[13]两种简化的仿射投影自适应滤波算法

合集下载

(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

(完整word版)自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。

相应的装置称为滤波器。

实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。

滤波器可分为线性滤波器和非线性滤波器两种。

当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。

自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。

1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。

自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。

1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。

并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。

基于这~准则的最佳滤波器称为维纳滤波器。

20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。

自适应滤波的几种算法的仿真

自适应滤波的几种算法的仿真

3、抽头权向量的自适应。
图 2.1 LMS 算法的一般过程 2.1.2 LMS 算法特性
0<µ <
LMS 的均值收敛条件为
2
λmax 。
注意这是在小步长下推导出来的结果(要求
µ < 1 / λmax ) E[vk (n)] → 0 ,当 。此时,
ˆ (n)] → w o n → ∞ ,对所有 k 用 ε 0 (n) 代替 ε(n) ,可得等效地 E[w ,当 n → ∞ 。但是,渐
五、计算复杂度。即考虑一次迭代所需要的计算量、需要的存储器资源; 六、结构。信息流结构及硬件实现方式,是否高度模块化,适合并行计算。
1.4 线性自适应滤波算法
线性自适应滤波算法基于以下两种算法, 而两种算法的思路均为最接近目标平面的极值 点为最终目的。 一 、 随 机 梯 度 算 法 。 例 如 LMS, NLMS, 仿 射 投 影 滤 波 器 , DCT-LMS , GAL (gradient-adaptive lattice algorithm),块 LMS,子带 LMS 等。其思路是通过迭代和梯度估值 逼近维纳滤波,其性能准则是集平均的均方误差。在平稳环境中,通过搜索误差性能表面迭 代地达到性能测量的最优值(最速下降法) ;在非平稳环境中,通过误差性能表面的原点随 时间发生变化,跟踪误差性能表面的底部,输入数据的变化速率须小于算法的学习速率。它 的主要缺点在于收敛速度慢,对输入数据自相关阵的条件数变化敏感。 二、最小二乘算法。例如标准 RLS,平方根 RLS,快速 RLS 等。其思路是基于最小二 乘的算法通过使误差平方的加权和最小求最优权值,其性能准则是时间平均的均方误差。 RLS 算法可以被看作是 Kalman 滤波的一种特殊形式。各算法特点如下: 标准 RLS 算法:基于矩阵求逆引理,缺乏数值鲁棒性、计算量大 O( M );

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

毕业设计(论文)-lms及rls自适应干扰抵消算法的比较[管理资料]

前言自适应信号处理的理论和技术经过40 多年的发展和完善,已逐渐成为人们常用的语音去噪技术。

我们知道, 在目前的移动通信领域中, 克服多径干扰, 提高通信质量是一个非常重要的问题, 特别是当信道特性不固定时, 这个问题就尤为突出, 而自适应滤波器的出现, 则完美的解决了这个问题。

另外语音识别技术很难从实验室走向真正应用很大程度上受制于应用环境下的噪声。

自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果, 自动地调节现时刻的滤波参数, 从而达到最优化滤波。

自适应滤波具有很强的自学习、自跟踪能力, 适用于平稳和非平稳随机信号的检测和估计。

自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法。

其中, 自适应滤波算法一直是人们的研究热点, 包括线性自适应算法和非线性自适应算法, 非线性自适应算法具有更强的信号处理能力, 但计算比较复杂, 实际应用最多的仍然是线性自适应滤波算法。

线性自适应滤波算法的种类很多, 有RLS自适应滤波算法、LMS自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等[1]。

其中最小均方(Least Mean Square,LMS)算法和递归最小二乘(Recursive Least Square,RLS)算法就是两种典型的自适应滤波算法, 它们都具有很高的工程应有价值。

本文正是想通过这一与我们生活相关的问题, 对简单的噪声进行消除, 更加深刻地了解这两种算法。

我们主要分析了下LMS算法和RLS算法的基本原理, 以及用程序实现了用两种算法自适应消除信号中的噪声。

通过对这两种典型自适应滤波算法的性能特点进行分析及仿真实现, 给出了这两种算法性能的综合评价。

1 绪论自适应噪声抵消( Adaptive Noise Cancelling, ANC) 技术是自适应信号处理的一个应用分支, 年提出, 经过三十多年的丰富和扩充, 现在已经应用到了很多领域, 比如车载免提通话设备, 房间或无线通讯中的回声抵消( AdaptiveEcho Cancelling, AEC) , 在母体上检测胎儿心音, 机载电子干扰机收发隔离等, 都是用自适应干扰抵消的办法消除混入接收信号中的其他声音信号。

自适应滤波器的设计与实现

自适应滤波器的设计与实现
2
2.
凡是有能力进行信号处理的装置都可以称为滤波器。在近代电信装备和各类控制系统中,滤波器应用极为广泛;在所有的电子部件中,使用最多,技术最复杂要算滤波器了。滤波器的优劣直接决定产品的优劣,所以,对滤波器的研究和生产历来为各国所重视。
滤波器是一种用来消除干扰杂讯的器件,将输入或输出经过过滤而得到纯净的交流电。您可以通过基本的滤波器积木块——二阶通用滤波器传递函数,推导出最通用的滤波器类型:低通、带通、高通、陷波和椭圆型滤波器。传递函数的参数——f0、d、hHP、hBP和hLP,可用来构造所有类型的滤波器。转降频率f0为s项开始占支配作用时的频率。设计者将低于此值的频率看作是低频,而将高于此值的频率看作是高频,并将在此值附近的频率看作是带内频率。阻尼d用于测量滤波器如何从低频率转变至高频率,它是滤波器趋向振荡的一个指标,实际阻尼值从0至2变化。高通系数hHP是对那些高于转降频率的频率起支配作用的分子的系数。带通系数hBP是对那些在转降频率附近的频率起支配作用的分子的系数.低通系数hLP是对那些低于转降频率的频率起支配作用的分子的系数。设计者只需这5个参数即可定义一个滤波器。
关键词:自适应滤波器;LMS算法;FIR结构滤波器;DSP
1
1
滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。从总的来说滤波可分为经典滤波和现代滤波。经典滤波要求已知信号和噪声的统计特性,如维纳滤波和卡尔曼滤波。现代滤波则不要求己知信号和噪声的统计特性,如自适应滤波.自适应滤波的原理就是利用前一时刻己获得的滤波参数等结果,自动地调节现时刻的滤波参数,从而达到最优化滤波。自适应滤波具有很强的自学习、自跟踪能力,适用于平稳和非平稳随机信号的检测和估计。自适应滤波一般包括3个模块:滤波结构、性能判据和自适应算法.其中,自适应滤波算法一直是人们的研究热点,包括线性自适应算法和非线性自适应算法,非线性自适应算法具有更强的信号处理能力,但计算比较复杂,实际应用最多的仍然是线性自适应滤波算法。线性自适应滤波算法的种类很多,有LMS自适应滤波算法、R路自适应滤波算法、变换域自适应滤波算法、仿射投影算法、共扼梯度算法等。

滤波反投影法迭代方程

滤波反投影法迭代方程

滤波反投影法是一种用于图像重建的算法,其迭代方程通常由以下步骤组成:
1. 对当前投影图像进行滤波操作,以去除噪声和伪影。

2. 将滤波后的投影图像进行反投影,得到重建图像的更新值。

3. 将更新值与前一次迭代的重建图像进行叠加,得到新的重建图像。

4. 重复步骤1-3,直到达到预设的迭代次数或满足收敛条件。

具体来说,滤波反投影法的迭代方程可以表示为:
\(I^{k+1} = I^k + \lambda \left( \text{滤波后的投影图像} - \text{反投影图像} \right)\)
其中,\(I^{k+1}\)表示第\(k+1\)次迭代的重建图像,\(I^k\)表示第\(k\)次迭代的重建图像,\(\lambda\)是控制迭代的步长,\(\text{滤波后的投影图像}\)是滤波后的投影图像,\(\text{反投影图像}\)是反投影得到的图像。

需要注意的是,具体的迭代方程可能会因不同的滤波器和反投影方法而有所不同。

(完整word版)自适应滤波器(LMS算法)

(完整word版)自适应滤波器(LMS算法)

用于消除工频干扰自适应滤波器的设计与仿真一、背景及意义脑科学研究不仅是一项重要的前沿性基础研究,而且是一项对人类健康有重要实际意义的应用研究。

随着社会的发展、人类寿命的延长,因脑衰老、紊乱或损伤而引起的脑疾患,对社会财富消耗和家庭的负担日益增大。

许多国家纷纷将脑科学的研究列入国家规划,并且制订长远的研究计划。

人们把21 世纪看成是脑科学研究高潮的时代。

在脑电信号的实际检测过程中,往往含有心电、眼动伪迹、肌电信号、50Hz工频干扰以及其它干扰源所产生的干扰信号,这给脑电分析以及脑电图的临床应用带来了很大的困难。

因此如何从脑电中提取出有用的信息是非常具有挑战性,且又很有学术价值、实用价值的研究课题。

本论文从信号处理的角度出发,采集脑电波,使得在强干扰背景下的脑电信号得以提取,还原出干净的脑电波,用于临床医学、家庭保健等。

医生可以利用所采集到的脑电波来进行对病人神经松弛训练,通过脑电生物反馈技术实现自我调节和自我控制。

运用生物反馈疗法,就是把求治者体内生理机能用现代电子仪器予以描记,并转换为声、光等反馈信号,因而使其根据反馈信号,学习调节自己体内不遂意的内脏机能及其他躯体机能、达到防治身心疾病的目的。

这种反馈疗法是在一定程度上发掘人体潜能的一种人—机反馈方法。

有研究表明脑电生物反馈对多种神经功能失调疾病有明显疗效。

对于有脑障碍或脑疾病的人,也可以随时监测其脑电信号,及早地发现问题,避免不必要的损失。

二、脑电数字信号处理的研究现状脑电的监护设备在国内外品种繁多,高新技术含量高,技术附加值高,相比而言,我国的产品较国际高水平产品落后10-15 年。

但近年来,国内产品也逐步利用高新技术使产品向自动化、智能化、小型化、产品结构模块化方向发展。

国内产品在抗干扰、数字处理、实时传输数据等方面已有很大进展,使脑电检测不再是只能在屏蔽室进行。

目前,脑电信号的数字滤波从原理上来看,主要有FIR滤波器和IIR滤波器。

FIR滤波器可以提供线性滤波,但存在阶数较高,运算较为复杂的缺点[11];而IIR滤波器是一种非线性滤波器,它可以用较少的阶数实现性能良好的滤波,是目前运用较广泛的一种滤波器[10]。

自适应滤波LMS算法及RLS算法及其仿真

自适应滤波LMS算法及RLS算法及其仿真

自适应滤波第1章绪论 (1)1.1自适应滤波理论发展过程 (1)1.2自适应滤波发展前景 (2)1.2.1小波变换与自适应滤波 (2)1.2.2模糊神经网络与自适应滤波 (3)第2章线性自适应滤波理论 (4)2.1最小均方自适应滤波器 (4)2.1.1最速下降算法 (4)2.1.2最小均方算法 (6)2.2递归最小二乘自适应滤波器 (7)第3章仿真 (12)3.1基于LMS算法的MATLAB仿真 (12)3.2基于RLS算法的MATLAB仿真 (15)组别:第二小组组员:黄亚明李存龙杨振I第1章绪论从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波。

相应的装置称为滤波器。

实际上,一个滤波器可以看成是一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、或者希望得到的有用信号,即期望信号。

滤波器可分为线性滤波器和非线性滤波器两种。

当滤波器的输出为输入的线性函数时,该滤波器称为线性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线性滤波器。

自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。

1.1自适应滤波理论发展过程自适应技术与最优化理论有着密切的系。

自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。

1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。

并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。

基于这~准则的最佳滤波器称为维纳滤波器。

20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。

LMS自适应滤波算法

LMS自适应滤波算法

LMS自适应滤波算法1960年Widrow和Hoff提出最小均方误差算法(LMS),LMS算法是随机梯度算法中的一员。

使用“随机梯度”一词是为了将LMS算法与最速下降法区别开来。

该算法在随机输入维纳滤波器递归计算中使用确定性梯度。

LMS算法的一个显著特点是它的简单性。

此外,它不需要计算有关的相关函数,也不需要矩阵求逆运算。

由于其具有的简单性、鲁棒性和易于实现的性能,在很多领域得到了广泛的应用。

1LMS算法简介LMS算法是线性自适应滤波算法,一般来说包含两个基本过程:(1)滤波过程:计算线性滤波器输出对输入信号的响应,通过比较输出与期望响应产生估计误差。

(2)自适应过程:根据估计误差自动调整滤波器参数。

如图1-1所示,用表示n时刻输入信号矢量,用表示n时刻N阶自适应滤波器的权重系数,表示期望信号,表示误差信号,是主端输入干扰信号,u是步长因子。

则基本的LMS算法可以表示为(1)(2)图1-1 自适应滤波原理框图由上式可以看出LMS算法实现起来确实很简单,一步估计误差(1),和一步跟新权向量(2)。

2迭代步长u的作用2.1 理论分析尽管LMS算法实现起来较为简单,但是精确分析LMS的收敛过程和性能却是非常困难的。

最早做LMS收敛性能分析的是Widrow等人,他们从精确的梯度下降法出发,研究权矢量误差的均值收敛特性。

最终得到代价函数的收敛公式:′(3)式(3)揭示出LMS算法代价函数的收敛过程表现为一簇指数衰减曲线之和的形式,每条指数曲线对应于旋转后的权误差矢量的每个分量,而他们的衰减速度,对应于输入自相关矩阵的每个特征值,第i条指数曲线的时间常数表示为τ小特征值对应大时间常数,即衰减速度慢的曲线。

而大特征值对应收敛速度快的曲线,但是如果特征值过大以至于则导致算法发散。

从上式可以明显看出迭代步长u在LMS算法中会影响算法收敛的速度,增大u可以加快算法的收敛速度,但是要保证算法收敛。

最大步长边界:稳态误差时衡量LMS算法的另一个重要指标,稳定的LMS算法在n时刻所产生的均方误差,其最终值∞是一个常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MMN
LO@>DOE >C<ODP 6@K 6??EAL6>AO@F
# £Û !£¨ £¬ £¬ ¡-£¬ £Ý £¬ !£¨ !# $£¨ ! " £© " " £© " " £©
Q’,: "%
£¨$£© £¨%£©
£¨ " % "£©& ! £¨ " £©% !" £¨ " £© £¨ " £© £¬ ! #
£Û%£Ý
£¨ ! £©6= 1:/ 1%0LH/6):1 </51&’ &3 !/1 8= %==82/ 1:%1 ! %*%016</ 3641/’£¬61= &’*/’ 6= " %(* 1:/ 0’&I/516&( &’*/’ 6= £¨ ! £©%= 1:/ 6(081 =6)(%4 %(* & £¨ ! £©%= # $ 7&(=6*/’6() % £¨ ! £©6( 1:/ ’/3/’/(5/ =6)(%4£¬ 1:/ 5&’’/516&( </51&’ !! EAE 6= */1/’26(/* M> 1:/ 26(6282(&’2 =&4816&( &3 1:/
!"#$# ! %#&’(#) * )+*,, -’).(./# &0+1#$ !".2" )#$/#) *) ("# $#30,*(.&3 -*$*+#(#$ 4’$ 2’+-0(.&3 ("# .&/#$)# ’4 ("#
# £¨ " £© *0(’2’$$#,*(.’& +*($.5 "£¨ " £© " ’ 6&% ! %#&’(#) ("# )’72*,,#%¡° )(#- ).8#¡±4*2(’$£¬!".2" 2’&($’,) ("# )(*1.,.(9
Á½ÖÖ¼ò»¯µÄ·ÂÉäͶӰ×ÔÊÊÓ¦Â˲¨Ëã·¨
ÁÖÒ«È٠Τ ¸Ú ÎĽ£·æ
£¨»ªÄÏÀí¹¤´óѧµç×ÓÓëͨÐŹ¤³Ìϵ ¡¤ ¹ãÖÝ£¬ ¡¤ Ïã¸Û£© !"#$%#£© £¨Ïã¸Û³ÇÊдóѧµç×Ó¹¤³Ìϵ
ÕªÒª£ºÔÚ·ÂÉäͶӰËã·¨µÄ»ù´¡ÉÏ£¬ Ìá³öÁËÁ½ÖÖ¼ò»¯·ÂÉäͶӰ×ÔÊÊÓ¦Â˲¨Ëã·¨ £¨ 9EA£© B ÐÂËã·¨µÄÊÕÁ²Ëٶȱȴ«Í³ µÄÄÜÁ¿¹éÒ»»¯×îС¾ù·½Îó²îËã·¨ £¨#!D9£© ¿ì£¬ ¶ø¼ÆËãÁ¿Ôö¼Ó²»¶à£¬ Ò×ÓÚʵʱʵÏÖ B ¼ÆËã»ú·ÂÕæÖ¤ÊµÁËÉÏÊö½áÂÛ B ¹Ø¼ü´Ê£º×ÔÊÊÓ¦Â˲¨£»·ÂÉäͶӰËã·¨£»¿ìËÙ·ÂÉäͶӰËã·¨
# $ " £¨ £© £¨ £© £¨ " £©&£Û "£¨ £¨ " £©% "’ £Ý % " £© " $- " ’ "& #
*&% ("# 2’&/#$3#&2# )-##% ’4 ("# *,3’$.("+: ! .) $#7 ! ( ! ( &’ )($.2(#% (’ 1# .&).%# ("# .&(#$/*,£¬ ££¨ ¬ $£©*&%£¨%£© £¬! £¨ " £©2*& 1# 0-7 ;*)#% ’& <=)£¨ : ’£©
£Û&£¬ (£Ý %*(#% .& * $#20$)./# +*&&#$ *) .&%.2*(#% *) 4’,,’!)£¬
£ $ ¨ " £©&
[£¨" $ !£©$
£ ) ¨ " £©
# $£¨ " "
$ "£©
]
£¨)£©
£¬.( 2*& 1# )"’!& ("*( % £¨ " £© H$’+ <= :£¨"&£34; ’ A& (".) 2*)#£¬("# 4*)(#)( 2’&/#$3#&2# ’4 6?6 £¬ .) ’1(*.&#% 4’$ (.+#7.&/*$.*&( )9)(#+) : H$’+ <= £ : ¨ ) £© £¨ " £©.) $#%02#% (’ $
# £¨ " £©&£Û £ £! ¬£¬ ¡-£¬ $ ) ¨ " £© !£Ý ’
!"# $%&’(%)%*+ ,))%-* ./#0*12%#- ,(3#/%24&5!
!"# $%&’&() %(* +," -%()
£¨./0%’12/(1 &3 ,4/51’&(65 %(* 7&228(65%16&( ,()6(//’6()£¬9&81: 7:6(% ;(6</’=61> &3 ?/5:(&4&)> ¡¤ -8%()@:&8£¬!"#$%#£¬ A B CB 7:6(%£©
£Û"£¬ ’£Ý 3&44&H6() =/1 &3 46(/%’ /J8%16&(= ( £¨ ! £©’ #£¨ £Û ! £¨ ! £©( !! £¨ ! £© £Ý " ! £©
£¨"£©
H:/’/ ( £¨ ! £©’£Û & £¨ ! £© £¬ £¨ ! ) "£© £¬ ¡-£¬ £¨ ! ) # ( "£© £Ý £¬ " & & £¨&£©
£¨*£©
£¨ " £©*&% $£ E#( 0) %#4.&# ("# /#2(’$) % - ¨ " £©$#)-#2(./#,9 *) £¨ " £©& " . !£¨ £¨ " £©&£Û"£¬ £¡ ¬-£¬ £# Ý£¬ ¡¤ # % /£¨ /# $£¨ ! " £© " " £© " " £© £¨"!£© £¨ " £©& " . !£¨ £! ¬£¬ ¡-£¬ ¡¤ £ $& $ ¨ " £©&£Û 0£¨ !£Ý’ £¨""£© ! " £© / " £© >"0)£¬<= :£¨$£©(*J#) ("# 4’$+
0’&0/’16/= 1:%1 46/ M/1H//( 1:&=/ &3 #!D9 %(* ’/58’=6</ 4/%=1 =J8%’/=£¨ C!9£©%4)&’61:2= B "1= 3%=1 </’=6&(£¬3%=1 £Û&£¬ ’£Ý £¬2%> 0&==/== 1:/ %336(/ 0’&I/516&(£¨ PEA£©%4)&’61:2 !D9 46O/ 5&204/K61> H:64/ %5:6/<6() 1:/ C!9 46O/ 5&(L </’)/(5/B G&H/</’£¬1:/ =46*6() H6(*&H/* 3%=1 1’%(=</’L =%4 3641/’ %4)&’61:2 £¨ 9+P?P £© /2M/**/* H61:6( 1:/ PEA %*%016</ 3641/’ 6= 1&& 5&204/K 3&’ 0’%5165%4 6204/L 2/(1%16&( 6( =&2/ 5%=/=£¬%(* 61 6= (82/’65%44> 8(=1%M4/ 6( 36(61/ 0’/56=6&( %’61:2/165 B "( <6/H &3 1:6= =:&’15&26()£¬%( %41/’(%1/ */’6<%16&( &3 EAE 6= 0’/=/(1/* 6( 1:6= 0%0/’ B E(* 1H& =6204636/* £¨ 9EA£©%’/ */’6</* B ?:/ 8=L %336(/ 0’&I/516&( %4)&’61:2= %)/ &3 9+P?P %4)&’61:2 6= %<&6*/* 6( 1:/ (/H %4)&L ’61:2= =& %= 1& 620’&</ 1:/ (82/’65%4 =1%M6461> B ?:’&8):&81 1:/ 0%0/’£¬ 1:/ 3&44&H6() (&1%16&(= %’/ 8=/*B Q/51&’= %’/ */(&1/* M> M&4*3%5/ 4&H/’5%=/ 4/11/’=
µÚ "* ¾íµÚ ’ ÆÚ &### Äê $ ÔÂ
相关文档
最新文档