电网中的过电压是怎么产生的,过电压有哪些,过电压的分类

电网中的过电压是怎么产生的,过电压有哪些,过电压的分类

电网中的过电压是怎么产生的,过电压有哪些,过电压的分类

电网中不同的过电压是怎么产生的,过电压有哪些,过电压的分类

电网中的三种不同的操作过电压:

1、低压电网中的电压升高实际上就是由于开关操作引起的,是由本电路

或附近电路甚至可能是中压电路中的开关操作引起的。实际上这就是“操作过电压”但人们习惯中不这样称谓。

2、“操作过电压”这是教科书上教授讲的“操作过电压”,其波形为250/2500微秒。

这种波形比雷电波形缓慢,幅值较雷电过电压略低。但因它的持续时间较雷电波长,也会对电路造成损坏。这种“操作过电压波形”是由多油或少油开关操作造成的,油开关燃弧时间长,接近电流过零时开断,不产生高频震荡过电压。油开关已停止生产和使用。这种“操作过电压”变化速度已从微秒级进入了毫秒级。

3、真空开关操作过电压是由于真空开关切断速度快,切断电流大,在迂回电感中剩余电磁能量很大,反电动势高,与电路中杂散电容共产生的高频振荡。

这种震荡波形频率很高,电压变化很快,我们称其为“纳秒级”过电压。

4、真空开关分闸及合闸过程中都有可能出现过电压。合闸过程中弹跳可能造成燃弧、熄弧,再燃弧。也有可能出现半程燃弧、熄弧、再燃弧。分闸过程中弹跳也可能造再燃弧、再熄弧。但这都可以归结为截流过电压。我们多年的实践证明,RC装置能解决这问题。

电力系统电压等级与规定

电力系统的电压等级与规定 1、用电设备的额定电压 要满足用电设备对供电电压的要求,电力网应有自己的额定电压,并且规定电力网的额定电压和用电设备的额定电压相一致。为了使用电设备实际承受的电压尽可能接近它们的额定电压值,应取线路的平均电压等于用电设备的额定电压。 由于用电设备一般允许其实际工作电压偏移额定电压±5%,而电力线路从首端至末端电压损耗一般为10%,故通常让线路首端的电压比额定电压高5%,而让末端电压比额定电压低5%。这样无论用电设备接在哪一点,承受的电压都不超过额定电压值的±5% 2、发电机的额定电压 发电机通常运行在比网络额定电压高5%的状态下,所以发电机的额定电压规定比网络额定电压高5%。具体数值见表4.1-1的第二列。 表4.1-1 我国电力系统的额定电压 网络额定电压发电机额定电压 变压器额定电压 一次绕组二次绕组 3 6 103.15 6.3 10.5 3及3.15 6及6.3 10及10.5 3.15及3.3 6.3及6.6 10.5及11 13.8 15.75 18 20 13.8 15.75 18 20 35 110 220 330 500 35 110 220 330 500 38.5 121 242 363 550 3、变压器的额定电压 根据功率的流向,规定接收功率的一侧为一次绕组,输出功率的一侧为二次绕组。对于双绕组升压变压器,低压绕组为一次绕组,高压绕组为二次绕组;对于双绕组降压变压器,高压绕组为一次绕组,低压绕组为二次绕组。 ①变压器一次绕组相当于用电设备,故其额定电压等于网络的额定电压,但当直接与发电机连接时,就等于发电机的额定电压。 ②变压器二次绕组相当于供电设备,再考虑到变压器内部的电压损耗,故当变压器的短

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

电力系统电压调整及控制

13.1基本概念及理论 电压控制:通过控制电力系统中的各种因素,使电力系统电压满足用户、设备和系统运行的要求。 13.1.1电压合格率指标 我国电力系统电压合格指标: 35kV及以上电压供电的负荷:+5% ~ -5% 10kV及以下电压供电的负荷:+7% ~ -7% 低压照明负荷: +5% ~ -10% 农村电网(正常) +7.5% ~ -10% (事故) +10% ~ -15% 按照中调调规: 发电厂和变电站的500kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%; 发电厂的220kV母线和500kV变电站的中压侧母线在正常运行方式情况下,电压允许偏差为系统额定电压的0% ~ +10%;异常运行方式时为系统额定电压的-5% ~ +10%。 220kV变电站的220kV母线、发电厂和220kV变电站的110kV ~ 35kV母线在正常运行方式情况下,电压允许偏差为系统额定电压的-3% ~ +7%;异常运行方式时为系统额定电压的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线正常运行方式下的电压允许偏差为系统额定电压的0% ~ +7%。 13.1.2负荷的电压静特性

负荷的电压静态特性是指在频率恒定时,电压与负荷的关系,即U=f(P,Q)的关系。 13.1.2.1 有功负荷的电压静特性 有功负荷的电压静特性决定于负荷性质及各类负荷所占的比重。电力系统有功负荷的电压静态特性可用下式表示 13.1. 2.2无功负荷的电压静特性 异步电动机负荷在电力系统无功负荷中占很大的比重,故电力系统的无功负荷与电压的静态特性主要由异步电动机决定。异步电动机的无功消耗为 ― 异步电动机激磁功率,与异步电动机的电压平方成正比。 ―异步电动机漏抗的无功损耗,与负荷电流平方成正比。 在电压变化引起无功负荷变化的情况下,无功负荷变化与电压变化之比称为 无功负荷的电压调节效应系数()。它等于,其变化范围比的变化范围大,且与有无无功补偿设备有关。 阐述电力系统电压和无功平衡之间的相互关系。 13.1.3.1电压与无功功率平衡关系 电压与无功功率平衡关系:有网络结构与参数确定的情况下,电压损耗与输送的有功功率以及无功功率均有关。由于送电目的地,输送的有功功率不能改变,线路电压损耗取决于输送的无功功率的大小。如果输送无功功率过多,则线路电压损耗可能超过最大允许值,从而引起用户端电压偏低。

电力系统过电压及接地装置

课程设计 设计题目:电力系统过电压与接地装置 班级:电气化铁道技术1132 姓名:刘浩 学号:201108023211 指导教师:赵永君 二〇一三年六月十九日 摘要 本课程设计中和运用高电压技术、电力系统过电压、接地技术等知识,采用理论与实践相结合的方法,研究电力系统各种过电压防护措施研究接地装置的测量方法和降阻方式,设计电力系统的接地装置等。 关键词:内部过电压雷电过电压接地保护 前言 电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。研究各种过电压的起因,预测其幅值,

并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。 为了保护电力系统、用电设备和人员的安全,往往采用接地的方式来保证设备和人员的安全。本课程设计根据《高电压技术》简单的对电力系统的过电压与接地装置进行研究。 电力系统过电压与接地装置 一、电力系统过电压 在电力系统中,由于雷电、电磁能量的转换会使系统电压产生瞬间升高,其值可能大大超过电气设备的最高工频运行电压。其对电力系统的危害是很大的。电力系统过电压主要分以下几种类型:雷电过电压、工频过电压、操作过电压、谐振过电压。 1内部过电压 1.1工频过电压 系统中在操作或接地故障时发生的频率等于工频(50Hz)或接近工频的高于系统最高工作电压的过电压。特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用当系统操作、接地跳闸后的数百毫秒之内,由于发电机中磁链不可能突变,发电机自动电压调节器的惯性作用,使发电机电动势保持不变,这段时间内的工频过电压称为暂时工频过电压。随着时间的增加,发电机自动电压调节器产生作用,使发电机电动势有所下降并趋于稳定,这时的工频过电压称为稳态工频过电压。

国内电网电压等级划分

国内电网电压等级划分 局民用电是220V,工业用电是380V,为什么同样是变电站出来的电,到了用户端就不同呢?高压与低压有什么不同呢? 工业用电与居民用电 工业用电其实就是我们经常提到的三相交流电(由三个频率相同、电势振幅相等、相位差互差 120 °角的交流电路组成的电力系统),而民用电采用的是单相220V对居民供电。 三相交流电可以使电机转动,当三相交流电流通入三相定子绕组后,在定子腔内便产生一个旋转磁场。转动前静止不动的转子导体在旋转磁场作用下,相当于转子导体相对地切割磁场的磁力线,从而在转子导体中产生了感应电流(电磁感应原理)。这些带感应电流的转子导体在磁场中便会发生运动,因此工业用电都是三相交流电。 民用电的火线与零线之间电压为220V ,工业用电则是各相线间电压380V ,相地之间电压220V。民用电其实就是三相之中的一相。电厂到居民变电站都是3相5线,变电站的作用之一就是把电分成很多个1相3线给居民使用。 高压与低压的分界线 根据GB/T 2900.50-2008中定义2.1规定,高[电]压通常指高于1000V(不含)的电压等级,低[电]压指用于配电的交流电力系统中1000V及以下的电压等级;国际上公认的高低压电器的分界线交流电压则是1000V(直流则为1500V)。 在工业上也有另外一种说法,电压为380V或以上的称之为高压电,因此我们习惯上所说的220V、380V都是低压,高于这个电压都是高压;再之前的电业规程中规定分界线为250V,虽然新的《电业安全工作规程》已经出台,但很多地方执行的还是以前的标准。 高压电器的通俗分类 1、所谓的高压、超高压、特高压并无本质区别(随着电压增高,绝缘要求、安全要求会有不同),只是人们的叫法不同而已,其分界线也是约定俗成,并无明确规定。 2、电网就是指整个供配电系统,包括发电厂,变电站,线路,用电侧。

电网的无功补偿与电压调整

电网的无功补偿与电压调整 、输电网的无功补偿与电压调整 输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路,有串联补偿(又称纵补偿)与并联补偿(又称横补偿)之分。电压支撑则多用于与地区受电网络连接的输电网的中枢点。 1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两端,且不设断路器。 1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些

装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2、配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户

详解电网无功补偿与电压调节

详解电网无功补偿与电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V 及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准:

500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的2.5%,并满足主变最大负荷时,功率因数不低于0.95。 以上只是大概的比例估计,具体工程的变电站的无功配置是需要通过计算的,计算分不同运行方式(针对容性和感性),无功计算一般是有无功交换的整个区域一

电力系统的电压等级

电力系统的电压等级 额定电压:各用电设备、发电机、变压器都是按一定标准电压设计和制造的。当它们运行在标准电压下时,技术、经济性能指标都发挥得最好。此标准电压就称为~。 一、电力系统的额定电压等级 1、电力系统的额定电压等级(输电线路的额定线电压) 220,kV 3,kV 6,kV 10,kV 35,kV 60,kV 110,kV 220,kV 330,kV 500,kV 750,kV 1000一般来说:110kv 以下的电压等级以3倍为级差:10kv 35kv 110kv 110kv 以上的电压等级,则以两倍为级差:110kv 220kv 500kv 确定额定电压等级的考虑因素: 三相功率S 和线电压U 、线电流I 的关系是UI S 3=。 当输送功率一定时,输电电压越高,电流越小,导线等载流部分的截面积越小,投资越小;但电压越高,对绝缘的要求越高,杆塔、变压器、断路器等绝缘的投资也越大。所以,对应于一定的输送功率和输送距离应有一个最合理的线路电压。 但从设备制造的角度考虑,线路电压不能任意确定。规定的标准电压等级过多也不利于电力工业的发展。 2、发电机、变压器、用电设备的额定电压的确定 1)用电设备的额定电压=线路额定电压 允许其实际工作电压偏离额定电压% 5±2)线路的额定电压: 指线路的平均电压(Ua+Ub )/2, 线路首末端电压损耗为10%;因为用电设备允许的电压波动是±5%,所以接在始端的设备,电压最高不会超过5%;接在末端的设备最低不会低于-5%; 3)发电机的额定电压 总在线路始端,比线路额定电压高5%;3kv 的线路发电机电压为3.15kv。

4)变压器的额定电压 一次侧:相当于用电设备 A、直接与发电机相连,额定电压与发电机一致。 B、直接与线路相连,额定电压与线路额定电压相同; 二次侧:相当于电源 A、二次侧位于线路始端,比线路额定电压高5%。计及自身5%的电压损耗,总共比线路额定电压高10%。 B、二次侧直接接用电设备(负荷)时,只需考虑自身5%的电压损耗。

过电压保护

过电压及过电压保护 一什么是过电压 在电力系统中由于某种原因出现的对设备绝缘有危害,暂时性的电压升高现象。 二过电压的分类 分为:内部过电压和外部过电压 (1)系统运行中由于由于断路器的正常操作或系统发生事故时,因电磁能转换所以起的过电压,叫内部过电压。如操作过电压和谐振过电压. 工频过电压 (2)外部过电压(也叫大气过电压)它有两种形式:直击雷(雷电直接对建筑物或其他物体放电,其过电压所以起的雷电流通过这些物体流入大地,产生破坏性很大的热效应和机械效应)。感应雷就是雷电的静电感应或电磁感应所引起得过电压 内部过电压 操作过电压产生主要有3种形式(1)切除空载变压器。(在切除空载变压器时,因断路器可能在电流未过零点时分断,变压器绕组中的磁场能量转换为电能,从而产生过电压。这种过电压与变压器空载电流的大小和断路器的灭弧能力有关。)(2)分合空载长线路。(分合空载长线路时由于断路器触头间电弧多次重燃引起的过电压)(3)弧光接地(在中性点不接地系统中,当发生间歇性的弧光接地时,再发在非故障相引发的高频振荡过电压)工频过电压产生主要有3种形式(1)空载长线路的电压升高(2)三相中性点不接地系统发生单相接地时非故障相对地电压的升高(3)超高大容量线路从满载状态突然甩掉负荷时的电压升高。这种过电压对电器设备的绝缘影响不大,但是操作过电压一般是在工频过电压的基础上发展起来的。 谐振过电压产生主要有2种形式(1)当电网参数选择不当,因某一线路或母线的自振频率与电源谐波频率之一接近,就会产生谐振过电压。(2)高压真空开关的同期性差 三过电压保护 (1)外部过电压保护(也就是防雷保护) 雷电的危害 1.热效应。烧断导线,烧毁电器设备。 2.机械效应。当雷电直接击中房屋、电杆、树木,雷电电流经过木质纤维时,会产生高热,将其炸裂破坏。 3.电磁场效应。在雷电电流通过的周围,将产生很大的电磁场,使附近的导线或金属结构产生很高的感应电压,击穿电气设备一引起火灾和爆炸从而产生极其严重的破坏作用。 4.雷电的闪络放电。烧毁绝缘子造成断路器跳闸,线路停电等供电事故 防雷保护装置 避雷针.(用来保护发电厂,变电所) 作用:将雷电吸引到金属针上,安全的导入大地,从而保护附近的建筑和 设施免受雷击。 原理:在雷雨天气,建筑物上空出现带电云层时,迅雷针被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电

电缆可以按照电压等级来划分资料

电缆可以按照电压等 级来划分

电缆可以按照电压等级来划分:380V/220V~660V为低压电缆,6kV~35kV 为中压电缆,110kV~220kV为高压电缆,330kV~500kV为超高压电缆。也可以按照绝缘材料来划分:PVC绝缘、PP绝缘、PE绝缘、XLPE(交联聚乙烯)等。按照载体材料来分还可以分为:铜芯/铝芯电缆、光电复合电缆、超导电缆等。从电缆生产工艺上看,可分为悬链生产线、立塔生产线。如果按照用途来划分那就更多了:输电电缆、装备电缆、建筑电缆、矿用电缆、船用电缆、轨道交通电缆、风电电缆、核电电缆、海底电缆等(不包括专用于弱电系统的通信电缆和控制电缆)。 对于普通投资者来说,最初的认识就是“生产电线的”,而深入研究时又会对纷繁复杂的品种无所适从。为了在投资时删繁就简、清晰界定,在此可以简单地把所有强电电缆分为两大类——常规电缆、特种电缆。(资本市场投资分析所需,非专业分类!) 常规电缆——即在现有电网和用户中大量使用的常规意义上的电缆产品,包括几乎所有低压电缆、大部分中压电缆。这也是我们以前包括目前对“电缆”概念的基本认识。这部分产品由于准入门槛低,成本波动大,同业低价竞争异常惨烈,产品利润空间被反复挤压,前景不容乐观。 特种电缆——包括中低压电缆中采用新型绝缘材料的品种、高压超高压电缆、新能源电站电缆,工业特种用途电缆,轨道交通、海底传输电缆等。总之,技术含量高、应用领域新、发展前景好、有进口产品替代需求的电缆,都可以划入特种电缆。相比常规电缆,特种电缆的利润空间较高,竞争对手较少。

三、特种电缆需求 1、城乡电网大面积改造对耐水树电缆的放量需求 如果说“智能电网”对普通老百姓还是个陌生的新概念的话,身处全国各地的每一个人,应该都体会到了居住地电网的扩建改造正紧锣密鼓地展开。尤其在城网改造中,配网入地已成趋势。大城市双环网供电、空间走廊日益狭小、市中心地下电缆率的目标提升(80%以上),都给中压配电电缆带来极大的需求。而电缆的免维护要求和绝缘耐压的寿命关注,又对配电电缆的绝缘介质、性能指标、品牌信誉提出更高的要求。 常规电缆的绝缘介质在电场、水分和杂质等绝缘缺陷的协同作用下,逐步产生树枝状早期劣化。当树枝状劣化贯穿介质或转变成电树枝,将导致电力电缆线路的电缆本体或附件发生试验击穿或运行击穿故障。所以,如何防止水树(WT)和电树(ET)的产生,避免电缆绝缘击穿,是电缆选型的关键。 因此,具有特殊工艺的耐水树电缆自然就得到青睐。虽然目前在整个中压电缆中,耐水树电缆的份额只有10%,但优越的抗击穿性能和免维护性决定着耐水树份额的大幅拉高指日可待。 2、高压超高压电缆的局部应用 高压超高压电网历来以架空裸线为主。近年来,随着电网容量的扩大,原有区域主干网110kV已经让位于220kV,大量的110kV线路已经变身为主力配网,城市负荷中心、商业中心、居民中心对负荷的需求越来越大,在城市负荷中心兴建110kV变电站已经大力开展,虽说居民对电场辐射的恐惧给城市中

电压等级划分详细

电压等级(voltage class)电力系统及电力设备的额定电压级别系列。 额定电压是电力系统及电力设备规定的正常电压,即与电力系统及电力设备某些运行特性有关的标称电压。 电力系统各点的实际运行电压允许在一定程度上偏离其额定电压,在这一允许偏离范围内,各种电力设备及电力系统本身仍能能正常运行。 在我国电力系统中,把标称电压1kV及以下的交流电压等级定义为低压,把标称电压1kV以上、330kV以下的交流电压等级定义为高压,把标称电压330 kV及以上、1000 kV以下的交流电压等级定义为超高压,把标称电压1000 kV及以上的交流电压等级定义为特高压,把标称电压±800 kV以下的直流电压等级定义为高压直流,把标称电压±800 kV及以上的直流电压等级定义为特高压直流。通常还有一个“中压”的名称,美国电气和电子工程师协会(IEEE)的标准文件中把2.4 kV至69 kV的电压等级称为中压,我国国家电网公司(SG)的规范性文件中把1 kV 以上至20 kV 的电压等级称为中压。 目前我国常用的电压等级:220V、380V、6kV、10kV、35kV、60kV、110kV、220kV、330kV、500kV。

电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。 通常将35kV及35kV以上的电压线路称为送电线路。(35KV、60KV 线路为输电线路,110KV、220KV线路为高压线路,330KV以上线路称为超高压线路。把60KV以下电网称为地域电网,110KV、220KV电网称为区域电网,330KV以上电网称为超高压电网。把电力用户从系统所取用的功率称为负荷。) 10kV及其以下的电压线路称为配电线路。 将额定1kV以上电压称为“高电压”,额定电压在1kV以下电压称为“低电压”。 我国规定安全电压为36V、24V、12V三种。

电力系统电压等级与变电站种类

1.电力系统电压等级与变电站种类 电力系统电压等级有220/380V(0.4kV),3kV、6kV、10kV、20kV、35kV、66kV、110kV、220kV、330kV、500kV。随着电机制造工艺的提高,10kV电动机已批量生产,所以3kV、6kV已较少使用,20kV、66kV也很少使用。供电系统以10kV、35kV为主。输配电系统以110kV以上为主。发电厂发电机有6kV与10kV两种,现在以10kV为主,用户均为220/380V(0.4kV)低压系统。 根据《城市电力网规定设计规则》规定:输电网为500kV、330kV、220kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6kV,低压配电网为0.4kV(220V/380V)。 发电厂发出6kV或10kV电,除发电厂自己用(厂用电)之外,也可以用10kV电压送给发电厂附近用户,10kV供电范围为10Km、35kV为20~50Km、66kV为30~100Km、110kV 为50~150Km、220kV为100~300Km、330kV为200~600Km、500kV为150~850Km。 2.变配电站种类 电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。 变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。枢纽站电压等级一般为三个(三圈变压器),550kV/220kV/110kV。区域站一般也有三个电压等级(三圈变压器),220kV/110kV/35kV或110kV/35kV/10kV。终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV/10kV或35kV/10kV。用户本身的变电站一般只有两个电压等级(双圈变压器)110kV/10kV、35kV/0.4kV、10kV/0.4kV,其中以10kV/0.4kV 为最多。 3.变电站一次回路接线方案 1)一次接线种类:变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。 2)线路变压器组:变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。 3)桥形接线:有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。 4)单母线:变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。 5)单母线分段:有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。出线分别接到两段母线上。 单母线分段运行方式比较多。一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。备用电源容量较小时,备用电源合上后,要断开一些出线。这是比较常用的一种运行方式。 对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。 单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。 6)双母线:双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检

电网电压事故的预防和处理

电网电压事故的预防和处理 【摘要】主要介绍了事故处理规程对电压事故的规定,阐明了电网电压不合格的危害、电网电压偏低及偏高的原因、电网电压调整措施及电网电压事故处理方法。 【关键词】电网电压事故;危害;调压措施;事故处理 一、事故处理规程对电网电压事故的规定 电压是电能质量的重要指标,事故处理规程规定:系统中枢点(即省调规定的电压监测母线,下同)电压超过规定的电压曲线数值±5%且持续时间超过1小时为构成障碍,超过2小时算作事故;若超过电压曲线规定值的±10%,并且持续时间超过30分钟也构成障碍,超过1小时也算作事故。电压事故处理由省调负责。 二、电网电压不合格的危害 1、对于电力用户 各种用电设备都是按照额定电压来设计制造的,这些设备在额定电压下运行能取得最佳效果,电压过大地偏离额定值,将对用户产生不良影响。 例如照明灯,其发光效率、光通量和使用寿命均与电压有关。当电压升高,白炽灯和日光灯的光通量将要增加,但使用寿命将缩短;反之,电压降低,则使光通量降低,灯发光不足,影响人的视力和工作效率。异步电动机的电磁转矩是与其端电压的平方成正比的,当电压降低10%时,电动机转速下降,转矩大约要降低19%。如果电动机拖动的机械负载不变,电压降低时,电动机转速下降,转差增大,定子电流也随之增大,发热增加,绕组温度增加,加速绝缘老化,使用寿命缩短;当端电压太低时,电动机可能停转,甚至在重载下不能启动。电炉等电热设备的出力大致与电压的平方成正比,电压降低就会延长电炉的冶炼时间,降低生产率。 2、对电网而言 电压降低会使电网的电能损耗增大。电压过低时还可能危及电网运行的稳定性,发生电压崩溃事故。而电压过高要影响设备的绝缘。 因此,保证用户处的电压接近额定值是电网运行调整的基本任务之一。 三、电网电压偏低及偏高的原因 1、电压偏低的原因

电力系统电压调整的方式与措施精编

电力系统电压调整的方式 与措施精编 Jenny was compiled in January 2021

电力系统电压调整的方式与措施 系统电压是电能质量的首要指标,其过高或过低对电网及用户均有危害。随着发展,电力用户对电能质量的要求越来越高。本文从系统电压调整的必要性、措施及分时段的调整的方法几个方面进行论述,以便能更好地服务社会。 【关键词】电压调整电力系统电能质量 1 电力系统电压调整的必要性 电压是电能质量的重要指标。电压偏移过大,就会直接影响工业、农业生产的产量和质量,会对电力设备造成损坏,严重会引起系统的"电压崩溃”,引发大范围停电的严重后果。 系统电压偏高 系统电压偏高的原因 伴随着电网的发展,超高压电网中大容量机组的直接并入,和超高压线路的投入,其充电功率大,致使超高旱缤内无功增大,导致主网系统电压升高。 电压过高构成的危害 将促使接入电网的电气设备绝缘老化速度加快,减少使用寿命。当电压过高时会造成变压器、电动机等铁芯过

饱和,铁损增大,温度上升,降低寿命;也会影响产品质量,致使生产出不合格产品等。 系统电压偏低 系统电压偏低的原因 由于早期设计的供电及配电网络结构不尽合理,尤其是一部分线路送电距离较长,供电的半径较大,导线截面积较小,增大了线路电压损耗。系统无功补偿设备投入不足是系统电压水平降低的根本原因。变压器超负荷运行也会引起电压下降。不合理地摆放变压器分接头位置、不合理的电网结线,负荷的功率因数低,运行方式改变及异常方式等,均能引起电网电压下降。 系统电压偏低的危害 对发电机可能引起定子电流增大。对异步电动机引起温升增加,降低效率,缩短寿命。会导致照明亮度不足等。会导致冶金等行业产品不合格。系统的电压过低还可能造成系统振荡、解列以至于大范围停电,直接影响人们的生活和社会安全。 2 系统调整电压的方式与措施 系统调整电压的方式 顺调压方式 所谓顺调压方式是指在高峰负荷时允许系统中枢点电压稍有降低,在低谷负荷时允许系统中枢点的电压稍有升

下面是各电压等级安全距离

下面是各电压等级安全距离 1千伏以下 1."0米 1-10千伏 1."5米 35千伏 3."0米 66-110千伏 4."0米 154-220千伏 5."0米 330千伏 6."0米 500千伏 8."5米 一是无害论: 专家们在省电力试验研究院现场测试结果表明,当模拟电场强度达到国家标准的4千伏/米时,在场记者亲身体验了一下其影响,发现确实没有任何不适情况。而在离该变电站不远处的500千伏线路下,测试人员测得的电场强度为 3."3千伏/米,低于4千伏/米的国家限值标准。环境辐射监测站副站长兼总工程师季成富介绍,我国的限值标准高于国际标准。因此,只要按照我国

输变电设施建设的相关规定,输变电设施产生的工频电场、工频磁场对人体健康就不会产生损害。规划局的一位负责人告诉记者,目前有两种情况,一种是高压线塔修建在前,居民楼审批在后,另外一种情况是小区修建在前,高压线塔审批在后。 如果是前者,应根据《城市规划相关规定》,一般1万伏的高压线塔与居民楼的水平距离是5米,11万伏的10米,22万伏的15米,50万伏的25米,超出这些距离,即使还存在辐射,也应该是在安全范围之内了。如果是后者,高压线塔则应尽量避开居民楼。 以某条220kV输电线路为例,环保部门实测的220kV该输电线路进变电站段最低点附近电磁场强度如下: 与220kV线路距离(米)0 10 20 30国家推荐标准 电场强度(kV/m) 1."25 0."7387 0."2865 0."1196 4 磁感应强度(μT ) 3."03 2."26 1."39 0."95 100 注: 表中数据为离地

1."5米处。对比国家规定的城市架空电力线路接近或跨越建筑物的安全距离和环保部门实测的架空电力线路电磁辐射强度,可以发现,架空电力线路电磁辐射强度不但在安全距离内是达标的,就是在比安全距离更小的地方也是符合国家标准的。 二是有害论: 低频磁场辐射的强度和累积量都会影响致病的概率。1992年,瑞士对 200KV-400KV高压输电线沿线500米范围内居住1~25年的50万名居民进行医学调查,发现肿瘤、特别是儿童白血病的发生与高压电磁场有直接关系。世界卫生组织所属的国际癌症研究机构(IARC)于 2001年6月将工频电磁场(即输电线路及设备所产生的电磁场)归为人类可疑致癌物(分类号为2B)。并且,有些人是在潜伏期长达10-15年才发病的。电磁辐射就像太阳和紫外线一样的关系一样,你要享受阳光就不可避免接受紫外线的辐射。从电子闹钟、吹风机、微波炉、电熨斗到计算机、传真机、电话机,我们无时不刻不在接触电磁的“抚慰”。走出门外,电力线、各种电机设备又使我们十分容易的处于电磁场中。研究证实,生活在 0."2微斯特拉以上的低频磁场环境中将对人体产生影响,造成中枢神经机能的紊乱、心血管系统的失调、影响人的正常生活。400千伏高压线下,磁感应强度可达13微斯特拉。 国际卫生标准中规定,可以容许的磁感应强度上限为100微特斯拉(与我国的标准相同),但英国国家辐射保护委员会和美国一些专家们已于1995年提出,把国际卫生标准中规定的标准(100微特斯拉)修改为 0."2微特斯拉,瑞典规定不超过 0."2微特斯拉。 许多迹象都使研究人员强烈地怀疑低频磁场的辐射对人体健康会产生严重后果,但人们目前的知识水平又不足以对此作用充分明确的解释。调查和统计分析的结果尚不足以论证居民可以长期持续承受的低频辐射的最高限制。以及在这方面应采取哪些必要的限制。但许多专家仍然提出忠告:

电网无功补偿和电压调节

电网无功补偿和电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。 无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准: 500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的 2.5%,并满足主变最大负荷时,功率因数不低于0.95。

电力系统过电压实验指导

电力系统过电压实验指导书 电气与电子工程学院高电压与绝缘技术专业 2011年9月 实验一MATLAB/SIMULINK软件应用基础 一.实验目的: 1.了解MATLAB/SIMULINK软件以及SimPowerSyetems库的特点。 2.熟练掌握SIMULINK模块的基本操作。 3.掌握振荡电路的暂态过程的仿真方法。 二.实验内容: 1.MATLAB/SIMULINK软件的特点: MathWorks公司推出的MATLAB,具有优秀的数值计算能力和卓越的数据可视化能力,并以交互式程序设计的方式为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的科学计算环境。 SIMULINK是MATLAB中的一种基于框图设计思想的可视化仿真工具,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统,具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,已被广泛应用于控制理论、数字信号处理以及图像处理等领域中。 2.SimPowerSyetems库的特点: SimPowerSystems库是SIMULINK中的一个专用模块库,是在SIMULINK环境下进行电力、电子系统建模和仿真的先进工具。它提供了一种类似电路建模的方式进行模型绘制,在仿真前自动将仿真系统图变化成状态方程描述的系统形式,然后在SIMULINK下进行

仿真分析,可为电路、电力电子系统、电机系统、发电系统、输变电系统和配电计算提供了强有力的解决方法。 3.SIMULINK模块的基本操作: 1)移动: 选中需要移动的模块后,按住鼠标左键不放,将其拖拽到所需位置即可。 2)改变大小: 选中需要改变大小的模块后,直接拖拽模块四角出现的4个黑色标记即可。 3)旋转: 选中需要旋转的模块,然后选择菜单命令“Format”中的“Rotate”,模块将顺时针方向旋转90度,而“FlipBlock”可将模块旋转180度。 4)复制: 选中需要复制的模块后,按住鼠标右键不放,将其拖拽到所需的位置即可,也可通过“Edit”菜单下的“Copy”和“Paste”命令来实现。 5)删除: 选中需要删除的模块,按Delete键可直接将其删除 6)选中多个模块: 当需要对多个模块同时进行操作时(如移动、复制和删除等),可按住Shift键,并用鼠标单击想要选中的模块。 7)模块标签: 在标签的位置上双击鼠标,则模块标签进行编辑状态。编辑完标签后,在标签外的任意位置上单击鼠标,则出现新的合法标签。 8)参数设定: 在SIMULINK中,几乎所有模块的参数都允许用户自行设置,只要双击要设置的模块或在模块上按鼠标键,在弹出的快捷菜单中选择相应的模块参数设置命令,就会弹出参数模块参数设置对话框,利用此对话框就可实现模块参数的设置。 4.振荡电路的暂态过程的仿真电路图: 三.实验要求: 在振荡电路的暂态过程的仿真电路中,已知电阻R = 2kΩ,电容C = 2.5μF,电感L = 2H,电压源V s = 100sin(100πt+π/3)。试建立仿真电路,并观察电路中电流变化情况。 四.实验步骤:

电压等级划分

电压等级划分 我国的电力网额定电压等级(KV): 0.22,0.38,3,6,10,35,60,110,220,330,500。 习惯上称10KV以下线路为配电线路,35KV、60KV线路为输电线路,110KV、220KV线路为高压线路,330KV以上线路称为超高压线路。把60KV以下电网称为地域电网,110KV、220KV电网称为区域电网,330KV以上电网称为超高压电网。把电力用户从系统所取用的功率称为负荷。另外,通常把1KV以下的电力设备及装置称为低压设备,1KV以上的设备称为高压设备。 电压等级(voltage class)电力系统及电力设备的额定电压级别系列。额定电压是电力系统及电力设备规定的正常电压,即与电力系统及电力设备某些运行特性有关的标称电压。电力系统各点的实际运行电压允许在一定程度上偏离其额定电压,在这一允许偏离范围内,各种电力设备及电力系统本身仍能正常运行。 我国最高交流电压等级是750KV(兰州---官亭线),其下有500、330、220、110、(60)、35、10KV,380/220V,国家电网公司正在实验1000KV特高压交流输电。 我国最高直流电压等级为正负500KV(葛洲坝---上海南桥线、天生桥---广州线、贵州---广东线、三峡---广东线),另有正负50KV(上海---嵊泗群岛线),100KV(宁波---舟山线),南方电网公司将建设正负800KV特高压直流输电线。

目前我国常用的电压等级:220V、380V、6KV、10KV、35KV、110KV、220KV、330KV、500KV。电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。通常35KV及以上的电压线路称为送电线路。10KV及以下的电压线路称为配电线路。将额定1KV以上电压称为“高电压”,额定电压在1KV以下电压称为“低电压”。我国规定安全电压为36V、24V、12V三种。 我国规定的额定电压为:42V、36V、24V、12V、6V五种。 我国高压为:750KV、500Kv、220KV、110KV、35KV、10Kv、6KV。我国低压为:380V、220V、110V、36V、24V、12V。

相关文档
最新文档