(完整版)初三数学中考模拟试题(含答案),推荐文档

合集下载

初三数学中考模拟试卷(附详细答案)

初三数学中考模拟试卷(附详细答案)

AB C DP R图(2)AB C D图(1)初三数学中考模拟试卷(附详细答案)一、选择题(本大题共8小题,每小题3分,共计24分)1.下列各数比-3小的数是( ) 、 (A)0 (B)l (C) -4 (D) 12-2.下列计算中,正确的是( )A .a 3+a 2=2a 5B .a 3·a 2=a 5C .(a 3)2=a 5D .a 3-a 2=a3.图(1) 是四边形纸片ABCD ,其中∠B =120︒, ∠D =50︒。

若将其右下角向内折出一∆PCR ,恰使CP//AB ,RC//AD ,如图(2)所示,则∠C 为( ) A .80︒ B .85︒ C .95︒ D .110︒4. 在下面的四个几何体中,它们各自的左视图与主视图不全等的是( )5. 如果有意义,那么字母x 的取值范围是( )A .x ≥1B .x >1C .x ≤1D .x <1 6. 已知半径分别为4cm 和7cm 的两圆相交,则它们的圆心距可能是( ) A .1cm B .3cm C .10cm D .15cm 7.函数y=(1-k)/x 与y=2x 的图象没有交点,则k 的取值范围为( )A .k<0B .k<1C .k>0D .k>1 8. 下列调查方式合适的是( )A .了解炮弹的杀伤力,采用普查的方式B .了解全国中学生的视力状况,采用普查的方式C .了解一批罐头产品的质量,采用抽样调查的方式D .对载人航天器“嫦娥二号”零部件的检查,采用抽样调查的方式.A .B .C .D .二、填空题(本大题共8小题,每小题3分,共计24分)9.把570000用科学计数法表示为 .10.计算:3273-.11.把多项式322a a a -+分解因式的结果是 .12、一个角是80°的等腰三角形,另两个角为 . 13.一次函数26y x =-的图像与x 轴的交点坐标是 .14.若2()2210x y x y +--+=,则x y += . 15.若关于x 的方程220x x m --=有两个相等的实数根,则m =16.若圆锥的侧面展开图是一个弧长为24π的扇形,.则这个圆锥底面半径是 .三、解答题(本大题共有9小题,共计86分)17.(本题12分,每小题6分)(1)计算:0011124sin 60(3()3--+---π).(2)计算: )12(11222+-⨯-++x x x x x x18.(本题8分)先化简,再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中x 是不等式组30211x x +>⎧⎨-<⎩的整数解..19.(本题10分)为了对学生进行爱国主义教育,某校组织学生去看演出,有甲乙两种票,已知甲乙两种票的单价比为4:3,单价和为42元. (1)甲乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,且规定购买甲种票必须多于15张,有哪几种购买方案?20.(本题8分)已知一次函数2y x =+与反比例函数ky x =,其中一次函数2y x =+的图象经过点P (k ,5). ①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标21、(本题8分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)求选择长跑训练的人数占全班人数的百分比机该班学生的总人数;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%,请求出参加训练之前的人均进球数。

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)

中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。

可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】

九年级数学中考模拟试卷【含答案】专业课原理概述部分一、选择题1. 若 a > 0,b < 0,且 |a| > |b|,则 a + b 的符号是()A. 正数B. 负数C. 零D. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sin(A) = 1/2,则角A的度数是()A. 30°B. 45°C. 60°D. 90°4. 若一个等差数列的前三项分别是2、5、8,则该数列的公差是()A. 1B. 2C. 3D. 45. 在直角坐标系中,点P(2, -3)关于原点的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题1. 任何两个奇数之和都是偶数。

()2. 一元二次方程的判别式Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根。

()3. 在等边三角形中,每个角的度数是60°。

()4. 函数y=2x+3的图像是一条直线。

()5. 互质的两个数的最小公倍数是它们的乘积。

()三、填空题1. 若 a 3 = 5,则 a 的值为______。

2. 若一个等比数列的前三项分别是2、4、8,则该数列的公比是______。

3. 在直角坐标系中,点A(3, 4)到原点的距离是______。

4. 若sin(α) = 1/2,且α是锐角,则cos(α)的值是______。

5. 一元二次方程x^2 5x + 6 = 0的解是______和______。

四、简答题1. 解释什么是等差数列,并给出一个例子。

2. 什么是锐角和钝角?给出一个锐角和一个钝角的例子。

3. 解释一元二次方程的解的意义。

4. 什么是平行线?在直角坐标系中如何判断两条线是否平行?5. 解释什么是函数的图像,并给出一个例子。

五、应用题1. 一个等差数列的前三项分别是2、5、8,求该数列的第10项。

初三模拟试题及答案数学

初三模拟试题及答案数学

初三模拟试题及答案数学一、选择题(本题共10小题,每小题3分,满分30分)1. 若a、b、c是△ABC的三边长,且a²+b²+c²=ab+ac+bc,那么△ABC的形状是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 不等边三角形2. 已知x²-5x-6=0的两根为x₁和x₂,则x₁+x₂的值为()A. 5B. -5C. 6D. -63. 某商品原价为a元,打八折后售价为b元,那么商品的折扣率为()A. 80%B. 20%C. 25%D. 75%4. 已知函数y=kx+b(k≠0)的图象经过点(1,2)和(-1,0),则k和b的值分别为()A. k=2,b=1B. k=-2,b=1C. k=2,b=-1D. k=-2,b=-15. 一个数的相反数是-3,这个数是()A. 3B. -3C. 0D. 66. 若x=2是方程x²-3x+2=0的根,则方程的另一个根是()A. 1B. 2C. -1D. 07. 已知抛物线y=ax²+bx+c(a≠0)的对称轴为x=-1,那么抛物线与x轴的交点个数为()A. 0B. 1C. 2D. 无法确定8. 已知a、b、c是△ABC的三边长,且满足a²+b²=c²,那么△ABC的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形9. 已知方程x²-6x+8=0的两个根为x₁和x₂,则x₁x₂的值为()A. 8B. 6C. 2D. 110. 已知一个等腰三角形的两边长分别为3和5,那么这个等腰三角形的周长为()A. 11B. 13C. 16D. 14二、填空题(本题共5小题,每小题3分,满分15分)11. 已知等腰三角形的底边长为6,腰长为5,则该三角形的周长为________。

12. 已知函数y=2x+3与y=-x+4的交点坐标为(________,________)。

初三数学模拟中考试卷答案

初三数学模拟中考试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -3D. 0.1010010001……答案:C解析:有理数是可以表示为两个整数比的数,其中分母不为0。

只有C选项-3是有理数。

2. 若x^2 - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或1D. 3或2答案:A解析:通过因式分解或使用求根公式,可以得出x^2 - 5x + 6 = (x - 2)(x - 3) = 0,所以x的值为2或3。

3. 下列各图中,有两条平行线的是()A. 图1B. 图2C. 图3D. 图4答案:A解析:在图1中,线段AB和CD平行,因此有两条平行线。

4. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a + 3 > b + 3D. a - 3 < b - 3答案:C解析:由于a > b,两边同时加上相同的数不会改变不等号的方向,所以a + 3 > b + 3是正确的。

5. 若函数f(x) = 2x - 3,则f(5)的值为()A. 7B. 8C. 9D. 10答案:A解析:将x = 5代入函数f(x) = 2x - 3,得到f(5) = 2 5 - 3 = 7。

6. 下列各式中,等式成立的是()A. 2a = 2bB. a^2 = b^2C. a + b = c + dD. a^2 - b^2 = (a + b)(a - b)答案:D解析:根据平方差公式,a^2 - b^2 = (a + b)(a - b)是恒等式。

7. 在直角坐标系中,点A(2, 3),点B(-1, 4),则线段AB的长度为()A. 3B. 5C. 6D. 7答案:B解析:根据两点间的距离公式,AB的长度为√[(2 - (-1))^2 + (3 - 4)^2] =√[3^2 + (-1)^2] = √(9 + 1) = √10 ≈ 3.16,四舍五入后为5。

九年级数学中考模拟试卷(共6套含答案)

九年级数学中考模拟试卷(共6套含答案)

中考数学模拟测试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣53.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b25.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.12.(4分)分解因式:3y2﹣12=.13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是.16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<8080≤x<901790≤x<100(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)假期里王老师有一个紧急通知,要用电话尽快通知给50个同学,假设每通知一个同学需要1分钟时间,同学接到电话后也可以相互通知,那么要使所有同学都接到通知最快需要的时间为()A.8分钟B.7分钟C.6分钟D.5分钟解:第一分钟通知到1个学生;第二分钟最多可通知到1+2=3个学生;第三分钟最多可通知到3+4=7个学生;第四分钟最多可通知到7+8=15个学生;第五分钟最多可通知到15+16=31个学生;第六分钟最多可通知到31+32=63个学生;答:至少用6分钟.故选:C.2.(3分)在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为()A.4B.﹣C.﹣D.﹣5解:|﹣|=,|﹣|=,|4|=4,|﹣5|=5,∵<4<5,∴在﹣,﹣,4,﹣5这四个数中,绝对值最小的数为﹣,故选:B.3.(3分)用四舍五入法按要求对下列各数取近似值,其中描述错误的是()A.0.67596(精确到0.01)≈0.68B.近似数169.8精确到个位,结果可表示为170C.近似数0.05049精确到0.1,结果可表示为0.1D.近似数9.60×106是精确到百分位解:A.0.67596(精确到0.01)≈0.68,正确,故本选项不合题意;B.近似数169.8精确到个位,结果可表示为170,正确,故本选项不合题意;C.近似数0.05049精确到0.1,结果可表示为0.1,正确,故本选项不符合题意;D.近似数9.60×106是精确到万位,故本选项符合题意.故选:D.4.(3分)下列各式正确的是()A.6a2﹣5a2=a2B.(2a)2=2a2C.﹣2(a﹣1)=﹣2a+1D.(a+b)2=a2+b2解:A.6a2﹣5a2=a2,正确;B.(2a)2=4a2,错误;C.﹣2(a﹣1)=﹣2a+2,错误;D.(a+b)2=a2+2ab+b2,错误;故选:A.5.(3分)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.6.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.7.(3分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们平均成绩都是9环,方差分别是S甲2=0.23,S乙2=0.3,S丙2=0.35,S丁2=0.4,从成绩稳定上看,你认为谁去最合适()A.甲B.乙C.丙D.丁解:∵0.23<0.3<0.35<0.4,∴S甲2<S乙2<S丙2<S丁2,∴甲的成绩稳定,∴选甲最合适,故选:A.8.(3分)一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.解:根据题意,得甲的工作效率为,乙的工作效率为.所以甲、乙合作完成工程需要的天数为:1÷(+)=故选:C.9.(3分)在同一直角坐标系中,一次函数y=ax﹣b和二次函数y=﹣ax2﹣b的大致图象是()A.B.C.D.解:A、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时二次函数y=﹣ax2﹣b 的图象应该开口向下,顶点的纵坐标﹣b大于零,故A正确;B、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2﹣b的图象应该开口向上,顶点的纵坐标﹣b大于零,故B错误;C、由一次函数y=ax﹣b的图象可得:a<0,﹣b>0,此时二次函数y=﹣ax2+b的图象应该开口向上,故C错误;D、由一次函数y=ax﹣b的图象可得:a>0,﹣b>0,此时抛物线y=﹣ax2﹣b的顶点的纵坐标大于零,故D错误;故选:A.10.(3分)如图,正方形ABCD中,AB=6,将△ADE沿AE对折至△AEF,延长EF交BC 于点G,G刚好是BC边的中点,则ED的长是()A.1B.1.5C.2D.2.5解:连接AG,由已知AD=AF=AB,且∠AFG=∠ABG=∠D=90°,∵AG=AG,∴△ABG≌△AFG(HL),∴BG=BF∵AB=BC=CD=DA=6,G是BC的中点,∴BG=BF=3,设DE=x,则EF=x,EC=6﹣x,在Rt△ECG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,即DE=2.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.(4分)﹣的相反数是;绝对值是.解:﹣的相反数是;绝对值是,故答案为:,.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是5.解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.14.(4分)若方程x2﹣4x+2=0的两个根为x1,x2,则x1(1+x2)+x2的值为6.解:根据题意x1+x2=4,x1•x2=2,∴x1(1+x2)+x2=x1+x2+x1•x2=4+2=6.故答案为:6.15.(4分)如图所示的几何体中,主视图与左视图都是长方形的是(1)(3)(4).解:图(2)的左视图为三角形,图(5)的主视图和左视图为等腰梯形,主视图与左视图都是长方形的是(1)(3)(4);故答案为:(1)(3)(4).16.(4分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B2019的横坐标是22019﹣1.解:当x=0时,y=x+1=1,∴A(0,1),当y=0时,x=﹣1,∴直线与x轴的交点(﹣1,0)∴B1(1,1),易得△A1B1A2、△A2B2A3、△A3B3A4、△A4B4A5……均是等腰直角三角形,可得:每一个正方形的边长都是它前一个正方形边长的2倍,因此:B2的横坐标为1+1×2=1+2=20+21=3=22﹣1,B3的横坐标为1+1×2+2×2=1+2+4=20+21+22=7=23﹣1,B4的横坐标为24﹣1,B5的横坐标为25﹣1,……B2019的横坐标为22019﹣1,故答案为:22019﹣1.三.解答题(共8小题,满分66分)17.(6分)解不等式+1≥,并把它的解集在数轴上表示出来.解:去分母,得2(1+2x)+6≥3(1+x)去括号得,2+4x+6≥3+3x,再移项、合并同类项得,x≥﹣5.在数轴上表示为:.18.(6分)已知:如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=36°,求∠DBC的度数;(3)若AE=8,△CBD的周长为24,求△ABC的周长.解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=36°,∴∠ABD=∠A=36°,∠ABC=∠C=(180°﹣36°)÷2=72°∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°;(3)∵AB的垂直平分线MN交AC于点D,AE=8,∴AB=2AE=16,∵△CBD的周长为24,∴AC+BC=24,∴△ABC的周长=AB+AC+BC=16+24=40.19.(6分)某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):90 85 68 92 81 84 95 93 87 89 78 99 89 85 9788 81 95 86 98 95 93 89 86 84 87 79 85 89 82整理分析数据:成绩x(单位:分)频数(人数)60≤x<70170≤x<80280≤x<901790≤x<10010(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是.解:(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为360×=120(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为,故答案为:.20.(8分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB=S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.21.(8分)某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.(1)求y与x的函数关系式;(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A 和产品B每月可获得总利润w1(万元)最大?(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).解:(1)设y=kx+b,从图象中可知函数经过点(200,6),(300,3),∴,∴,∴y=﹣0.03x+12;(2)由题意得:w1=4×200+(﹣0.03x+12)x=﹣0.03x2+12x+800=﹣0.03(x﹣200)2+2000,∵y≤3,﹣0.03x+12≤3,∴x≥300,∵x≥200时,w1随x的增大而减小,∴当x=300时,w1有最大值,∴产品B的每件利润为300元时,公司每月利润w1最大;(3)w2=200×(0.024x﹣3.2)+(﹣0.03x+12)x=﹣0.03x2+16.8x﹣640=﹣0.03(x﹣280)2+1712,当x=280时,w2最大值为1712万元,∴产品B每件利润定为280元时,每月可获得最大利润为1712万元.22.(8分)我们在探索“圆”时,学习了圆周角与圆心角的关系定理的推论“直径所对的圆周角是直角”,请利用此推论,完成下面的尺规作图,如果,点P是⊙O外的一点,用圆规和直尺过点P作出⊙O的切线(要求:不写作法,保留作图痕迹,写出结论)解:如图,点A和点B为以OP为直径的圆与⊙O的交点,则P A和PB为所求.23.(12分)如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c 是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.24.(12分)正方形ABCD中,M是AD中点,点P从点A出发沿A﹣B﹣C﹣D的路线匀速运动,到点D停止,点Q从点D出发,沿D﹣C﹣B﹣A路线匀速运动,P、Q两点同时出发,点P的速度是点Q速度的m倍(m>1),当点P停止时,点Q也同时停止运动,设t秒时,正方形ABCD与∠PMQ重叠部分的面积为y,y关于t的函数关系如图2所示,则(1)求正方形边长AB;(2)求m的值;(3)求图2中线段EF所在直线的解析式.解:(1)当t=0时,y=144=AB2,解得:AB=12;(2)当0≤t≤4时,如图1所示,y=S正方形ABCD﹣S△APM﹣S△DQM=144﹣[×DM×QD+AM×AP]=144﹣[×6t+×6×mt]即:y=144﹣3t﹣3mt,将点K(4,96)代入上式并解得:m=3;(3)当4<t≤8时,此时,点P在BC上,点Q在CD上,如下图2所示:y=S正方形ABCD﹣S△梯形ABPM﹣S△DQM=144﹣[6t+(3t﹣12+6)×12]=180﹣21t,当t=8时,y=12,故点E(8,12),同理可得点F(9,0),将点E、F的坐标代入一次函数表达式:y=kx+b得:,解得:,故线段EF所在直线的解析式为:y=﹣12x+108中考数学模拟试卷一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.38.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O412.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.514.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.A.1个B.2个C.3个D.4个15.如图,点I是Rt△ABC的内心,∠C=90°,AC=3,BC=4,将∠ACB平移使其顶点C与I重合,两边分别交AB于D、E,则△IDE的周长为()A.3B.4C.5D.716.已知函数y=2x与y=x2﹣c(c为常数,﹣1≤x≤2)的图象有且仅有一个公共点,则常数c的值为()A.0<c≤3或c=﹣1B.﹣l≤c<0或c=3C.﹣1≤c≤3D.﹣1<c≤3且c≠0二.填空题(本大题有3个小题,共11分,17、18小题每题4分:19小题每空1分,把答案写在题中横线上)17.当c=25,b=24时,.18.若a,b互为相反数,则a2﹣b2=.19.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=;r:b=;正六边形T1,T2的面积比S1:S2的值是.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知:2A﹣B=3a2+2ab,A=﹣a2+2ab﹣3.(1)求B;(用含a、b的代数式表示)(2)比较A与B的大小.21.(9分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?22.(9分)用黑白两种颜色的正六边形地砖按如图所示的方式,拼成若干个图案:(1)当黑色地砖有1块时,白色地砖有块,当黑色地砖有2块时,白色地砖有块;(2)第n(n为正整数)个图案中,白色地砖有块;(3)第几个图案中有2018块白色地砖?请说明理由.23.(9分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.24.(10分)如图,平面直角坐标系中,一次函数y x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.25.(10分)定义:如果三角形的两个内角α与β满足α+2β=90°,那么称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=13,弦AD=5,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.26.(12分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.答案解析一.选择题(共16小题)1.如图,工人师傅安装门时,常用木条EF固定长方形门框ABCD,使其不变形,这种做法的依据是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.三角形的稳定性解:常用木条EF固定长方形门框ABCD,使其不变形,这种做法的根据是三角形具有稳定性.故选:D.2.新冠状病毒疫情发生以来,截止2月5日全国红十字会共接收社会捐赠款物约6.5993×109元.数据6.5993×109可以表示为()A.0.65993亿B.6.5993亿C.65.993亿D.659.93亿解:6.5993×109=65.993亿.故选:C.3.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.5.一个几何体由四个棱长为1正方体搭成,从正面和从左面看到的形状如图所示.则从上面看这个几何体的形状(其中小正方形中的数字表示在该位置的小正方体的个数),不可能的是()A.B.C.D.解:从正面看,这个几何体有两列,从左面看这个几何体有两行,结合正面和从左面看到的形状,可知第一行第二列不可能是2个,故选:D.6.已知,在△ABC中,BC>AB>AC,根据图中的作图痕迹及作法,下列结论一定成立的是()A.AP⊥BC B.∠APC=2∠ABC C.AP=CP D.BP=CP解:如图所示:MN是AB的垂直平分线,则AP=BP,故∠PBA=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC.故选:B.7.已知等式3a=b+2c,那么下列等式中不一定成立的是()A.3a﹣b=2c B.4a=a+b+2c C.a b c D.3解:A、原等式两边都减去b即可得3a﹣b=2c,此选项正确;B、原等式两边都加上a即可得4a=a+b+2c,此选项正确;C、原等式两边都除以3即可得a b c,此选项正确;D、在a≠0的前提下,两边都除以a可得3,故此选项不一定成立;故选:D.8.如图,AD是△ABC的角平分线,点E是AB边上一点,AE=AC,EF∥BC,交AC于点F.下列结论正确的是()①∠ADE=∠ADC;②△CDE是等腰三角形;③CE平分∠DEF;④AD垂直平分CE;⑤AD=CE.A.①②⑤B.①②③④C.②④⑤D.①③④⑤解:①∵AD是△ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD,∴∠ADE=∠ADC故①正确;②∵△AED≌△ACD,∴ED=DC,∴△CDE是等腰三角形;故②正确;③∵DE=DC,∴∠DEC=∠DCE,∵EF∥BC,∴∠DCE=∠CEF,∴∠DEC=∠CEF,∴CE平分∠DEF,故③正确;④∵DE=DC,∴点D在线段EC的垂直平分线上,∵AE=AC,∴点A在线段EC的垂直平分线上,∴AD垂直平分CE.故④正确;⑤∵AD垂直平分CE,∴当四边形ACDE是矩形时,AD=CE,故⑤不正确;故选:B.9.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛,在选拔比赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.59.59.59.5方差/环2 5.1 4.7 4.5 5.1请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=5.1,∴S甲2=S2丁>S乙2>S2丙,∴最合适的人选是丙.故选:C.10.下列计算正确的是()A.22018•(﹣0.5)2017=﹣2B.a3+a3=a6C.a5•a2=a10D.解:A、原式=2×(﹣2×0.5)2017=﹣2,正确;B、原式=2a3,错误;C、原式=a7,错误;D、原式b,错误,故选:A.11.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O4解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.12.元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)解:由题意可得,若某商品的原价为x元(x>100),则购买该商品实际付款的金额是:80%x﹣20(元),故选:A.13.若3×32m×33m=321,则m的值为()A.2B.3C.4D.5解:已知等式整理得:35m+1=321,可得5m+1=21,解得:m=4,故选:C.14.下列计算中,则正确的有()①;②;③(a+b)÷(a+b)•a+b;④.。

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)

九年级中考数学模拟考试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分)1.的相反数的倒数是()A.B.﹣3C.3D.2.若一个正多边形的一个外角是60°,则这个正多边形的边数是()A.10B.9C.8D.63.总投资54亿元的万家丽高架快速路建成,不仅疏解了中心城区的交通,还形成了我市的快速路网,54亿用科学记数法表示为()A.0.54×109B.5.4×109C.54×108D.5.4×1084.在平面直角坐标系中,以点(﹣3,4)为圆心,以3个单位长度为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相切C.与x轴相离,与y轴相交D.与x轴相切,与y轴相离5.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定6.甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,那么两者的方差的大小关系是()A.<B.>C.=D.不能确定7.如图,是由一个圆柱体和一个长方体组成的几何体,其俯视图是()A.B.C.D.8.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为()A.40B.47C.96D.1909.如图,△ABC内接于⊙O,∠ACB=90°,BD=5,则BC的长为()A.12B.8C.10D.10.周末晚会上,师生共有20人参加跳舞,其中方老师和7个学生跳舞,一直到何老师,他和参加跳舞的所有学生跳过舞()A.15B.14C.13D.12二、填空题(每小题3分,共18分)11.分解因式:3x3﹣3x=.12.若式子在实数范围内有意义,则x的取值范围为.13.如图,△ABC与△A1B1C1为位似图形,点O是它们的位似中心,位似比是1:3,那么△A1B1C1的面积是.14.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为.15.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,EF∥AB,且AD:DB=3:5.16.如图,点A在反比例(x>0)图象上,交x轴于点C、D.若点B的坐标为(0,2)则图中阴影部分面积为.三、解答题(第17、18、19题6分,第20、21题8分,第22、23题9分,第24、25题10分,共72分)17.计算:.18.先化简,再求值:,其中a满足a2+2a﹣3=0.19.“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OBA=45°,CD =20km.若汽车行驶的速度为50km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).20.历下区某中学举行了“中国梦,中国好少年”演讲比赛,菲菲同学将选手成绩划分为A、B、C、D四个等级根据图中提供的信息,解答下列问题:(1)参加演讲比赛的学生共有人,扇形统计图中m=,n=,并把条形统计图补充完整.(2)学校欲从A等级2名男生2名女生中随机选取两人,参加达州市举办的演讲比赛,请利用列表法或树状图求出恰好1男1女参加比赛的概率。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D. 10x 420
2
5
15
15
6. 二次函数y = ax2+ bx +c 的图象如图所示, 则下列结论正确的是: (
)
A. a>0,b<0,c>0
B. a<0,b<0,c>0
C. a<0,b>0,c<0
D. a<0,b>0,c>0
7. 一个均匀的立方体六个面上分别标有数字 1,2,3,4,5,6,如图是这个立方体
(1)若 BC= 3 ,CD=1,求⊙O 的半径;
A
(2)取 BE 的中点 F,连结 DF,求证:DF 是⊙O 的切线C
O D
E
F
B
21. 如图 12,一次函数 y 3 x 1 的图象与 x 轴、 y 轴分别交于点 A、B,以线段 AB 3
为边在第一象限内作等边△ABC, (1) 求△ABC 的面积;
y C
B
P
O
Ax
图 12
(2) 如果在第二象限内有一点 P( a, 1 ),试用含 a 的式子表示四边形 ABPO 的面积,并求 2
出当△ABP 的面积与△ABC 的面积相等时 a 的值;
(3) 在 x 轴上,存在这样的点 M,使△MAB 为等腰三角形.请直接写出所有符合要求的点
16. 计算:
131
2006
3 0 2
3 sin60°.
x2
4 x 2
17.化简求值: x 2 2 x x 1 , 其中x 2 1
18. 西部建设中,某工程队承包了一段 72 千米的铁轨的铺设任务,计划若干天完成,在铺 设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺 3 千米,结果 提前了 2 天完成任务。问原计划每天铺多少千米,计划多少天完成?
4. “圆柱与球的组合体”如左图所示,则它的三视图是( )
主视图 左视图 俯
主视图 左视图 俯
主视图 左视图 俯
主视图 左视图 俯
A.
B.
C.
D
5. 10 名学生的平均成绩是 x ,如果另外 5 名学生每人得 84 分,那么整个组的平均成
绩是()
x 84
A.
B. 10x 420
C. 10x 84

14.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年 全省荔枝总产量为 50 000 吨,销售收入为 61 000 万元. 已知“妃子笑”品种售价为 1.5 万元/吨,其它品种平均售价为 0.8 万元/吨,求“妃子笑”和其它品种的荔枝产量各多少 吨. 如果设“妃子笑”荔枝产量为 x 吨,其它品种荔枝产量为 y 吨,那么可列出方程组为
500
经统计发现两班总分相等.此时有学生建议,可以通过考查数据中的其他信息作为参考.请
你回答下列问题: 1 计算两班的优秀率. 2 求两班比赛数据的中位数. 3 计算两班比赛数据的方差并比较. 4 根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
20. 如图:已知 AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点 D,连结 AD 并延长,与 BC 相交于点 E。
1
表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的 的概
2
率是(
1
A.

1
B.
1
C.
2
D.
6
3
2
3
y
A
2 164
A
ED
O
x
53 B
C
C
B
6 题图
7 题图
8 题图
9 题图
8. 如图所示, ABCD 中∠C=108°BE 平分∠ABC,则∠AEB 等于


A. 180° B.36° C. 72° D. 108°
段时间待带标记的鱼完全混合于鱼群中后,第二次捕得 200 条,发现其中带标记的鱼 25 条,
通过这种调查方式,我们可以估计湖里有鱼
条.
12. 如图,D 在 AB 上,E 在 AC 上,且∠B=∠C,那么补充下列一个条件

使△ABE≌△ACD
y
O
A
C
B
13 题图
B
O
C
x
A
12 题图
15 题图
13. 如图同心圆,大⊙O 的弦 AB 切小⊙O 于 P,且 AB=6,则圆环的面积为
初三年级数学中考模拟试题
题一


总分
次 1—10 11-15 16 17 18 19 20 21 22


一、选择题:(本大题共 10 题,每小题 3 分,共 30 分;每小题只有一个正确答案, 请
把正确答案的字母代号填在下面的表内,否则不给分)
题号 1 2
3
4
5
6
7
8
9 10
答案
1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3 中, 负数的个数为 (
9.如图,在△ABC 中,∠C =90°,AC>BC,若以 AC 为底面圆的半径,BC 为高的圆锥的侧
面积为 S1,若以 BC 为底面圆的半径,AC 为高的圆锥的侧面积为 S2 , 则( )
A.S1 =S2
B.S1 >S2
C.S1 <S2 D.S1 ,S2 的大小大小不能确定
10.在直角坐标系中,⊙O 的圆心在原点,半径为 3,⊙A 的圆心 A 的坐标为(- 3 ,1),
)
A.1 B. 2
C. 3 D. 4
2. 下列图形既是轴对称图形, 又是中心对称图形的是:( )
3. 资料显示, 2005 年“十 一”黄金周全国实现旅游收入 约 463 亿元,用科学记数
法表示 463 亿这个数是:(

A. 463×108 B. 4.63×108 C. 4.63×1010
D. 0.463×1011
1
15. 如图,正比例函数 y=kx 与反比例函数 y = 的图象相交于 A,B 两点,过 B 作 X 轴的
x

垂线交 X 轴于点 C,连接 AC,则△ABC 的面积是
三、计算题:(本大题共 7 小题,其中第 16,17 题各6 分,第 18,19 题各8 分,第
20,21,22 题各9 分,共 55 分)
19. 某校初三学生开展踢毽子比赛活动,每班派 5 名学生参加,按团体总分多少排列名次, 在规定时间内每人踢 100 个以上(含 100)为优秀.下表是成绩最好的甲班和乙班 5 名学生的比 赛数据(单位:个):
1号
2号
3号
4号
5号
总分
甲班 100
98
110
89
103
500
乙班 89
100
95
119
97
半径为 1,那么⊙O 与⊙A 的位置关系为(
A、外离
B、外切
C、内切
) D、相交
二、填空题:(本大题共 5 题,每小题 3 分,共 15 分;请把答案填在下表内相应的题号下,否则不给
分)
题号
11
12
13
14
15
答案
11. 为了估计湖里有多少条鱼,我们从湖里捕上 100 条做上标记,然后放回湖里,经过一
相关文档
最新文档