter s the market, th at firm will earn a profit of £50m, and the other firm will just break even.3. Convert the following extensive form game into a normal form game, and identify the Nash equilibria and subgame perfect Nash equilibria. Finally, what is the Nash equilibrium if both players make their moves simultaneously4. Consider an economy consisting of one government and two people. Let x i be the choice of the people, where x i ∈X = {x L , x M , x H }, and i=1, 2, and y the choice of the government, where y ∈Y= {y L , y M , y H }. The payoffs to the government-household are given by the values of u 1(x 1, x 2, y) and u 2(x 1, x 2, y) = u 1(x 2,x 1, y) . These payoffs are entered in the following table:12government ’s policy. Enter the blank with value ranges such that the Nash equilibria are supported.(2)Suppose the government moves first, find Nash Equilibria, the subgame perfect Nash equilibria, and the subgame perfect outcome. Is the outcome efficient Why(3)Show whether there exists Nash equilibrium (in pure strategies) forthe one-period economy when households and the government move simultaneously.(4)If the household choose first, do question (2) again.5.Assume that two players are faced with Rosenthal’s centipede game.Use Bayes’ theorem to calculate the players’ reputation for being co-operative in the following situations if they play across.(1)At the beginning of the game each player believes that there is a 50/50chance that the other player is rational or co-operative. It is assumed that a co-operative player always plays across. Furthermore suppose that a rational player will play across with a probability of (2)At their second move the players again move across. (Continue to assumethat the probability that a rational player plays across remains equal .(3)How would the players’ reputation have changed after the first movehad the other player believed that rational players always play across.(Assume all other probabilities remain the same.)(4)Finally, how would the players’ reputation have changed after thefirst move had the other player believed that rational players never play across. (Again assume all other probabilities remain the same.)6.Assume there are m identical Stackelberg leaders in an industry,indexed j=1,…, m, and n identical Stackelberg followers, indexed k=1,…, n. All firms have a constant marginal cost of c and no fixed costs. The market price, Q, is determined according to the equation , where Q is total industry output, and ɑis a constant. Find the subgame perfect Nash equilibrium supply for the leaders and the followers. Confirm the duopoly results for both Cournot competition and Stackelberg competition, and the generalized Cournot result for n firms derived in Exercise .7.Assume that there are i=1,…, n identical firms in an industry, eachwith constant marginal costs of c and no fixed costs. If the market price, P, is determined by the equation , where Q is total industry output and ɑ is a constant, determine the Cournot-Nash equilibrium output level for each firm. Where happens as n8.Find the separating equilibrium behaviour of the low-cost incumbentin the following two-period model. The incumbent has marginal costs equal to either £4 or £2. Only the incumbent initially knows its exact costs. The entrant observes the incumbent’s output decision in the first period and only enters the market in the second period if it believes that the incumbent has high marginal costs. If entry does occur, the two firms Cournot compete, and we assume that at this stage in the game the incumbent’s true costs are revealed. Price, P, isdetermined by the following equation , where Q is thecombined output of the two firms. Finally, it is assumed that the firms’ discount factor is equal to .9.In the text we argued that a weak government can exploit the privatesector’s uncertainty about the government’s preferences topartially avoid the inflationary bias associated withtime-inconsistent monetary policy. In this exercise we provided a simple model that illustrates this result.Assume that the government, via its monetary policy, can perfectly control inflation. Furthermore the government can be one of two types. Either it is strong or it is weak. A strong government is only concerned about the rate of inflation, and so never inflates the economy. A weak government, however, is concerned about both inflation and unemployment. Specially, its welfare in time-period t is given by the following equation:,where and are the rates of inflation and unemployment in time-period t respectively, and c, d and e are all positive parameters. It is assumed the government does not discount future welfare, and so a weak government attempts to maximize the sum of its per-period welfare over all current and future periods. The constraint facing the government is given by the expectations-augmented Phillips curve. This is written as,where is the expected rate of inflation in period t determined at the beginning of that period, and again ɑand b are positive parameters. The private sector formulates its expectations rationally in accordance with Bayes’ Theorem. Finally, it is assumed that this policy game lasts foronly two periods.(1)Determine the subgame perfect path of inflation if it is commonknowledge the government is weak.(2)Determine the sequential equilibrium path of inflation if there isincomplete information and the private sector’s prior probability that the government is strong is . (Hint: initially determine the necessary condition for the weak government to be indifferent between inflating and not inflating the economy.)。