固体物理(黄昆)第一章习题

合集下载

固体物理习题与答案

固体物理习题与答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

固体物理考题第一章晶体的结构

固体物理考题第一章晶体的结构

第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。

布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。

倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。

由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。

由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。

固体物理 黄昆答案 第一章

固体物理 黄昆答案 第一章

将上式代入 ε = Az T ε Az 得
⎛ ⎜ 0 ⎞ ⎜ ⎜ ε 23 ⎟ = ⎟ ⎜− ⎜ ε 33 ⎟ ⎠ ⎜ ⎜ ⎜ ⎝ 1 3 ε11 + ε 22 4 4 3 3 ε11 + ε 22 4 4 3 − ε 32 2 − 3 3 ε11 + ε 22 4 4 3 1 ε11 + ε 22 4 4 1 − ε 32 2 − 3 ⎞ ε 23 ⎟ 2 ⎟ ⎟ 1 − ε 23 ⎟ 2 ⎟ ⎟ ε 33 ⎟ ⎟ ⎠
a 2
r
r
r r
a r 2
r
r r
a r 2
r
r
课后答案网
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由
* vc =
ww
晶面系.
r r r r 1.5证明:倒格子矢量 G = h1b1 + h2b2 + h3b3 垂直于密勒指数为 (h1 , h2 , h3 ) 的
倒格子基矢 b1 =
v
kh da w. co m
案 网
1 h k l ( )2 + ( )2 + ( )2 a b c
并说明面指数简单的晶面,其面密度比较大,容易解理解:简单正交系
课后答案网
sc
bcc
fcc 第 n 近距 离 1
n
1 2 3 4 5 6
第 n 近 邻 第 n 近距离 数 6 1 12 8 6
操作构成群 C4 , C4 = ( C1 , C2 , C3 , C4 ) 群中任意两 个元素的乘积仍然是群中的元素(具体过程 乘积在此省略,请验证)。

(参考资料)固体物理习题带答案

(参考资料)固体物理习题带答案

D E ( ) ,其中 , 表示沿 x , y , z 轴的分量,我们选取 x , y , z
沿立方晶体的三个立方轴的方向。
显然,一般地讲,如果把电场 E 和晶体同时转动, D 也将做相同转动,我们将以 D' 表示转
动后的矢量。
设 E 沿 y 轴,这时,上面一般表达式将归结为:Dx xyE, Dy yyE, Dz zy E 。现在
偏转一个角度 tg 。(2)当晶体发生体膨胀时,反射线将偏转角度
tg , 为体胀系数
3
解:(1)、布拉格衍射公式为 2d sin ,既然波长改变,则两边同时求导,有
2d cos ,将两式组合,则可得 tg 。
(2)、当晶体发生膨胀时,则为 d 改变,将布拉格衍射公式 2d sin 左右两边同时对 d
考虑把晶体和电场同时绕 y 轴转动 / 2 ,使 z 轴转到 x 轴, x 轴转到 z 轴, D 将做相同
转动,因此
D'x Dz zy E
D'y Dy yyE
D'z Dx xy E 但是,转动是以 E 方向为轴的,所以,实际上电场并未改变,同时,上述转动时立方晶体
的一个对称操作,所以转动前后晶体应没有任何差别,所以电位移矢量实际上应当不变,即
第一章:晶体结构 1. 证明:立方晶体中,晶向[hkl]垂直于晶面(hkl)。
证 明 : 晶 向 [hkl] 为 h1 k2 l3 , 其 倒 格 子 为
b1
2
a1
a2
a3
(a2 a3 )
b2
2
a1
a3 a1 (a2 a3)
b3
2
a1
a1
a2
(a2 a3)
。可以知道其倒格子矢量

黄昆版固体物理学课后答案解析答案 (2)

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r8r34a r 34x 3333=π=π=π=(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个(5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 3、试证:六方密排堆积结构中633.1)38(ac 2/1≈=证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是:NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩r r r r r rr r r由倒格子基矢的定义:1232()b a a π=⨯Ωr r r31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r rQ ,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++r rr r r r r r同理可得:232()2()b i j k ab i j k aππ=-+=+-r rr r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。

因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。

这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。

它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 3(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 31.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。

…1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩由倒格子基矢的定义:1232()b a a π=⨯Ω31230,,22(),0,224,,022a aa a a a a a a a Ω=⋅⨯==,223,,,0,()224,,022i j ka a a a a i j k a a ⨯==-++ 同理可得:232()2()b i j k ab i j k aππ=-+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。

固体物理习题答案

固体物理习题答案

第一章 思考题
5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的 分布图。 (100) (110) (111)
体心立方
面心立方
第一章 思考题
6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。 答: 一个物理体系对称性用其具有的对称操作集合来描述。一个体 系具有的对称操作越多,其对称性就越高。在数学上,基 本操作的集合构成 “群”,每个基本操作称为群的一个元 素。由于晶格周期性限制,描述晶体宏观对称性的“点群” 只有32种。描述晶体微观对称性的“空间群”只有230种。 一个物理体系,如知道其几何对称性,就可在一定程度上确定 它的某些物理性质。例如,若原子结构具有中心反演对称 性,则原子无固定偶极矩;若一个体系具有轴对称性,偶 极矩必在对称轴上;若有对称面,偶极矩必在对称面上。 由此可见,不必讨论体系结构细节,仅从体系的对称性,就可 对其物理性质作出某些判断。对称理论已成为定性和半定 量研究物理问题的重要方法。
第一章 习题
1.1 何谓布拉菲格子?画出NaCl晶格所构成的布拉菲格子,说 明基元代表点构成的格子是面心立方晶体,每个原胞中含 几个格点? 解: 由基元代表点-格点-形成的晶格称为布拉菲格子或布拉菲点 阵。它的特征是每个格点周围的情况(包括周围的格点数 目和格点配置的几何方位等)完全相同。 基元由相邻的一个Na+和一 个Cl−构成,基元代表点 (如: Na+ 位置) 构成面心立方晶 格。 每个原胞中含一个格点。
a3
a 2
a 2
( i j)
a
2
A
k j i
a3 h3
aB
a h
( i j)
k
2
2
( i j) a i

固体物理-第一章习题解答参考ppt课件

固体物理-第一章习题解答参考ppt课件

d 2 r
a
G h h 1 h 2 h 3 2 h 1 h 2 h 3 2 h 1 h 2 h 3 2
上式中等效晶面指数{1,0,0}晶面族、(1,1,1)、(-1,-1,-1)晶面 对应的面间距最大,面间距,
d a 3
格点体密度,
1 4
a3
最大面密度,
d.a 43
a 3
4 3a2
1/2属于该等边三角形
2a
(111)
a
2a
(111)
1/6属于该等边三角形
等边三角形面积,
S12a2asin600 3a2
2
2格点面密度,2 4S 3a.21.5 求立方晶系晶面族 h的k l面 间距;
cb
a
晶胞基矢 a a i ,b a j,c a k
倒格子基矢 a r2 ir,b r2 r j,c r2 k r
界面方程:
kx
ky
2 a
kx
ky
2 a
2 kx ky a
kx
ky
2 a
与第1布里渊区界面围成的区域为第2布里渊区
.
第3布里渊区:
离原点再次远有4个倒格点 (h12,h20)(,h12,h20), (h10,h22)(,h10,h22)
界面方程:
kx
2
a
,kx
2
a
,
ky
2
a
,ky
2
a
与第1、2布里渊区界面围成区域为第3布里渊区
b
1 2
(b3
b1 )
c
1 2
(b1
b2)
与晶面族(hlk垂)直的倒格矢:
G hkl
h a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

abc
—— 面指数越简单的晶面,其晶面的间距越大,晶面上格 点的密度越大,这样的晶面越容易解理
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的 晶向 (111)面与(100)面的交线的AB —— AB平移,A与O点重合
B点位矢 (111)面与(100)面的交线的晶向
维格纳 —— 塞茨原胞 —— 14面体 —— 八个面正
六边形 —— 六个面正
四边形
如图所示为一种二维格子 的维格纳 — 塞茨原胞
简单立方晶格
维格纳 —— 塞茨原胞为原点和6个近邻格点连线的垂直 平分面围成的立方体
面心立方格子
维格纳 —— 塞茨原胞为原点和12个近邻格点连线的垂直 平分面围成的正十二面体
体心立方格子
维格纳 —— 塞茨原胞为原点和8个近邻格点连线的垂直 平分面围成的正八面体,沿立方轴的6个次近邻格点连线 的垂直平分面割去八面体的六个角,形成的14面体 —— 八个面是正六边形,六个面是正四边形
v
* c
பைடு நூலகம்
(2 )3
vc
1.5 证明:倒格子矢量

的晶面系
因为
垂直于密勒指数
ai bj
2ij
容易证明
与晶面系
正交
1.6 如果基矢 的面间距为:
构成简单正交系,证明晶面族
并说明面指数简单的晶面,其面密度比较大,容易解理 简单正交系
倒格子基矢
倒格子基矢 倒格子矢量
晶面族
的面间距
1
(h)2 (k )2 ( l )2
—— 晶向指数 [ 0 1 1 ]
(111)面与(110)面的交线的AB —— 将AB平移,A与原点O重合,B点位矢
(111)面与(110)面的交线的晶向
—— 晶向指数 [ 1 1 0 ]
补充例题 001 试做出简单立方晶格、面心立方晶格和体心立 方晶格的维格纳 — 塞茨原胞(Wingner-Seitz) 维格纳 — 塞茨原胞:选取某一个格点为中心,做出最近各 点和次近各点连线的中垂面,这些所包围的空间 —— 维格纳 — 塞茨原胞
固体物理学
《固体物理学》习题课
简单立方晶格结构
面心立方晶格结构
体心立方晶格结构
六 角 立 方 晶 格 结 构
金刚石晶格结构
1.3 证明:体心立方晶格的倒格子是面心立方; 面心立方晶格的倒格子是体心立方
由倒格子定义
体心立方格子原胞基矢
倒格子基矢
2
(j
k)
a
同理 b 22a 1 a 3 a 2 a 1 a 32 a (ik )
b 32a 1 a 1 a 2a 2 a 32 a (i j)
可见由
为基矢构成的格子为面心立方格子
面心立方格 子原胞基矢
倒格子基矢
b1
2(ijk)
a
同理
b2
2(ijk)
a
b3
2(ijk)
a
可见由
为基矢构成的格子为体心立方格子
1.4 证明倒格子原胞体积
其中vc为正格子原胞体积
倒格子基矢
倒格子体积
相关文档
最新文档