科学计算方法第七章
地下结构的地层结构计算方法

模型建立要点
midas地层结构算例
第七章 地层结构法的适用性
位移清零
模型建立要点
midas地层结构算例
初始地 应力场
计算开挖边界 等效结点力
删除开挖网格 反向施加结点力
确定释放系数
第七章 地层结构法的适用性
荷载分步释放 与围岩特性
岩爆
模型建立要点
midas地层结构算例
高地应 力
0.7m
E砼=23Gpa A砼=0.28m2 I砼=0.00183m4
E钢=210Gpa A钢=39.578×10-4m2 I钢=2500×10-8m4
E A = E砼 A砼+ E钢A钢/S E I = E砼 I砼+ E钢I钢/S
取E = E砼
A = A砼+ E钢A钢/(SE砼) =0.3316 I = I砼+ E钢I钢/(SE砼) =0.002155
岩土材料
• 根据岩土性质和计算目的选择适合的本构模型。 • 定量分析时应注意材料参数的确定,必要时采用反分析。
结构材料
• 弹性或弹塑性 • 初期支护内的钢拱架与喷射砼一般视为整体计算
加固地层材料
• 直接模拟 • 不模拟,作为安全储备 • 提高地层材料参数
第七章 地层结构法的适用性
边界条件
模型建立要点
576个四边形单元
35个梁单元
第七章 地层结构法的适用性
模型建立要点
midas地层结构算例
地层与结构连接
公共节点,变形协调
. . . 1 node . A. B.
不同节点,相互独立
. . .. . 2 nodes . A. B.
摩擦接触,接触单元
计算方法第七章(r)

为使 a ( k ) = 0 ,必须 pq
tg2θ =
2a(k−1) pq a
(k −1) pp
−a
(k −1) qq
在这里,我们通常, 在这里,我们通常,限制
k (k θ ≤ π / 4 ,如果 a (pp−1) = aqq −1) ,
当 a ( k −1) > 0 时,取 θ = π / 4 ,当 a ( k −1) < 0 时, = −π / 4 θ pq pq 迭代矩阵的元素时, 在具体计算第 k 步迭代矩阵的元素时,需要计算正弦值和余弦 通常按如下步骤计算: 值,通常按如下步骤计算:
λ2 显然,乘幂法的收敛速度依赖 λ ,如此比值接近1,则收敛 显然, 如此比值接近 , 1
速度会很慢。 速度会很慢。 代替A,进行乘幂法 迭代速度可能会大大加快。 乘幂法。 用 A- pI 代替 ,进行乘幂法。迭代速度可能会大大加快。 这叫原点移位法。 这叫原点移位法。
1.2 加速技术: 加速技术:
以上是计算特征向量的埃特金加速,同样可以得到关于计算特 以上是计算特征向量的埃特金加速,同样可以得到关于计算特 计算特征向量的埃特金加速 征值的埃特金加速, 征值的埃特金加速, 的埃特金加速
mk mk + 2 − mk2+1 Mk = mk − 2mk +1 + mk + 2
M k → λ1
1.3 反幂法
Q Τ = Q −1 , QQ Τ = I
数不变。 数不变。
, QAQ Τ = Λ
(2)一个矩阵左乘一个正交矩阵或右乘一个正交矩阵,其E范 )一个矩阵左乘一个正交矩阵或右乘一个正交矩阵, 范
A
2 E
= ∑∑ a = trace( A A) = trace( A Q QA) = QA
数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。
第七章-颗粒大小测定

材料科学与工程学院
第七章
• • • • • • •
颗粒大小测定
厚德 博学
笃行 创新
h气流中含尘气体的取样 对于从气流中获取粉尘试样基本程序为: ① 选择适当的取样点(包括断面位臵和断面上个测量点的分布)。 ② 测量气体温度和流速。 ③ 组装和标定取样仪器。 ④ 在预定的时间内在选定的取样点进行等动取样。 因只有当吸入取样嘴的流速与该点气流相等时,试样才具有代表性。因此在去除代表 着一点气流的试样有一定的困难,等动取样就是这个意思,在等动条件下气流没有扰 动而且所有颗粒并且只有这些颗粒进入取样嘴。 ⑤ 取出已收集有固体颗粒的仪器。 ⑥ 重复测速和测温。 ⑦重复④⑤⑥各步骤。 ⑧测定收集的试样的重量和颗粒级配进行必要的计算和填写报告。上述这些测试方法 ,我们在测试技术里都讲述了
通过细孔法
液相沉降法
风筛法(气相沉降) 离心沉降法
500~0.5
100~1 5~0.01
反应速度法
光线散射法 光散射法
50~0.1
10~0.001 0.05~0.001
材料科学与工程学院
第七章
颗粒大小测定
厚德 博学
笃行 创新
上述这些方法的选择取决于粒度范围、粒度 使用目的、物料的物理性质,测定精度记忆测定 方法的难易程度,在我们硅酸盐行业使用最多的 方法有筛析法、显微镜法、沉降法、吸附法和散 射法。
材料科学与工程学院
第七章
颗粒大小测定
厚德 博学
笃行 创新
三、颗粒大小测定方法 1、筛分 筛子按制造方法可分为扁丝筛和冲孔筛。筛子通常是用来分级用的,在以 前筛孔的大小还没有标准化,在1867年Rittinger首先建议以75um为基础用递增 筛孔大小作为标准筛。现代标准筛以递增而法国的AFNOR系列用为基础递增 。 筛子常用“目”来表示筛孔大小称Mesh,“目”是每英寸长度内有若干根 编丝的数字。目前各种标准筛逐步修改到ISO制系列了。该系列是以45um为基 础, 递增。目前常用的标准筛有日本工业规格(JIS),美国标准(ASTM) ,Tyler公司标准,英国标准(BS),法国标准(DIN).晒分析师一种简单的最广 泛应用于颗粒大小分析的方法,应用范围是20um~125mm的编织丝筛。微孔 筛可使使用范围下限至5um或更小,而用板冲孔筛可是上限增大。几种常见的 筛分方法。
第七章土压力计算

1. 土的自重引起的土压力zKp
2. 粘聚力c引起的侧压力2c√Kp 说明:侧压力是一种正压力,在计算 Ep 中应考虑
土压力合力
E p(1/2)h2K p2chK p
1.粘性土被动土压力强度不存在负侧压力区 2.合力大小为分布图形的面积,即梯形分布图形面积 3.合力作用点在梯形形心
被动朗 肯状态
处于被动朗肯状态,σ3方向竖直,剪切
破坏面与竖直面夹角为45o+/2
二、主动土压力
挡土墙在土压力作用下,产生离开
土体的位移,竖向应力保持不变,
水平应力逐渐减小,位移增大到
h
z
z(σ1)
-△a,墙后土体处于朗肯主动状态
时,墙后土体出现一组滑裂面,剪
45o+/2
pa(σ3) 切破坏面与大主应力作用面夹角
z
pp
主动极限 水平方向均匀伸展 土体处于水平方向均匀压缩 被动极限
平衡状态
弹性平衡
平衡状态
状态
主动朗 肯状态
处于主动朗肯状态,σ1方向竖直,剪切
破坏面与竖直面夹角为45o-/2
被动朗 肯状态
处于被动朗肯状态,σ3方向竖直,剪切
破坏面与竖直面夹角为45o+/2
成层填土情况(以无粘性土为例)
A pa A
ppzK p2c Kp
pp zKp
h
h/3
Ep (1/2)h2Kp
hKp 1.无粘性土被动土压力强度与z成正比,沿墙高呈三角形分布 2.合力大小为分布图形的面积,即三角形面积 3.合力作用点在三角形形心,即作用在离墙底h/3处
h
hp
当c>0, 粘性土
2c√Kp
hKp +2c√Kp
现代科学工程计算基础课后答案

现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。
全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。
使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。
《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。
基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。
其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。
目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。
信息与计算科学专业计算方法习题参考解答(教师用)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1. 若误差限为0.5×10-5,那么近似数0.003400有几位有效数字?(有效数字的计算) 2. 14159.3=π,具有4,5位有效数字的近似值分别是多少?(有效数字的计算) 3. 已知 1.2031,0.978a b ==是经过四舍五入后得到的近似值,问,a b a b +⨯有几位有效数字?(有效数字的计算)4. 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0|*|≤-,cm r r 1.0|*|≤-,求圆柱体体积h r V2π=的绝对误差限与相对误差限。
(误差限的计算)5. 设ny x =,求y 的相对误差与x 的相对误差的关系。
设x 的相对误差为%a ,求nx 的相对误差.(函数误差的计算)6. 计算球的体积,为了使体积的相对误差限为1%,问度量半径r 时允许的相对误差限为多大何?(函数误差的计算)7. 设110n x n I e x e dx -=⎰求证:(1)11(0,1,2,)n n I nI n -=-=(2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。
(计算方法的比较选择)第二章 插值法姓名 学号 班级习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。
1.求一个次数小于等于三次多项式,满足如下插值条件:,,,(插值多项式的构造)2. 已知:,,,求的Lagrange 插值多项式。
(拉格朗日插值)3. 已知y=x ,0x =4,1x =9,用线性插值求7的近似值。
(拉格朗日线性插值)4. 若(0,1,,)j x j n = 为互异节点,且有01110111()()()()()()()()()()()j j n j j j j j j j j n x x x x x x x x x x l x x x x x x x x x x x -+-+-----=-----5. 证明(),0,1,,nk kj jj x l x xk n =≡=∑ (拉格朗日插值基函数的性质)6. 已知sin0.32=0.314567,sin0.34=0.333487,sin0.36=0.352274,用抛物线插值计算sin0.3367的值并估计截断误差。
数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。
例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。
科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。
由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。