中考数学专题训练:方案设计型(含答案)

合集下载

中考数学解析汇编41 方案设计问题

中考数学解析汇编41 方案设计问题

方案设计问题(2012北海,23,8分)23.某班有学生55人,其中男生与女生的人数之比为6:5。

(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。

请问男、女生人数有几种选择方案?【解析】(1)根据题目中的等量关系,设出未知数,列出方程,并求解,得男生和女生的人数分别为30人,25人。

(2)根据题意列出不等式组,并求解。

又因为人数不能为小数,列出不等式组的整数解,可以得出有两种方案。

【答案】解:(1)设男生有6x人,则女生有5x人。

1分依题意得:6x+5x=55 2分∴x=5∴6x=30,5x=25 3分答:该班男生有30人,女生有25人。

4分(2)设选出男生y人,则选出的女生为(20-y)人。

5分由题意得:2027y yy-->⎧⎨≥⎩6分解之得:7≤y<9∴y的整数解为:7、8。

7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。

8分【点评】本题是方程和不等式组的应用,使用性比较强,适合方案设计。

解题时注意题目的隐含条件,就是人数必须是非负整数。

是历年中考考查的知识点,平时教学的时候多加训练。

难度中等。

24.(2012年广西玉林市,24,10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两辆车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天.(1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元.试问:租甲乙车两车、单独租甲车、单独租乙车这三种方案中,哪一种租金最少?请说明理由.分析:(1)设甲车单独完成任务需要x天,乙单独完成需要y天,根据题意所述等量关系可得出方程组,解出即可;(2)结合(1)的结论,分别计算出三种方案各自所需的费用,然后比较即可.解:(1)设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫ ⎝⎛+1511110x y y x ,解得:⎩⎨⎧==3015y x 即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a ,乙车租金为b ,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得:⎩⎨⎧=-=+1500650001010b a b a ,解得:⎩⎨⎧==25004000b a . ①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少.点评:此题考查了分式方程的应用,及二元一次方程组的知识,分别得出甲、乙单独需要的天数,及甲、乙车的租金是解答本题的关键.27.(2012黑龙江省绥化市,27,10分)在实施“中小学校舍安全工程”之际,某县计划对A 、B 两类学校的校舍进行改造.根据预测,改造一所A 类学校和三所B 类学校的校舍共需资金480万元,改造三所A 类学校和一所B 类学校的校舍共需资金400万元.⑴ 改造一所A 类学校和一所B 类学校的校舍所需资金分别是多少万元?⑵ 该县A 、B 两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A 、B 两类学校各有几所. 【解析】解:(1)等量关系为:①改造一所A 类学校和三所B 类学校的校舍共需资金480万元;②改造三所A 类学校和一所B 类学校的校舍共需资金400万元;设改造一所A 类学校的校舍需资金x 万元,改造一所B 类学校的校舍所需资金y 万元,则34803400x y x y +=⎧⎨+=⎩,解得90130x y =⎧⎨=⎩答:改造一所A 类学校的校舍需资金90万元,改造一所B 类学校的校舍所需资金130万元.(2)不等关系为:①地方财政投资A 类学校的总钱数+地方财政投资B 类学校的总钱数≥210;②国家财政投资A 类学校的总钱数+国家财政投资B 类学校的总钱数≤770.设A 类学校应该有a 所,则B 类学校有(8-a )所.则()()()()203082109020130308770a a a a +-≥⎧⎪⎨-+--≤⎪⎩,解得31a a ≤⎧⎨≥⎩∴1≤a ≤3,即a=1,2,3.答:有3种改造方案.方案一:A 类学校有1所,B 类学校有7所;方案二:A 类学校有2所,B 类学校有6所;方案三:A 类学校有3所,B 类学校有5所.【答案】 ⑴改造一所A 类学校和一所B 类学校的校舍所需资金分别是90万元、130万元;⑵共有三种方案.方案一:A 类学校1所,B 类学校7所;方案二:A 类学校2所,B 类学校6所;方案三:A 类学校3所,B 类学校5所.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.理解“国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元”这句话中包含的不等关系是解决本题的关键.难度中等.22. (2012山东莱芜, 22,10分)(本题满分10分)为表彰在“缔造完美教室”活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;4个文具盒、7支钢笔共需161元.(1)每个文具盒、每支钢笔个多少元?(2)时逢“五一”,商店举行“优惠促销”活动,具体办法如下:文具盒“九折”优惠;钢笔10支以上超出部分“八折”优惠.若买x 个文具盒需要1y 元,买x 支钢笔需要2y 元;求1y 、2y 关于x 的函数关系式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.【解析】(1)设每个文具盒x 元,每支钢笔y 元,可列方程组得⎩⎨⎧=+=+1617410025y x y x ,解之得⎩⎨⎧==1514y x 答:每个文具盒14元,每支钢笔15元. ……………………………………………………..4分(2)由题意知,y 1关于x 的函数关系式为y 1=14×90%x ,即y 1=12.6x.由题意知,买钢笔10以下(含10支)没有优惠,故此时的函数关系式为y 2=15x.当买10支以上时,超出部分有优惠,故此时函数关系式为y 2=15×10+15×80%(x -10)即y2=12x+30 . ……………………………………………………..7分(3)当y1< y2即12.6x<12x+30时,解得x<50;当y1= y2即12.6x=12x+30时,解得x=50;当y1> y2即12.6x>12x+30时,解得x>50.综上所述,当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱. . ……………………………………………………..10分【答案】(1)答:每个文具盒14元,每支钢笔15元.(2)y1=12.6x; y2=12x+30.(3)当购买奖品超过10件但少于50件时,买文具盒省钱;当购买奖品超过50件时,买文具盒和买钢笔钱数相等;当购买奖品超过50件时,买钢笔省钱.【点评】本题考察了列二元一次方程组解实际问题,求一次函数的解析式和利用一元一次不等式组选择最优化的方案。

中考数学专题复习《设计方案》测试卷-附带答案

中考数学专题复习《设计方案》测试卷-附带答案

中考数学专题复习《设计方案》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一选择题1.(2023九上·菏泽月考)在数学活动课上老师让同学们判断一个由四根木条组成的四边形是否为矩形下面是一个学习小组拟定的方案其中正确的方案是()A.测量四边形的三个角是否为直角B.测量四边形的两组对边是否相等C.测量四边形的对角线是否互相平分D.测量四边形的其中一组邻边是否相等2.(2023九上·安徽期中)某班计划在劳动实践基地内种植蔬菜班长买回来10米长的围栏准备围成两边靠墙(两墙垂直且足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰直角三角形(两直角边靠墙)扇形这三种方案如图所示.最佳方案是()A.方案1B.方案2C.方案1或方案2D.方案33.(2022·自贡)九年级2班计划在劳动实践基地内种植蔬菜班长买回来8米长的围栏准备围成一边靠墙(墙足够长)的菜园为了让菜园面积尽可能大同学们提出了围成矩形等腰三角形(底边靠墙)半圆形这三种方案最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案24.(2023·衡水模拟)要得知某一池塘两端A B的距离发现其无法直接测量两同学提供了如下间接测量方案.方案Ⅰ:如图1 先过点B作BF⊥AB再在BF上取C D两点使BC=CD接着过点D作BD的垂线DE交AC的延长线于点E 则测量DE的长即可方案Ⅱ:如图2 过点B作BD⊥AB再由点D观测用测角仪在AB的延长线上取一点C 使∠BDC=∠BDA则测量BC的长即可.对于方案ⅠⅡ说法正确的是()A.只有方案Ⅰ可行B.只有方案Ⅱ可行C.方案Ⅰ和Ⅱ都可行D.方案Ⅰ和Ⅱ都不可行5.(2023·北京市模拟)某产品的盈利额(即产品的销售价格与固定成本之差)记为y 购买人数记为x 其函数图象如图1所示.由于日前该产品盈利未达到预期相关人员提出了两种调整方案图2 图3中的实线分别为调整后y与x的函数图象.给出下列四种说法其中正确说法的序号是()①图2对应的方案是:保持销售价格不变并降低成本②图2对应的方案是:提高销售价格并提高成本③图3对应的方案是:提高销售价格并降低成本④图3对应的方案是:提高销售价格并保持成本不变A.①③B.②③C.①④D.②④二填空题6.(2022·瓯海模拟)小芳和小林为了研究图中“跑到画板外面去的两直线a b所成的角(锐角)”问题设计出如下两个方案:小林的方案小芳的方案测αβ的度数.测∠1 ∠ACB的度数.已知小林测得∠β=115°小芳作了AB=BC 并测得∠1=80°则直线a b所成的角为.7.(2023九上·港南期中)生物工作者为了估计一片山林中雀鸟的数量设计了如下方案:先捕捉50只雀鸟给它们做上标记后放回山林一段时间后再从山林中随机捕捉80只其中有标记的雀鸟有2只请你帮助工作人员估计这片山林中雀鸟的数量为只.8.(2021·东城模拟)数学课上李老师提出如下问题:已知:如图AB是⊙O的直径射线AC交⊙O于C.求作:弧BC的中点D.同学们分享了如下四种方案:①如图1 连接BC作BC的垂直平分线交⊙O于点D.②如图2 过点O作AC的平行线交⊙O于点D.③如图3 作∠BAC的平分线交⊙O于点D.④如图4 在射线AC上截取AE使AE=AB连接BE交⊙O于点D.上述四种方案中正确的方案的序号是.9.(2022·房山模拟)为确定传染病的感染者医学上可采用“二分检测方案”.假设待检测的总人数是2m(m为正整数).将这2m个人的样本混合在一起做第1轮检测(检测1次)如果检测结果是阴性可确定这些人都未感染 如果检测结果是阳性 可确实其中感染者 则将这些人平均分成两组 每组2m−1个人的样本混合在一起做第2轮检测 每组检测1次.依此类推:每轮检测后 排除结果为阴性的组 而将每个结果为阳性的组再平均分成两组 做下轮检测 直至确定所有的感染者. 例如 当待检测的总人数为8 且标记为“x ”的人是唯一感染者时 “二分检测方案”可用如图所示.从图中可以看出 需要经过4轮共n 次检测后 才能确定标记为“x ”的人是唯一感染者.(1)n 的值为(2)若待检测的总人数为8 采用“二分检测方案” 经过4轮共9次检测后确定了所有的感染者 写出感染者人数的所有可能值三 实践探究题10.(2024·镇海区月考)根据以下素材 探索完成任务.如何确定木板分配方案?素材1我校开展爱心义卖活动 小艺和同学们打算推销自己的手工制品.他们以每块15元的价格买了100张长方形木板 每块木板长和宽分别为80cm 40cm.素材2现将部分木板按图1虚线裁剪 剪去四个边长相同的小正方形(阴影).把剩余五个矩形拼制成无盖长方体收纳盒 使其底面长与宽之比为3:1.其余木板按图2虚线裁剪出两块木板(阴影是余料) 给部分盒子配上盖子.素材3义卖时的售价如标签所示:问题解决任计算盒子高度求出长方体收纳盒的高度.务1 任务2 确定分配方案1若制成的有盖收纳盒个数大于无盖收纳盒 但不到无盖收纳盒个数的2倍 木板该如何分配?请给出分配方案.任务3确定分配方案2为了提高利润 小艺打算把图2裁剪下来的余料(阴影部分)利用起来 一张矩形余料可以制成一把小木剑 并以5元/个的价格销售.请确定木板分配方案 使销售后获得最大利润.11.(2023九上·鹿城月考)某校准备在校园里利用围墙(墙可用最大长度为25.2m )和48m 长的篱笆墙围成Ⅰ Ⅱ两块矩形开心农场.某数学兴趣小组设计了三种方案(除围墙外 实线部分为篱笆墙 且不浪费篱笆墙) 请根据设计方案回答下列问题:(1)方案一:如图① 全部利用围墙的长度 但要在Ⅰ区中留一个宽度AE =2m 的矩形水池 且需保证总种植面积为185.52m 2 试确定CG 的长(2)方案二:如图② 使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?(3)方案三:如图③ 在图中所示三处位置各留1m 宽的门 且使围成的两块矩形总种植面积最大 请问BC 应设计为多长?此时最大面积为多少?12.【综合与实践】有言道:“杆秤一头称起人间生计 一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案 然后动手制作 再结合实际进行调试 请完成下列方案设计中的任务. 【知识背景】如图 称重物时 移动秤砣可使杆秤平衡 根据杠杆原理推导得:(m 0+m)⋅l =M ⋅(a +y).其中秤盘质量m 0克 重物质量m 克 秤砣质量M 克 秤纽与秤盘的水平距离为l 厘米 科纽与零刻线的水平距离为a 厘米 秤砣与零刻线的水平距离为y 厘米. 【方案设计】目标:设计简易杆秤.设定m0=10,M=50最大可称重物质量为1000克零刻线与末刻线的距离定为50厘米.(1)当秤盘不放重物秤砣在零刻线时杆秤平衡请列出关于l a的方程(2)当秤盘放入质量为1000克的重物秤砣从零刻度线移至末刻线时杠杆平衡请列出关于l a的方程(3)根据(1)和(2)所列方程求出l和a的值(4)根据(1)-(3)求y关于m的函数解析式(5)从零刻线开始每隔100克在科杆上找到对应刻线请写出相邻刻线间的距离. 13.(2023九上·长清期中)某校项目式学习小组开展项目活动过程如下:项目主题:测量旗杆高度问题驱动:能利用哪些科学原理来测量旗杆的高度?组内探究:由于旗杆较高需要借助一些工具来测量比如自制的直角三角形硬纸板标杆镜子甚至还可以利用无人机…确定方法后先画出测量示意图然后实地进行测量并得到具体数据从而计算旗杆的高度.成果展示:下面是同学们进行交流展示时的部分测量方案:方案一方案二…测量标杆皮尺自制直角三角板硬纸板皮尺…工具测量示意图说明:线段AB 表示学校旗杆 小明的眼睛到地面的距离CD =1.7m 测点F 与B D 在同一水平直线上 D F B 之间的距离都可以直接测得 且A B C D E F 都在同一竖直平面内 点A C E 三点在同一直线上.说明:线段AB 表示旗杆 小明的身高CD =1.7m 测点D 与B 在同一水平直线上 D B 之间的距离可以直接测得 且A B CD E F G 都在同一竖直平面内 点A C E 三点在同一直线上 点C F G 三点在同一直线上.测量数据B D 之间的距离 16.8m B D 之间的距离 16.8m … D F 之间的距离 1.35mEF 的长度0.50m…EF 的长度2.60mCE 的长度0.75m… … …根据上述方案及数据 请你选择一个方案 求出学校旗杆AB 的高度.(结果精确到0.1m )14.(2024九上·杭州月考)根据以下素材 探索完成任务.如何设计喷泉喷头的升降方案?素材1如图 有一个可垂直升降的喷泉 喷出的水柱呈抛物线.记水柱上某一点到喷头的水平距离为x 米 到湖面的垂直高度为y 米.当喷头位于起始位置时 测量得x 与y 的四组数据如下: x (米) 0 2 3 4 y (米)121.751素材2公园想设立新的游玩项目 通过升降喷头 使游船能从水柱下方通过 如图 为避免游船被喷泉淋到 要求游船从水柱下方中间通过时 顶棚上任意一点到水柱的竖直距离均不小于0.4米.已知游船顶棚宽度为2.8米 顶棚到湖面的高度为2米.问题解决 任务确定喷泉形状 结合素材1 求y 关于x 的表达式.1任务2探究喷头升降方案为使游船按素材2要求顺利通过求喷头距离湖面高度的最小值.15.(2023九上·温州期末)根据素材解决问题.设计货船通过圆形拱桥的方案素材1图1中有一座圆拱石桥图2是其圆形桥拱的示意图测得水面宽AB=16m 拱顶离水面的距离CD=4m.素材2如图3 一艘货船露出水面部分的横截面为矩形EFGH 测得EF=3m EH=10m.因水深足够货船可以根据需要运载货物.据调查船身下降的高度y(米)与货船增加的载重量x (吨)满足函数关系式y=1100x.问题解决任务1确定桥拱半径求圆形桥拱的半径.任务2拟定设计方案根据图3状态货船能否通过圆形桥拱?若能 最多还能卸载多少吨货物?若不能 至少要增加多少吨货物才能通过?16.(2024九下·宁波月考)根据以下素材 探索完成任务.如何确定拍照打卡板素材一 设计师小聪为某商场设计拍照打卡板(如图1) 图2为其平面设计图.该打卡板是轴对称图形 由长方形DEFG 和等腰三角形ABC 组成 且点B F G C 四点共线.其中 点A 到BC 的距离为1.2米 FG =0.8米 DG =1.5米.素材二因考虑牢固耐用 小聪打算选用甲 乙两种材料分别制作长方形DEFG 与等腰三角形ABC (两种图形无缝隙拼接) 且甲材料的单价为85元/平方米 乙材料的单价为100元/平方米.问题解决任务一推理最大高度小聪说:“如果我设计的方案中CB长与C D 两点间的距离相等 那么最高点B 到地面的距离就是线段DG 长” 他的说法对吗?请判断并说明理由.任务二 探究等腰三角形ABC 面积 假设CG 长度为x 米 等腰三角形ABC 的面积为S 求S 关于x 的函数表达式.任务三确定拍照打卡板 小聪发现他设计的方案中 制作拍照打卡板的总费用不超过180元 请你确定CG 长度的最大值.17.(2024九上·杭州月考)根据以下素材 探索完成任务如何设计拱桥上救生圈的悬挂方案?素材1图1是一座抛物线形拱桥 以抛物线两个水平最低点连线为x 轴 抛物线离地面的最高点的铅垂线为y 轴建立平面直角坐标系 如图2所示. 某时测得水面宽20m 拱顶离水面最大距离为10m 抛物线拱形最高点与x 轴的距离为5m .据调查 该河段水位在此基础上再涨1m 达到最高.素材2为方便救助溺水者 拟在图1的桥拱上方栏杆处悬挂救生圈 如图3 救生圈悬挂点为了方便悬挂 救生圈悬挂点距离抛物线拱面上方1m 且相邻两救生圈悬挂点的水平间距为4m .为美观 放置后救生圈关于y 轴成轴对称分布.(悬挂救生圈的柱子大小忽略不计)任务1确定桥拱形状 根据图2 求抛物线的函数表达式.任务2拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标.任务3探究救生绳长度 当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)问题解决(1)任务1 确定桥拱形状 根据图2 求抛物线的函数表达式. (2)任务2 拟定设计方案求符合悬挂条件的救生圈个数 并求出最右侧一个救生圈悬挂点的坐标. (3)任务3 探究救生绳长度当水位达到最高时 上游个落水者顺流而下到达抛物线拱形桥面的瞬间 若要确保救助者把拱桥上任何一处悬挂点的救生圈抛出都能抛到落水者身边 求救生绳至少需要多长.(救生圈大小忽略不计 结果保留整数)18.(2023九上·浙江期中)根据以下素材 探索完成任务.绿化带灌溉车的操作方案素材1辆绿化带灌溉车正在作业 水从喷水口喷出 水流的上下两边缘可以抽象为两条抛物线的一部分:喷水口离开地面高1.6米 上边缘抛物线最高点离喷水口的水平距离为3米 高出|喷水口0.9米 下边缘水流形状与上边缘相同 且喷水口是最高点。

人教版中考复习数学练习专题五:方案设计专题(含答案)

人教版中考复习数学练习专题五:方案设计专题(含答案)

专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。

(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。

2013年北京中考数学复习专题讲座十:方案设计型问题

2013年北京中考数学复习专题讲座十:方案设计型问题

答:购买 1 块电子白板需要 15000 元,一台笔记本电脑需要 4000 元. (2)设购买电子白板 a 块,则购买笔记本电脑(396﹣a)台,由题意得: ,
解得:99≤a≤101

∵a 为正整数, ∴a=99,100,101,则电脑依次买:297 台,296 台,295 台. 因此该校有三种购买方案: 方案一:购买笔记本电脑 295 台,则购买电子白板 101 块; 方案二:购买笔记本电脑 296 台,则购买电子白板 100 块; -3-

A.
B.
C.
D.
考点:利用平移设计图案. 专题:探究型. 分析:根据平移及旋转的性质对四个选项进行逐一分析即可. 解答:解:A、是利用图形的旋转得到的,故本选项错误; B、是利用图形的旋转和平移得到的,故本选项错误; C、是利用图形的平移得到的,故本选项正确; D、是利用图形的旋转得到的,故本选项错误. 故选 C . 点评: 本题考查的是利用平移设计图案, 熟知图形经过平移后所得图形与原图形全等是解答 此题的关键.
2013 年中考数学复习专题讲座十:方案设计型问题
一、中考专题诠释 方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操 作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。 随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越 受到中考命题人员的喜爱, 这些问题主要考查学生动手操作能力和创新能力, 这也是新课程 所要求的核心内容之一。 二、解题策略和解法精讲 方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、 图 形拼接等。所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。 这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造 合适的数学模型,通过数学求解,最终解决问题。解答此类问题必须具有扎实的基础知识和 灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函 数思想及分类讨论等各种数学思想。 三、中考考点精讲 考点一:设计测量方案问题 这类问题主要包括物体高度的测量和地面宽度的测量。所用到的数学知识主要有相似、 全等、三角形中位线、投影、解直角三角形等。 例 1 (2012•河南)某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅 从楼顶 A 处放下,在楼前点 C 处拉直固定.小明为了测量此条幅的长度,他先在楼前 D 处 测得楼顶 A 点的仰角为 31°,再沿 DB 方向前进 16 米到达 E 处,测得点 A 的仰角为 45°. 已知点 C 到大厦的距离 BC=7 米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留 整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86) .

2012中考数学之方案设计决策类问题

2012中考数学之方案设计决策类问题

2012中考数学之方案设计决策类问题将数学知识与实际生活紧密相连,通过设置情境,进行方案设计、选择最佳方案的一类问题,是中考常出现的题型,而同学们对这种题型不大适应。

为此,现以有关中考题为例说明如下,供同学们参考。

●购买型方案设计购买型方案设计问题,往往与方程、不等式相结合,考查同学解决实际问题的能力。

【例1】某超市销售甲、乙两种商品。

甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。

⑴若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?⑵该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元。

请你帮助该超市设计相应的进货方案。

【解析】⑴问是考查一元一次方程的应用,根据等量关系列出方程。

⑵问主要是考查一元一次不等式组的应用,根据不等关系列出不等式,不等式的解符合实际意义。

⑴设甲商品购进了x件,则乙商品购进了80-x件,依据题意得10x+(80-x)×30=1600,解得:x=40。

即甲种商品购进了40件,乙种商品购进了80-40=40件。

⑵设购买甲种商品为x件,依题意可列出:600≤(15-10)x+(40-30)( 80-x)≤610,解得:38≤x≤40。

即有三种方案,分别为甲38件,乙42件;甲39件,乙41件;甲40件,乙40件。

●运输型方案设计解运输型方案设计问题,不仅要求同学有扎实的数学双基知识,而且要能够把实际问题中所涉及到的数学问题转化、抽象成具体的数学问题。

解决此类问题要抓住题中提供的关键条件、关键字眼,建立关系。

【例2】惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区。

已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者。

2018年中考一轮基础复习试卷专题二十九:方案设计问题(有答案)-(数学)

2018年中考一轮基础复习试卷专题二十九:方案设计问题(有答案)-(数学)

备考2018年中考数学一轮基础复习:专题二十九方案设计问题一、单选题(共5题;共10分)1.(2017•佳木斯)“双11”促销活动中,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有()A. 4种B. 5种C. 6种 D. 7种2.(2017•黑龙江)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A. 2种B. 3种C. 4种 D. 5种3.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A. 1B. 2C. 3D. 44.(2016•赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A. 东风B. 百惠 C. 两家一样 D. 不能确定5.(2016•宜宾)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A. 4B. 5C. 6D. 7二、综合题(共10题;共100分)6.(2017•广元)某市教育局对某镇实施“教育精准扶贫”,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.(1)符合题意的组建方案有几种?请写出具体的组建方案;(2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?7.(2017•恩施州)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?8.(2017•上海)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.9.(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?10.(2017•郴州)某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.11.(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.12.(2017•广安)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化衫件数t(件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.13.(2017•绵阳)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.14.(2017•天门)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲, y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?15.(2017·衢州)“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

2011中考数学真题解析108 方案设计题(含答案)

2011中考数学真题解析108 方案设计题(含答案)

(2012年1月最新最细)2011全国中考真题解析120考点汇编方案设计题二、填空题1.(2011黑龙江鸡西,18,3分)某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.考点:二元一次方程的应用。

分析:设甲中运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.解答:解:设甲中运动服买了x套,乙种买了y套,20x+35y=365 x=7374y当y=3时,x=13 当y=7时,x=6.所以有两种方案.故答案为2.点评:本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.三、解答题1.(2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?考点:一次函数的应用。

专题:优选方案问题。

分析:(1)首先设调配给甲连锁店电冰箱(70﹣x )台,调配给乙连锁店空调机(40﹣x )台,电冰箱(x ﹣10)台,列出不等式方程组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y 与a 的关系式,解出不等式方程后可得出使利润达到最大的分配方案.解答:解:(1)根据题意知,调配给甲连锁店电冰箱(70﹣x )台,调配给乙连锁店空调机(40﹣x )台,电冰箱(x ﹣10)台,(1分)则y=200x+170(70﹣x )+160(40﹣x )+150(x ﹣10),即y=20x+16800.(2分)∵⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥0100400700x x x x ∴10≤x≤40.(3分)∴y=20x+168009(10≤x≤40);(4分)(2)按题意知:y=(200﹣a )x+170(70﹣x )+160(40﹣x )+150(x ﹣10),即y=(20﹣a )x+16800.(5分)∵200﹣a >170,∴a <30.(6分)当0<a <20时,x=40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x 的取值在10≤x≤40内的所有方案利润相同;当20<a <30时,x=10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;(9分)点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,(1)根据40台空调机,60台电冰箱都能卖完,列出不等式关系式即可求解;(2)由(1)关系式,结合让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,列不等式解答,根据a的不同取值范围,代入利润关系式解答.2.(2011陕西,20,8分)一天,某校数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些深坑对河道的影响.如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测量出沙坑坑沿圆周的周长约为34.54米;②甲同学直立于沙坑坑沿圆周所在平面上,经过适当调整自己所处的位置,当他位于点B时,恰好他的视线经过沙坑坑沿圆周上的一点A看到坑底S(甲同学的视线起点C与点A、点S三点共线).经测量:AB=1.2米,BC=1.6米.根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1米)考点:相似三角形的应用;圆锥的计算。

人教版九年级数学中考总复习 专题六 方案设计题 含解析及答案

人教版九年级数学中考总复习   专题六 方案设计题  含解析及答案

专题六方案设计题专题提升演练1.一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉组成面积分别相等、形状完全相同的几何图案.某同学为此提供了如图所示的四种设计方案.其中可以满足园艺设计师要求的有()A.2种B.3种C.4种D.1种2.小明设计了一个利用两块相同的长方体木块测量一张桌子高度的方案,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73 cmB.74 cmC.75 cmD.76 cm3.某化工厂,现有A种原料52 kg,B种原料64 kg,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3 kg,B种原料2 kg;生产1件乙种产品需要A种原料2 kg,B种原料4 kg,则生产方案的种数为()A.4B.5C.6D.74.某市有甲、乙两家液化气站,他们的每罐液化气的价格、质量都相同.为了促销,甲站的液化气每罐降价25%销售;乙站的液化气第1罐按原价销售,从第2罐开始以7折优惠销售,若小明家购买8罐液化气,则最省钱的方法是买站的.5.从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,其截成的四个相同的等腰梯形(如图①)可以拼成一个平行四边形(如图②).现有一张平行四边形纸片ABCD(如图③),已知∠A=45°,AB=6,AD=4.若将该纸片按图②的方式截成四个相同的等腰梯形,然后按图①的方式拼图,则得到的大正方形的面积为 .+6√26.某市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍. (1)求温馨提示牌和垃圾箱的单价各是多少元;(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10 000元,请你列举出所有购买方案,并指出哪种方案所需资金最少,最少是多少元.设温馨提示牌的单价是x 元, 则垃圾箱的单价是3x 元,由题意得2x+3×3x=550,解得x=50.故温馨提示牌的单价是50元,垃圾箱的单价是150元. (2)设购买温馨提示牌m 个, 则购买垃圾箱(100-m )个,由题意得50m+150(100-m )≤10000, 解得m ≥50.又100-m ≥48,∴m ≤52.∵m 为整数,∴m 的取值为50,51,52. 方案一:当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾箱,其费用为50×50+50×150=10000(元); 方案二:当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾箱,其费用为51×50+49×150=9900(元);方案三:当m=52时,100-m=48,即购买52个温馨提示牌和48个垃圾箱,其费用为52×50+48×150=9800(元).∵10000>9900>9800,∴方案三所需资金最少,最少是9800元.7.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1 200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.设该旅行团中成人x 人,少年y 人,根据题意,得{x +y +10=32,x =y +12,解得{x =17,y =5,故该旅行团中成人17人,少年5人.(2)①由题意得,所需门票的总费用是:100×8+100×0.8×5+100×0.6×(10-8)=1320(元). ②设可以安排成人a 人,少年b 人带队, 则1≤a ≤17,1≤b ≤5. 当10≤a ≤17时,若a=10,则费用为100×10+100×0.8×b ≤1200,解得b ≤52, ∴b 的最大值是2,此时a+b=12,费用为1160元. 若a=11,则费用为100×11+100×0.8×b ≤1200,解得b ≤54, ∴b 的最大值是1,此时a+b=12,费用为1180元.若a ≥12,则100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a<10时,若a=9,则费用为100×9+100×0.8×b+100×0.6×1≤1200,解得b ≤3, ∴b 的最大值是3,a+b=12,费用为1200元.若a=8,则费用为100×8+100×0.8×b+100×0.6×2≤1200,解得b ≤72,∴b 的最大值是3,a+b=11<12,不合题意,舍去.同理,当a<8时,a+b<12,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人.其中成人10人,少年2人时购票费用最少.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苦荞茶
青花椒
野生蘑菇
每辆汽车运载量(吨)
A型
2
2
B型
4
2
C型
1
6
车型
A
B
C
每辆车运费(元)
1500
1800
2000
(1)设A型汽车安排 辆,B型汽车安排 辆,求 与 之间的函数关系式.
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
总收入(单位:元)

3
1
12 500

2
3
16 500
说明:不同种植户种植的同类蔬菜每亩的平均收入相等;亩为土地面积单位.
(1)求A,B两类蔬菜每亩的平均收入各是多少元;
(2)某种植户准备租20亩地用来种植A,B两类蔬菜,为了使总收入不低于63 000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.
根据题意列,得
解得20≤a≤22.
∵总利润W=5a+10(100-a)=-5a+1 000,W是关于x的一次函数,W随x的增大而减小,
∴当x=20时,W有最大值,此时W=900,且100-20=80,
答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.
2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
设商店销售完毕后获得的利润为w元,
则w=(2200﹣2000)a+(1800﹣1600)a+(1100﹣1000)(100﹣2a)=200a+10000,
∵200>0,∴w随a的增大而增大,
∴当a=37时, =200×37+10000=17400,
所以,商店获得的最大利润为17400元.
8.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(2)、若在现有资金160000元允许的范围内,购买上表中三类家电共100台,其中彩电台数和冰箱台数相同,且购买洗衣机的台数不超过购买彩电的台数,请你算一算有几种进货方案?哪种进货方案能使商店销售完这批家电后获得的利润最大?并求出最大利润。(利润=售价-进价)
解:(1)设商店购买彩电x台,则购买洗衣机(100﹣x)台.
所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800;
(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式y=﹣20x2+3000x﹣108000;
(3)根据题意得,﹣20x+1800≥240,x≥76,∴76≤x≤78,
2014中考数学专题训练:方案设计型
考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、
1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.
(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?
第二种方案共需费用:22×22+28×20+38×20+12×21=2056(元),
所以,第一种方案的总费用最少.
10.我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:
∴当FG的长为40米时,种草的面积和种花的面积相等。
(2)设改造后的总投资为W元
W= =6(x-20)2+26400
∴当x=20时,W最小=36400
答:当矩形EFGH的边FG长为20米时,空地改造的总投资最小,最小值为26400元。
5.我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.
12
10
8
每吨所需运费(元/吨)
240
320
200
解:(1)根据题意,得:12x+10y+8(20﹣x﹣y)=200,12x+10y+160﹣8x﹣8y=2002x+y=20,
∴y=20﹣2x,
(2)根据题意,得: 解之得:5≤x≤8
∵x取正整数,∴x=5,6,7,8,
∴共有4种方案,即
A
B
C
方案一
(1)甲、乙两个工程队单独完成各需多少天?
(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.
解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需(x+25)天.
根据题意得: .
方程两边同乘以x(x+25),得30(x+25)+30x=x(x+25),即x2﹣35x﹣750=0.解之,得x1=50,x2=﹣15.
(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;
(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;
(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.
物资种类
A
B
C
每辆汽车运载量(吨)
类别
种植面积(亩)
A
11
12
13
14
B
9
8
7
6
4.某学校计划将校园内形状为锐角△ABC的空地(如图)进行改造,将它分割成△AHG、△BHE、△CGF和矩形EFGH四部分,且矩形EFGH作为停车场,经测量BC=120m,高AD=80m,
(1)若学校计划在△AHG上种草,在△BHE、△CGF上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?
方案二:由甲乙两队合作完成.所需费用为:(2500+2000)×30=135000(元).
7.“五一”期间,为了满足广大人民的消费需求,某商店计划用160000元购进一批家电,这批家电的进价和售价如下表:
类别
彩电
冰箱
洗衣机
进价
2000
1600
1000
售价
2200
1800
1100
(1)、若全部资金用来购买彩电和洗衣机共100台,问商店可以购买彩电和洗衣机各多少台?
6.为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.
由题意,得2000x+1000(100﹣x)=160000,解得x=60,则100﹣x=40(台),
所以,商店可以购买彩电60台,洗衣机40台.
(2)设购买彩电和冰箱各a台,则购买洗衣机为(100﹣2a)台.
根据题意,得 解得 .
因为a是整数,所以a=34、35、36、37.
因此,共有四种进货方案.
月用水量(单位:吨)
单价(单位:元/吨)
不大于10吨部分
1.5
大于10吨,且不大于m吨部分(20≤m≤50)
2
大于m吨部分
3
(1)若某用户六月份的用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份的用水量为x吨,缴纳水费y元,试列出y关于x的函数式;
(3)若该用户六月份的用水ห้องสมุดไป่ตู้为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.
经检验,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合题意,应舍去.∴当x=50时,x+25=75.
答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.
(2)此问题只要设计出符合条件的一种方案即可.
方案一:由甲工程队单独完成.所需费用为:2500×50=125000(元).
(1)写出销售量y件与销售单价x元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资是每平方米4元,又如何设计矩形的长、宽,使得△ABC空地改造投资最小?最小为多少?
解、(1)设FG=x米,则AK=(80-x)米
由△AHG∽△ABCBC=120,AD=80可得: ∴
BE+FC=120- = ∴ 解得x=40
解:(1)设A,B两类蔬菜每亩平均收入分别是x元,y元.
由题意,得 解得
答:A,B两类蔬菜每亩平均收入分别是3 000元,3 500元.
(2)设用来种植A类蔬菜的面积为a亩,则用来种植B类蔬菜的面积为(20-a)亩.
由题意,得 解得10<a≤14.
相关文档
最新文档