高考数学模拟复习试卷试题模拟卷1566
高考模拟复习试卷试题模拟卷高三数学数学试卷文科

高考模拟复习试卷试题模拟卷高三数学数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.18.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1) C.(0,] D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为3 .【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)ex,∴f′(x)=2ex+(2x+1)ex,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=loga(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料 A B C 甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{an}是等比数列,前n项和为Sn(n∈N*),且﹣=,S6=63.(1)求{an}的通项公式;(2)若对任意的n∈N*,bn是log2an和log2an+1的等差中项,求数列{(﹣1)nb}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出bn,使用分项求和法和平方差公式计算.【解答】解:(1)设{an}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴an=2n﹣1.(2)∵bn是log2an和log2an+1的等差中项,∴bn=(log2an+log2an+1)=(log22n﹣1+log22n)=n﹣.∴bn+1﹣bn=1.∴{bn}是以为首项,以1为公差的等差数列.设{(﹣1)nbn2}的前2n项和为Tn,则Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,yH),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得yH=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1yH=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f (x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高三数学高考模拟试题及答案.doc-人教版[原创]
![高三数学高考模拟试题及答案.doc-人教版[原创]](https://img.taocdn.com/s3/m/bd309e1f102de2bd960588fc.png)
高三数学高考模拟试题一、选择题(每小题5分;共60分)1.非空集合A 、B 满足≠⊂B A ;U 是全集;则下列式子;①B B A = ;②A B A = ;③(A U) B=U ;④(A U) (B U)=U 中成立的是( ).A .①;②B .③;④C .①;②;③D .①;②;③;④2.已知OM =(3;-2);ON =(-5;-1);则21MN 等于( ). A .(8;1) B .(-8;1) C .(-8;-1) D .4(-;21)3.函数)3(log 1sinl x y -=的定义域是( ).A .(2;3)B .[2;)3C .(2;]3D .(2;+∞) 4.如果数列}{n a 的前n 项和))(49(41*N ∈-=n S n nnn ;那么这个数列( ). A .是等差数列而不是等比数列 B .是等比数列而不是等差数列 C .既是等差数列又是等比数列 D .既不是等差数列又不是等比数列5.锐二面角βα--l 的棱l 上一点A ;射线α⊂AB ;且与棱成45°角;又AB 与β成30°角;则二面角βα--l 的大小是( ).A .30°B .45°C .60°D .90°6.有6个人分别来自3个不同的国家;每一个国家2人。
他们排成一行;要求同一国家的人不能相邻;那么他们不同的排法有( ).A .720B .432C .360D .2407.直线经过点A (2;1);B (1;2m )两点)(R ∈m ;那么直线l 的倾斜角取值范围是( ).A .[0;)πB .[0;2π(]4π;)π C .0[;]4π D .4π[;2π()2π ;)π 8.下列函数中同时具有性质;(1)最小正周期是π;(2)图象关于3π=x 对称;(3)在6π[-;]3π上是增函数的是( ). A .)6π2sin(+=x y B .)3π2cos(+=x y C .)6π2sin(-=x y D .)6π2cos(-=x y 9.设双曲线12222=-by a x 的右准线与两条渐近线交于A 、B 两点;右焦点为F ;且F A ⊥FB ;则双曲线的离心率为( ).A .2B .3C .2D .332 10.设下表是某班学生在一次数学考试中数学成绩的分布表那么分数在[100;110]中和分数不满110分的频率和累积频率分别是( ).A .0.18;0.47B .0.47;0.18C .0.18;1D .0.38;1 11.已知)3π2sin(3)(+=x x f ;则以下选项正确的是( ). A .f (3)>f (1)>f (2) B .f (3)>f (1)>f (2) C .f (3)>f (2)>f (1) D .f (1)>f (3)>f (2) 12.下列各组复合命题中;满足“p 或q ”为真;“p 且q ”为假;“非p ”为真的是( ). A .p ;0=∅;q ;0∅∈B .p ;过空间一点有且仅有一条直线与两异面直线a ;b 都相交;q ;在△ABC 中若B A 2cos 2cos =;则A =BC .p ;不等式x x >||的解集为(-∞;0);q ;y =x sin 在第一象限是增函数D .p ;01cos 1sin >-;q ;椭圆13422=+y x 的一条准线方程是x =4二、填空题(每小题4分;共16分) 13.已知一个球的半径为1;若使其表面积增加到原来的2倍;则表面积增加后球的体积是______________. 14.函数59323+--=x x x y 的单调递减区间是______________.15.已知α、β是实数;给出下列四个论断;(1)||||||βαβα+=+;(2)||||βαβα+≤-;(3)22||>α;22||>β;(4)5||>+βα.以其中的两个论断为条件;其余两个论断作为结论;写出你认为正确的一个命题;________.16.一天内的不同的时刻;经理把文件交由秘书打字。
山东省高考数学仿真模拟试题及答案

20正视图侧视图808080山东省高考数学仿真模拟试题及答案第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集I 是实数集R ,{|ln(2)}M x y x ==-与3{|0}1x N x x -=≤-差不多上I 的子集(如图所示), 则阴影部分所表示的集合为( ) (A ){2}x x < (B ){21}x x -≤< (C ){12}x x <≤(D ){22}x x -≤≤2.i 是虚数单位,已知(2)5i z i -=,则z =( )(A ) i 21+ (B )i 21-- (C )i 21- (D )i 21+- 3.△ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于( )A .23 B .43 C .323或 D .4323或 4.已知{}n a 是等差数列,154=a ,555=S ,则过点34(3,(4,),)P a Q a 的直线的斜率 ( ) A .4B .41C .-4D .-145.某师傅需用合板制作一个工作台,工作台由主体和附属两部分组成,主体部分全封闭,附属部分是为了防止工件滑出台面而设置的三面护墙,其大致形状的三视图如右图所示(单位长度: cm), 则按图中尺寸,做成的工作台用去的合板的面积为(制作过程合板的损耗和合板厚度忽略不计)( ) A. 240000cm B. 240800cmC. 21600(2217)cm +D. 241600cm6.已知10<<<<a y x ,y x m a a log log +=,则有( )A 0<mB 10<<mC 21<<mD 2>m7.若某程序框图如图所示,则该程序运行后输出的y 等于( )A .7B .15C .31D .638.已知7722107)21(x a x a x a a x +⋅⋅⋅+++=-,那么=+++++765432a a a a a a ( )A .-2B .2C .-12D .129.已知函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f ,其导函数)(x f '的部分图象如图所示,则函数)(x f 的解析式为( )A .)421sin(2)(π+=x x fB .)421sin(4)(π+=x x fC .)4sin(2)(π+=x x fD .)4321sin(4)(π+=x x f10.从抛物线x y 42=上一点P 引抛物线准线的垂线,垂足为M ,且|PM|=5,设抛物线的焦点为F ,则△MPF 的面积为 ( )A .5B .10C .20D .1511.若实数x ,y 满足不等式11,02240+-=⎪⎩⎪⎨⎧≥--≤-≥x y y x y x y ω则的取值范畴是( )A .]31,1[-B .]31,21[-C .⎪⎭⎫⎢⎣⎡-2,21 D .⎪⎭⎫⎢⎣⎡+∞-,21 12.设函数()f x 的定义域为R ,且(2)(1)()f x f x f x +=+-,若(4)1f <-,3(2011)3a f a +=-,则a 的取值范畴是( ) A. (-∞, 3) B. (0, 3)C. (3, +∞)D. (-∞, 0)∪(3, +∞)第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题4分,共16分.请直截了当在答题卡上相应位置填写答案. 13.两曲线x x y y x 2,02-==-所围成的图形的面积是________。
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试

高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
高考模拟考试数学真题试卷

高考模拟考试数学真题试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 已知函数f(x) = 2x - 1,求f(3)的值。
A. 5B. 4C. 3D. 23. 若a > 0,b < 0,且|a| < |b|,则a + b的值是:A. 正数B. 负数C. 零D. 不确定4. 已知等差数列{an}的首项a1=3,公差d=2,求第5项a5。
A. 9B. 11C. 13D. 155. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π6. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。
A. 6B. 9C. 12D. 157. 函数y = x^2 - 4x + 4的图像与x轴交点个数是:A. 0B. 1C. 2D. 38. 已知向量\( \vec{a} = (3, 2) \),\( \vec{b} = (-1, 2) \),求\( \vec{a} \)与\( \vec{b} \)的点积。
A. 4B. 5C. 6D. 79. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {4}D. {1, 2, 3}10. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞]二、填空题(本大题共5小题,每小题5分,共25分)11. 若f(x) = x^2 + 3x + 2,求f(x)的导数f'(x)。
答案:__________。
12. 已知数列{bn}满足bn = 2bn-1 + 3,b1 = 1,求b3。
答案:__________。
13. 已知直线l的方程为y = 2x + 3,求直线l的斜率。
答案:__________。
高考数学模拟试卷复习试题高三模拟卷文科数学

高考数学模拟试卷复习试题高三模拟卷文科数学本试题卷共8页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。
1.已知集合A={x|x23x<0},B={y|y=},则A∩B()A.(0,3)B.[1,3)C.(3,0)D.(3,1]2.若复数z满足z2=4,则复数z的实部为()A.2B.1C.2D.03.已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:“∃x0∈R,x0>0”的否定是“∀x∈R,x2x≤0”,则下列命题是真命题的是()A.p∨(¬q)B.p∧qC.p∨qD.(¬p)∧(¬q)4. 已知圆C过点A(2,4),B(4,2),且圆心C在直线x+y=4上,若直线x+2yt=0与圆C相切,则t的值为()A.6±2B.6±2C.2±6D.6±45.已知函数y=sinωx在[,]上是减函数,则ω的取值范围是()A.[−,0)B.[3,0)C.(0,]D.(0,3]6. 设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入下边程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.若三角形ABC中,sinCsin(AB)=sin2(A+B),则此三角形的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形8.某四棱锥的三视图如图所示,则该四棱锥的体积为()A.2B.3C.4D.69.如图,点A(2,m),B(n,2),均在双曲线y=(x>0)上,过点A,B分别作AG⊥y轴,BH⊥x轴,垂足为G,H,下列说法错误的是()A.AO=BO B.∠AOB可能等于30°C.△AOG与△BOH的面积相等D.△AOG≌△BOH10.已知平面区域D={(x,y)|},Z=.若命题“∀(x,y)∈D,Z≥m”为真命题,则实数m的最大值为()A.B.C.D.11.设点M,N为圆x2+y2=9上两个动点,且|MN|=4,若点P为线段3x+4y+15=0(xy≥0)上一点,则|+|的最大值为()A.4B.6C.8D.1212.已知e是自然对数的底数,函数f(x)=(ax2+x)ex,若f(x)在[1,1]上是单调增函数,则a的取值范围是()A.[,0]B.(∞,0)∪[,+∞)C.[0,]D.(∞,]∪[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y=的定义域为R,则k∈。
高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题文科

高考模拟复习试卷试题模拟卷高三数学高三第二次联考 数学试题(文科)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上.2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}{}=22,x A x B y y x <=,则A B =( )A.[)0,1B.()0,2C.()1+∞,D.[)0+∞, 2.已知复数z 满足()z 1i i +=-,则z =( ) A.122 C.123.在等比数列{}n a 中,2348a a a =,78a =,则1=a ( ) A.1 B. 1± C.2 D.2±4.如图所示的程序框图的运行结果为( ) A. 1- B.12C.1D.2 5.在区间[]0,4上随机取两个实数,x y ,使得28x y +≤的概率为( )A.14 B.316 C. 916D. 34 6.在平行四边形ABCD 中,4,3,3AB AD DAB π==∠=,点,E F 分别在,BC DC 边上,且2,BE EC DF FC ==,则AE BF ⋅=( )A.83-B.1-C. 2D. 1037.已知圆C 方程为()()22210x y r r -+=>,若p :13r ≤≤;q :圆C 上至多有3个点到直线3+30x -=的距离为1,则p 是q 的( ) A.充分不必要条件 B. 必要不充分条件 C.充要条件 D.既不充分也不必要条件开始结束2016i ?≥ 是否2,1a i ==1i i =+输出a11a a=-(第4题图)FEBDA(第6题图)第二次八校联考文科数学 第 1 页(共6页)8.已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C.3D.49.某空间几何体的三视图如图所示,则该几何体的外接球的表面积是( )A.36πB.52πC. 72πD.100π10.若()()()2cos 2+0f x x ϕϕ=>的图像关于直线3x π=对称,且当ϕ取最小值时,00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()0f x a =,则a 的取值范围是( )A.(]1,2-B. [)2,1--C.()1,1-D.[)2,1-11.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为()0,1-,则PF PA的最小值是( )A.14 B. 122312.已知函数()2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则2a ba +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦B .1,23⎡⎫-⎪⎢⎣⎭C .2,3⎛⎤-∞ ⎥⎝⎦D .2,23⎡⎤-⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知()f x 是定义在R 上的奇函数,当0x >时,()2=log 1f x x -,则2f ⎛ ⎝⎭=.14.若244xy+=,则2x y +的最大值是.15.已知12,l l 分别为双曲线()222210,0x y a b a b-=>>的两条渐近线,且右焦点关于1l 的对称点在2l 上,则双曲线的离心率为.16.数列{}n a 满足1=1a ,()()1=11n n na n a n n ++++,且2=cos 3n n n b a π,记n S 为数列{}n b 的前n 项和,则120S =.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.第二次八校联考文科数学 第 2 页(共6页) 俯视图正视图 侧视图224224第9题图)17.(本小题满分12分)如图,在平面四边形ABCD 中,AB AD ⊥,1AB =,7AC =,23ABC π∠=,3ACD π∠=. (Ⅰ)求sin BAC ∠; (Ⅱ)求DC 的长.18.(本小题满分12分)国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如下表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[]0,3.)平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数 2 12 231810x平均每天运动的时间[)0,0.5 [)0.5,1 [)1,1.5 [)1.5,2 [)2,2.5 []2.5,3人数5 12 18103y(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到);(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生 为“非运动达人”.①请根据样本估算该校“运动达人”的数量;②请根据上述表格中的统计数据填写下面22⨯列联表,并通过计算判断能否在犯错 误的概率不超过0.05 运动达人 非运动达人 总 计男 生女 生总 计 参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中.n a b c d =+++参考数据:19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC △是等边三角形,14BC CC ==,D 是11A C 中点.(Ⅰ)求证:1A B ∥平面1B CD ;(Ⅱ)当三棱锥11C B C D -体积最大时,求点B 到平面1B CD 的距离.20. (本小题满分12分)定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆:()22212x y -+=及点()2,0A -,A C D B(第17题图)A B1A1C D 1B (第19题图) 第二次八校联考文科数学 第 3 页(共6页)第二次八校联考文科数学 第 4 页(共6页)动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.k k 21.(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R . (Ⅰ)讨论()f x 的单调性;(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11k k m n ⎡⎤⎢⎥++⎣⎦,求k 的取值范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时请用2B 铅笔在答题卡上把所选题目的题号涂黑. 22. (本小题满分10分)41 :几何证明选讲如图,在锐角三角形ABC 中,AB AC =,以AB 为直径的圆O 与边,BC AC 另外的交点分别为,D E ,且DF AC ⊥于.F (Ⅰ)求证:DF 是O ⊙的切线;(Ⅱ)若3CD =,7=5EA ,求AB 的长.23.(本小题满分10分)44 :坐标系与参数方程已知曲线1C 的参数方程为1cos 3sin x t y t αα=-+⎧⎨=+⎩(t 为参数,0απ<≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22sin 4πρθ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若极坐标为2,4π⎛⎫ ⎪⎝⎭的点A 在曲线1C 上,求曲线1C 与曲线2C 的交点坐标;(Ⅱ)若点P 的坐标为()1,3-,且曲线1C 与曲线2C 交于,B D 两点,求.PB PD ⋅ 24.(本小题满分10分)选修45:不等式选讲 已知函数()+122f x x x =--. (Ⅰ)求不等式()1f x x -≥的解集;(Ⅱ)若()f x 的最大值是m ,且,,a b c 均为正数,a b c m ++=,求222b c a a b c++的最小值.八校高三第二次联考第二次八校联考文科数学 第 5 页(共6页)第二次八校联考文科数学 第 6 页(共6页)DFC B EO (第22题图) 华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中文科数学参考答案一、选择题答案: 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B AADCACBDCA二、填空题: 13.32; 14.2; 15.2; 16.7280 三、解答题:17.(Ⅰ)在ABC ∆中,由余弦定理得:2222cos AC BC BA BC BA B =+-⋅,即260BC BC +-=,解得:2BC =,或3BC =-(舍), ………………3分由正弦定理得:sin 21sin .sin sin 7BC AC BC B BAC BAC B AC =⇒∠==∠………………6分(Ⅱ)由(Ⅰ)有:21cos sin CAD BAC ∠=∠=,327sin 17CAD ∠=-=, 所以27121357sin sin 32D CAD π⎛⎫=∠+=⨯+⨯= ⎪⎝⎭, ………………9分 由正弦定理得:277sin 477.sin sin sin 57DC AC AC CAD DC CAD D D⨯∠=⇒===∠……………12分(其他方法相应给分)18.(Ⅰ)由分层抽样得:男生抽取的人数为14000120=7014000+10000⨯人,女生抽取人数为1207050-=人,故x =5,y =2, ……………2分则该校男生平均每天运动的时间为:0.2520.7512 1.2523 1.7518 2.2510 2.7551.570⨯+⨯+⨯+⨯+⨯+⨯≈, ……………5分故该校男生平均每天运动的时间约为1.5小时; (Ⅱ)①样本中“运动达人”所占比例是201=1206,故估计该校“运动达人”有 ()1140001000040006⨯+=人; ……………8分 ②由表格可知:运动达人 非运动达人总 计 男 生 15 55 70 女 生 5 45 50 总 计20100 120……………9分 故2K 的观测值()2120154555596=2.7433.841.20100507035k ⨯-⨯=≈<⨯⨯⨯……………11分 故在犯错误的概率不超过0.05的前提下不能认为“是否为‘运动达人’与性别有关”. ……………12分19.(Ⅰ)连结1BC ,交1B C 于O ,连DO .在三棱柱111ABC A B C -中,四边形11BB C C 为平行四边形,则1BO OC =,又D 是11A C 中点,∴1DO A B ∥,而DO ⊂平面1B CD ,1A B ⊄平面1B CD ,∴1A B ∥平面1B CD . ……………4分(Ⅱ)设点C 到平面111A B C 的距离是h ,则1111123==33C B CD B C D V S h h -△,而14h CC =≤,故当三棱锥11C B C D -体积最大时,1=4h CC =,即1CC ⊥平面111A B C . ……………6分 由(Ⅰ)知:1BO OC =,所以B 到平面1B CD 的距离与1C 到平面1B CD 的距离相等. ∵1CC ⊥平面111A B C ,1B D ⊂平面111A B C ,∴11CC B D ⊥, ∵ABC △是等边三角形,D 是11A C 中点,∴111AC B D ⊥,又1111=CC AC C ,1CC ⊂平面11AA C C ,11AC ⊂平面11AA C C ,∴1B D ⊥平面11AA C C ,∴1B D CD ⊥,由计算得:1=23,25B D CD =,所以1=215B CD S ∆, ……………9分设1C 到平面1B CD 的距离为h ',由1111=C B C D C B CD V V --得:1231454=3B CD S h h ''⨯⇒=△,所以B 到平面1B CD 的距离是45.……………12分 (其他方法相应给分)20.(Ⅰ)由分析知:点P 在圆内且不为圆心,故2322PA PM AM +=>=, 所以P 点的轨迹为以A 、M 为焦点的椭圆, ……………2分设椭圆方程为()222210x y a b a b +=>>,则22332222a a c c ⎧⎧==⎪⎪⎨⎨=⎪⎪⎩⎩, 所以21b =,故曲线W 的方程为22 1.3x y +=……………5分(Ⅱ)设111122(,)(0),(,)C x y x y E x y ≠,则11(,)D x y --,则直线CD 的斜率为11CD y k x =,又CE CD ⊥,所以直线CE 的斜率是11CE x k y =-,记11xk y -=,设直线CE 的方程为y kx m =+,由题意知0,0k m ≠≠,由2213y kx mx y =+⎧⎪⎨+=⎪⎩得:()222136330k xmkx m +++-=.∴122613mk x x k +=-+,∴121222()213my y k x x m k +=++=+,由题意知,12x x ≠,所以1211121133y y y k x x k x +==-=+,……………9分所以直线DE 的方程为1111()3y y y x x x +=+,令0y =,得12x x =,即1(2,0)F x . 可得121y k x =-.……………11分 所以1213k k =-,即121=.3k k -……………12分 (其他方法相应给分)21.(Ⅰ)函数()f x 的定义域是()0+∞,,()1ax f x x-'=, 当a ≤0时,()0f x '≤,所以()f x 在()0+∞,上为减函数, ……………2分 当a >0时,令()0f x '=,则1x a =,当10x a ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,()f x 为减函数, 当1+x a ⎛⎫∈∞ ⎪⎝⎭,时,()0f x '>,()f x 为增函数, ……………4分 ∴当a ≤0时,()f x 在()0+∞,上为减函数;当a >0时,()f x 在10a ⎛⎫⎪⎝⎭,上为减函数,在1+a ⎛⎫∞ ⎪⎝⎭,上为增函数.……………5分 (Ⅱ)当2a =时,()2ln 4f x x x =--,由(Ⅰ)知:()f x 在1+2⎛⎫∞ ⎪⎝⎭,上为增函数,而[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,∴()f x 在[],m n 上为增函数,结合()f x 在[],m n 上的值域是,11kk m n ⎡⎤⎢⎥++⎣⎦知:()(),11k k f m f n m n ==++,其中12m n <≤, 则()1k f x x =+在1,2⎡⎫+∞⎪⎢⎣⎭上至少有两个不同的实数根, ……………7分 由()1kf x x =+得()2=221ln 4k x x x x --+-,记()()2=221ln 4x x x x x ϕ--+-,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则()1=4ln 3x x x x ϕ'---,记()()1=4ln 3F x x x x xϕ'=---,则()()2222213410x x x x F x x x -+-+'==>, ∴()F x 在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,即()x ϕ'在1,2⎡⎫+∞⎪⎢⎣⎭上为增函数,而()1=0ϕ',∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,当()1,x ∈+∞时,()0x ϕ'>,∴()x ϕ在1,12⎛⎫⎪⎝⎭上为减函数,在()1,+∞上为增函数, ……………10分而13ln 2922ϕ-⎛⎫= ⎪⎝⎭,()1=4ϕ-,当x →+∞时,()x ϕ→+∞,故结合图像得:()13ln 291422k k ϕϕ-⎛⎫<⇒-< ⎪⎝⎭≤≤,∴k 的取值范围是3ln 294,.2-⎛⎤- ⎥⎝⎦……………12分 (其他方法相应给分)22.(Ⅰ)连结,.AD OD 则AD BC ⊥,又AB AC =,∴D 为BC 的中点, ……………2分 而O 为AB 中点,∴OD AC ∥,又DF AC ⊥,∴OD DF ⊥, 而OD 是半径,∴DF 是O ⊙的切线.……………5分(Ⅱ)连DE ,则CED B C ∠=∠=∠,则DCF DEF △△≌,∴CF FE =,…………7分 设CF FE x ==,则229DF x =-,由切割线定理得:2DF FE FA =⋅,即279+5x x x ⎛⎫-= ⎪⎝⎭,解得:1295=52x x =-,(舍),∴ 5.AB AC ==……………10分(其他方法相应给分)23.(Ⅰ)点2,4π⎛⎫ ⎪⎝⎭对应的直角坐标为()1,1, ……………1分由曲线1C 的参数方程知:曲线1C 是过点()1,3-的直线,故曲线1C 的方程为20x y +-=,……………2分而曲线2C 的直角坐标方程为22220x y x y +--=,联立得2222020x y x y x y ⎧+--=⎨+-=⎩,解得:12122002x x y y ==⎧⎧⎨⎨==⎩⎩,,故交点坐标分别为()()2,0,0,2.……………5分 (Ⅱ)由判断知:P 在直线1C 上,将1+cos 3sin x t y t αα=-⎧⎨=+⎩代入方程22220x y x y +--=得:()24cos sin 60t t αα--+=,设点,B D 对应的参数分别为12,t t ,则12,PB t PD t ==,而126t t =,所以1212==6.PB PD t t t t ⋅=⋅……………10分(其他方法相应给分)24.(Ⅰ)131x x x <-⎧⎨--⎩≥,或11311x x x -⎧⎨--⎩≤≤≥,或131x x x >⎧⎨-+-⎩≥,解得:02x ≤≤故不等式的解集为[]02,; ……………5分 (Ⅱ)()3,131,113,1x x f x x x x x -<-⎧⎪=--⎨⎪-+>⎩ ≤≤,显然当1x =时,()f x 有大值,()1 2.m f ==∴2a b c ++=, ……………7分 而()(()2222222222=b c a a b c a b c a b c a bc a b c ⎡⎤⎛⎫⎡⎤++++++++++⎢⎥ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦≥ ∴2222b c a a b c a b c ++++=≥,当且仅当==2a b c b c a ab c a b c ⎧⎪⎪⎪++=⎩,即23a b c ===时取等号,故222b c a a b c++的最小值是2.……………10分 (其他方法相应给分)高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
高考数学模拟题复习试卷普通高等学校招生全国统一考试(III卷)理科数学

高考数学模拟题复习试卷普通高等学校招生全国统一考试(III 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合}0|{}0)3)(2(|{>=≥--=x x T x x x S ,,则S ∩T =A. [2,3]B. ),3[]2,(+∞-∞C. ),3[+∞D. ),3[]2,0(+∞2. =-+=1i 4i 21z z z ,则若 A. 1 B. 1 C. i D. i3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约15℃,B 点表示四月的平均最低气温约为5℃。
下面叙述不正确的是A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. =+=ααα2sin 2cos 43tan 2,则若 A. 2564 B. 2548 C. 1 D. 2516 6. 已知3152342542===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b7. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 68. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sinA = A. 103B. 1010 C.55D. 10103 9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 53618+B. 51854+C. 90D. 8110. 在封闭的直三棱柱ABCA1B1C1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA1 = 3,则V 的最大值是A. π4B. 29π C. π6 D. 332π 11. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【考情解读】1.理解空间直线、平面位置关系的定义,并了解有关的可以作为推理依据的公理和定理;2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【重点知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a′∥a ,b′∥b ,把a′与b′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)平行公理和等角定理①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.【高频考点突破】考点一 平面基本性质的应用【例1】 (1)以下四个命题中,正确命题的个数是()①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面;③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面;④依次首尾相接的四条线段必共面.A.0 B.1C.2 D.3(2)在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么正方体的过P,Q,R 的截面图形是()A.三角形 B.四边形C.五边形 D.六边形【变式探究】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.考点二空间两条直线的位置关系【例2】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.【变式探究】 (1)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).考点三求异面直线所成的角【例3】如图,在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成角为60°.(1)求四棱锥的体积;(2)若E 是PB 的中点,求异面直线DE 与PA 所成角的余弦值.【变式探究】已知在三棱锥A -BCD 中,AB =CD ,且点M ,N 分别是BC ,AD 的中点.(1)若直线AB 与CD 所成的角为60°,则直线AB 和MN 所成的角为________.(2)若直线AB ⊥CD ,则直线AB 与MN 所成的角为________.【真题感悟】1.【高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.C D B ⊥P2.【高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .1.(·辽宁卷)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α2.(·福建卷)在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1-53.(·新课标全国卷Ⅱ)直三棱柱ABC-A1B1C1中,∠BCA =90°,M ,N 分别是A1B1,A1C1的中点,BC =CA =CC1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.224.(·四川卷)三棱锥A - BCD 及其侧视图、俯视图如图1-4所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A - NP - M 的余弦值.图1-4【押题专练】1.若空间三条直线a,b,c满足a⊥b,b⊥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.平行、相交、是异面直线都有可能2.已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b 和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.在空间四边形ABCD中,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与()A.AC,BD之一垂直B.AC,BD都垂直C.AC,BD都不垂直D.AC,BD不一定垂直5.两条异面直线在同一个平面上的正投影不可能是()A.两条相交直线B.两条平行直线C.两个点D.一条直线和直线外一点6.一个正方体的展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°7.如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且CFCB=CGCD=23,则()A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上8.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.9.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.10.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.11.四棱锥P -ABCD 的所有侧棱长都为5,底面ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为________.12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綉12AD ,BE 綉12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?13.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为2的正方形,OA ⊥底面ABCD ,OA =2,M 为OA 的中点.(1)求四棱锥O -ABCD 的体积;(2)求异面直线OC 与MD 所成角的正切值的大小.14.如图所示,正方体ABCD -A1B1C1D1中,E ,F 分别是AB 和AA1的中点.求证:(1)E ,C ,D1,F 四点共面;(2)CE ,D1F ,DA 三线共点.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【高频考点解读】1.会用向量的数量积推导出两角差的余弦公式;2.能利用两角差的余弦公式导出两角差的正弦、正切公式;3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简与给角求值【例1】 (1)已知α∈(0,π),化简:(1+sin α+cos α)·(cos α2-sin α2)2+2cos α=________. (2)[2sin 50°+sin 10°(1+3tan 10°)]·2sin280°=______.解析 (1)原式=⎝⎛⎭⎫2cos2α2+2sin α2cos α2·⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos2α2-sin2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.(2)原式=⎝ ⎛⎭⎪⎫2sin 50°+sin 10°·cos 10°+3sin 10°cos 10°· 2sin 80°=(2sin 50°+2sin 10°·12cos 10°+32sin 10°cos 10°)· 2cos 10°=22[sin 50°·cos 10°+sin 10°·cos(60°-10°)]=22sin(50°+10°)=22×32= 6.答案 (1)cos α (2)6【提分秘籍】(1)三角函数式的化简要遵循“三看”原则:①一看角之间的差别与联系,把角进行合理的拆分,正确使用公式;②二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;③三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.(2)对于给角求值问题,一般给定的角是非特殊角,这时要善于将非特殊角转化为特殊角.另外此类问题也常通过代数变形(比如:正负项相消、分子分母相约等)的方式来求值.【举一反三】(1)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .22-1(2)(·临沂模拟)化简:sin2αsin2β+cos2αcos2β-12cos 2αcos 2β=________.(2)法一 (从“角”入手,复角化单角)原式=sin2αsin2β+cos2αcos2β-12(2cos2α-1)(2cos2β-1)=sin2αsin2β+cos2αcos2β-12(4cos2αcos2β-2cos2α-2cos2β+1)=sin2αsin2β-cos2αcos2β+cos2α+cos2β-12=sin2αsin2β+cos2αsin2β+cos2β-12=sin2β+cos2β-12=1-12=12.法二 (从“名”入手,异名化同名)原式=sin2αsin2β+(1-sin2α)cos2β-12cos 2αcos 2β =cos2β-sin2α(cos2β-sin2β)-12cos 2αcos 2β=cos2β-cos 2β(sin2α+12cos 2α)=1+cos 2β2-12cos 2β=12.法三 (从“幂”入手,利用降幂公式先降次)原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12cos 2α·cos 2β =14+14=12.题型二三角函数的给值求值、给值求角【例2】 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23, 求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.解 (1)∵0<β<π2<α<π,∴π4<α-β2<π,-π4<α2-β<π2,∴sin ⎝⎛⎭⎫α-β2=1-cos2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫α2-β= 1-sin2⎝⎛⎭⎫α2-β=53,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β=cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2s in ⎝⎛⎭⎫α2-β=⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos2α+β2-1=2×49×5729-1=-239729.【提分秘籍】(1)解题中注意变角,如本题中α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β;(2)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝⎛⎭⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝⎛⎭⎫-π2,π2,选正弦较好. 【举一反三】已知cos α=17,cos(α-β)=1314,且0<β<α<π2, (1)求tan 2α的值; (2)求β.解 (1)∵cos α=17,0<α<π2, ∴sin α=437,∴tan α=43, ∴tan 2α=2tan α1-tan2α=2×431-48=-8347.(2)∵0<β<α<π2,∴0<α-β<π2, ∴sin(α-β)=3314, ∴cos β=cos[α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.题型三三角变换的简单应用【例3】已知函数f(x)=Asin ⎝⎛⎭⎫x +π4,x ∈R ,且f ⎝⎛⎭⎫5π12=32.(1)求A 的值;(2)若f(θ)-f(-θ)=32,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫3π4-θ.解 (1)由f ⎝⎛⎭⎫5π12=32,得Asin 2π3=32,又sin 2π3=32,∴A = 3.(2)由(1)得f(x)=3sin ⎝⎛⎭⎫x +π4,由f(θ)+f(-θ)=32,得3sin ⎝⎛⎭⎫θ+π4+3sin ⎝⎛⎭⎫-θ+π4=32, 化简得cos θ=64,∵θ∈⎝⎛⎭⎫0,π2,∴sin θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫642=104,故f ⎝⎛⎭⎫3π4-θ=3sin ⎝⎛⎭⎫3π4-θ+π4=3sin θ=3×104=304.【提分秘籍】解三角函数问题的基本思想是“变换”,通过适当的变换达到由此及彼的目的,变换的基本方向有两个,一个是变换函数的名称,一个是变换角的形式.变换函数名称可以使用诱导公式、同角三角函数关系、二倍角的余弦公式等;变换角的形式,可以使用两角和与差的三角函数公式、倍角公式等.【举一反三】已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.(2)由已知,有sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α),所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos2α-sin2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α). 当sin α+cos α=0时,由α是第二象限角, 知α=3π4+2kπ,k ∈Z. 此时cos α-sin α=- 2.当sin α+cos α≠0时,有(cos α-sin α)2=54. 由α是第二象限角,知cos α-sin α<0,此时cos α-sin α=-52.综上所述,cos α-sin α=-2或-52. 【高考风向标】【高考重庆,文6】若11tan ,tan()32,则tan =() (A) 17 (B) 16 (C) 57 (D) 56【答案】A【解析】11tan()tan 123tan tan[()]111tan()tan 7123αβαβαβααβα-+-=+-===+++⨯,故选A.【高考上海,文1】函数x x f 2sin 31)(-=的最小正周期为.【答案】π【解析】因为x x 2cos 1sin 22-=,所以x x x f 2cos 2321)2cos 1(231)(+-=--=,所以函数)(x f 的最小正周期为ππ=22. 【高考广东,文16】(本小题满分12分)已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 【答案】(1)3-;(2)1. 【解析】(1)tan tantan 1214tan 341tan 121tan tan 4παπααπαα+++⎛⎫+====- ⎪--⎝⎭- (2)2sin 2sin sin cos cos 21ααααα+--()222sin cos sin sin cos 2cos 11αααααα=+--- 222sin cos sin sin cos 2cos αααααα=+-22tan tan tan 2ααα=+- 222222⨯=+- 1=1.(·广东卷) 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是( )A .l1⊥l4B .l1∥l4C .l1与l4既不垂直也不平行D .l1与l4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD-A1B1C1D1中,设BB1是直线l1,BC 是直线l2,AD 是直线l3,则DD1是直线l4,此时l1∥l4;设BB1是直线l1,BC 是直线l2,A1D1是直线l3,则C1D1是直线l4,此时l1⊥l4.故l1与l4的位置关系不确定.2. (·湖北卷) 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f(8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10.故实验室上午8时的温度为10 ℃.3.(·湖南卷) 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC2=CD2+DE2-2CD·DE·cos ∠EDC ,于是由题设知,7=CD2+1+CD ,即CD2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CD sin α. 于是,sin α=CD·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin2α=1-2149=277.而∠AEB=2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α =-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE ,故 BE =2cos ∠AEB =2714=47.4.(·江西卷) 已知函数f(x)=(a +2cos2x)cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π). (1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值.5.(·全国卷) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知3acos C =2ccos A ,tan A =13,求B. 【解析】由题设和正弦定理得3sin Acos C =2sin Ccos A , 故3tan Acos C =2sin C.因为tan A =13, 所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C)] =-tan(A +C) =tan A +tan Ctan Atan C -1=-1, 所以B =135°.6.(·新课标全国卷Ⅱ] 函数f(x)=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1【解析】 f(x)=sin(x +φ)-2sin φcos x =sin xcos φ+cos xsin φ-2sin φcos x =sin xcos φ-cos xsin φ=sin(x -φ),其最大值为1.7.(·山东卷) △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积. 【解析】(1)在△ABC 中,由题意知,sin A =1-cos2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =asin Bsin A =3×6333=3 2.(2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B), 所以sin C =sin[π-(A +B)] =sin(A +B)=sin Acos B +cos Asin B=33×⎝ ⎛⎭⎪⎫-33+63×63=13.因此△ABC 的面积S =12absin C =12×3×32×13=322.8.(·四川卷) 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C9.(·四川卷) 已知函数f(x)=sin ⎝⎛⎭⎫3x +π4. (1)求f(x)的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2kπ,π2+2kπ,k ∈Z ,由-π2+2kπ≤3x +π4≤π2+2kπ,k ∈Z ,得-π4+2kπ3≤x≤π12+2kπ3,k ∈Z ,所以函数f(x)的单调递增区间为⎣⎡⎦⎤-π4+2kπ3,π12+2kπ3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos2α-sin2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αco s π4-sin αsi n π4(cos2α-sin2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2kπ,k ∈Z. 此时,cos α-sin α=- 2.当sin α+cos α≠0时,(co s α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52.10.(·重庆卷) 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8. (1)若a =2,b =52,求cos C 的值;(2)若sin Acos2B 2+sin Bcos2A 2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值. 【解析】(1)由题意可知c =8-(a +b)=72. 由余弦定理得cos C =a2+b2-c22ab= 22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin Acos2B 2+sin Bcos2A2=2sin C 可得 sin A·1+cos B 2+sin B·1+cos A 2=2sin C ,化简得sin A +sin Acos B +sin B +sin Bcos A =4sin C.因为sin Acos B +cos Asin B =sin(A +B)=sin C ,所以sin A +sin B =3sin C. 由正弦定理可知a +b =3c.又a +b +c =8,所以a +b =6.由于S =12absin C =92sin C ,所以ab =9,从而a2-6a +9=0,解得a =3,所以b =3.【高考押题】1.若tan θ=3,则sin 2θ1+cos 2θ=( ) A. 3B .-3 C.33D .-33 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos2θ-1=tan θ= 3. 答案 A2.已知sin α+cos α=13,则sin2⎝⎛⎭⎫π4-α=( ) A.118B.1718C.89D.29解析 由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin2⎝⎛⎭⎫π4-α=1-cos ⎝⎛⎭⎫π2-2α2=1-sin 2α2=1+892=1718,故选B. 答案 B3.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7B.17 C .-17 D .-7解析 因α∈⎝⎛⎭⎫π,32π,且cos α=-45,所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17. 答案 B4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12 B.π3 C.π4 D.π65.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则 ( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析 由条件得sin αcos α=1+sin βcos β,即sin α cos β=cos α(1+sin β),sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.答案 B6.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ=________. 解析 ∵sin ⎝⎛⎭⎫π2+θ=cos θ=35, ∴cos 2θ=2cos2θ-1=2×⎝⎛⎭⎫352-1=-725. 答案 -7257.函数f(x)=sin ⎝⎛⎭⎫2x -π4-22sin2x 的最小正周期是________. 解析 ∵f(x)=22sin 2x -22cos 2x -2(1-cos 2x) =22sin 2x +22cos 2x -2=sin(2x +π4)-2,∴最小正周期T =2π2=π.答案 π8.已知cos4α-sin4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3=________. 解析 ∵cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156.答案 2-1569.已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值.10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62,两边同时平方,得sinα=12. 又π2<α<π,所以cos α=-1-sin2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2. 又sin(α-β)=-35,得cos (α-β)=45.cos β=cos []α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×⎝⎛⎭⎫-35=-43+310.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515-B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。