工程材料习题集参考答案(第二章)

合集下载

工程材料习题集

工程材料习题集

工程材料习题集绪论1.一铜棒的最大拉应力为70MPa,若要承受2000kgf的载荷,它的直径是多少?2.有一直径15mm的钢棒所能承受的最大载荷为11800kgf,问它的强度是多少。

3.一根2米长的黄铜棒温度升高80℃,伸长量是多少?要使该棒有同样的伸长,问需要作用多少力?(黄铜线膨胀系数为20×10-6/℃,平均弹性模量为110000MPa)4.一根焊接钢轨在35℃时铺设并固定,因此不能发生收缩。

问当温度下降到9℃时,钢轨内产生的应力有多大?(钢的线膨胀系数为12×10-6/℃,弹性模量为206000MPa)5.零件设计时,选取σ0.2(σS)还是选取σb,应以什么情况为依据?6.δ与ψ这两个指标,哪个能更准确地表达材料的塑性?并说明以下符号的意义和单位:σe;σs(σ0.2);σb;δ;ψ;σ-1;ɑk7.常用的测量硬度的方法有几种?其应用范围如何?8.有一碳钢制支架刚性不足,有人要用热处理强化方法;有人要另选合金钢;有人要改变零件的截面形状来解决。

哪种方法合理?为什么?参考答案:1.18.9mm 2.871MPa 3.3.2mm,176MPa 4.64.3MPa第一章金属的结构与结晶1.金属中常见的晶体结构类型有哪几种?α-Fe、γ-Fe、A1、Cu、Ni、Pb、Cr、V、Mg、Zn 各属何种晶体结构?2.单晶体与多晶体有何差别?为什么单晶体具有各向异性,而多晶体材料通常不表现出各向异性?3.简述金属常见的三种晶体结构的基本特点。

4.晶体缺陷有哪些?对材料有哪些影响?对所有的材料都有影响吗?5. 分别说明以下概念:晶格;晶胞;晶格常数;致密度;配位数;晶面;晶向;单晶体;多晶体;晶粒;晶界;各向异性;同素异构。

6.在立方晶格中,如果晶面指数和晶向指数的数值相同,该晶面与晶向间存在着什么关系?7. 何谓过冷度?为什么结晶需要过冷度?它对结晶后晶粒大小有何影响?8. 何谓同素异构转变?纯铁在常压下有哪几种同素异构体?各具有何种晶体结构?1.金属结晶的基本规律是什么?结晶过程是怎样进行的?2.过冷度与冷却速度有何关系?它对金属结晶后的晶粒大小有何影响?3.如果其它条件相同,试比较在下列条件下,铸件晶粒的大小:(1)砂型铸造与金属铸造;(2)厚壁铸件与薄壁铸件;(3)加变质剂与不加变质剂;(4)浇注时振动与不振动。

工程材料第二版习题解答

工程材料第二版习题解答

第一章材料的结构与性能一、材料的性能(一)名词解释弹性变形:去掉外力后,变形立即恢复的变形为弹性变形。

塑性变形:当外力去除后不能够恢复的变形称为塑性变形。

冲击韧性:材料抵抗冲击载荷而不变形的能力称为冲击韧性。

疲劳强度:当应力低于一定值时,式样可经受无限次周期循环而不破坏,此应力值称为材料的疲劳强度。

σ为抗拉强度,材料发生应变后,应力应变曲线中应力达到的最大值。

bσ为屈服强度,材料发生塑性变形时的应力值。

sδ为塑性变形的伸长率,是材料塑性变形的指标之一。

HB:布氏硬度HRC:洛氏硬度,压头为120°金刚石圆锥体。

(二)填空题1 屈服强度、抗拉强度、疲劳强度2 伸长率和断面收缩率,断面收缩率3 摆锤式一次冲击试验和小能量多次冲击试验, U型缺口试样和V型缺口试样4 洛氏硬度,布氏硬度,维氏硬度。

5 铸造、锻造、切削加工、焊接、热处理性能。

(三)选择题1 b2 c3 b4 d f a (四)是非题 1 对 2 对 3错 4错(五)综合题 1 最大载荷为2805.021038.5πσ⨯=F b断面收缩率%10010810010⨯-=-=A A A ϕ 2 此题缺条件,应给出弹性模量为20500MP,并且在弹性变形范围内。

利用虎克定律 320℃时的电阻率为13.0130℃时的电阻率为18.01二、材料的结合方式 (一)名词解释结合键:组成物质的质点(原子、分子或离子)间的相互作用力称为结合键,主要有共价键、离子键、金属键、分子键。

晶体:是指原子在其内部沿三维空间呈周期性重复排列的一类物质。

非晶体:是指原子在其内部沿三维空间呈紊乱、无序排列的一类物质。

近程有序:在很小的范围内(一般为几个原子间距)存在着有序性。

(二)填空题1 四,共价键、离子键、金属键、分子键。

2 共价键和分子键,共价键,分子键。

3 强。

4 强。

(三)选择题1 a2 b3 a(四)是非题1 错2 错3 对4 错(五)综合题1晶体的主要特点:○1结构有序;○2物理性质表现为各向异性;○3有固定的熔点;○4在一定条件下有规则的几何外形。

工程材料课后习题答案 (2)

工程材料课后习题答案 (2)

参考答案第1章机械工程对材料性能的要求思考题与习题P201.3、机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?p4工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。

有时只受到一种负荷作用,更多的时候将受到两种或三种负荷的同时作用。

在力学负荷作用条件下,零件将产生变形,甚至出现断裂;在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降;环境介质的作用主要表现为环境对零件表面造成的化学腐蚀,电化学腐蚀及摩擦磨损等作用。

1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系?p7机器的整机性能除与机器构造、加工与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。

在合理而优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。

机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的。

在结构因素和加工工艺因素正确合理的条件下,大多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它力学性能所决定。

在设计机械产品时,主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算,以确定产品的结构和零件的尺寸。

1.5常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么?p17机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料。

1.7、常用哪几种硬度试验?如何选用P18?硬度试验的优点何在P11?硬度试验有以下优点:●试验设备简单,操作迅速方便;●试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种尺寸的零件;●硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外);●材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可作为评定材料工艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热加工质量。

工程材料第二版习题(1-2)章答案

工程材料第二版习题(1-2)章答案

塑性变形的的物理本质: 塑性变形的的物理本质: 滑移和孪生共同产生的塑性变形。 滑移和孪生共同产生的塑性变形。 P24 滑移是晶体的一部分相对另一部分做整 体刚性移动。孪生是在切应力的作用下, 体刚性移动。孪生是在切应力的作用下,晶 体的一部分相对另一部分沿着一定的晶面 孪生面) (孪生面)产生一定角度的切变
2-13、晶粒大小对金属性能有何影响?细化 13、晶粒大小对金属性能有何影响? 晶粒方法有哪些? 晶粒方法有哪些? p17 答: 在一般情况下,晶粒愈小,则金属的强度. 在一般情况下,晶粒愈小,则金属的强度.塑 性和韧性愈好. 性和韧性愈好. 细化晶粒是提高金属性能的重要途径之一, 细化晶粒是提高金属性能的重要途径之一, 晶粒愈细,强度和硬度愈高, 晶粒愈细,强度和硬度愈高,同时塑性韧性 愈好。 愈好。 细化晶粒方法有: 细化晶粒方法有: 增大过冷度; 2.变质处理 变质处理; 3.附加振 增大过冷度; 2.变质处理; 3.附加振 动或搅动等方法; 动或搅动等方法;
5、晶粒 p11 晶粒---每个小晶体具有不规则的颗粒状外形。 ---每个小晶体具有不规则的颗粒状外形 晶粒---每个小晶体具有不规则的颗粒状外形。 何谓空间点阵、晶格、晶体结构和晶胞? 2-2、何谓空间点阵、晶格、晶体结构和晶胞? 常用金属的晶体结构是什么?划出其晶胞, 常用金属的晶体结构是什么?划出其晶胞, 并分别计算起原子半径、配位数和致密度? 并分别计算起原子半径、配位数和致密度? 1、空间点阵 p9 空间点阵-----为了便于分析各种晶体中的原子 空间点阵---为了便于分析各种晶体中的原子 排列及几何形状, 排列及几何形状,通常把晶体中的原子假想为 几何结点,并用直线从其中心连接起来,使之 几何结点,并用直线从其中心连接起来, 构成一个空间格子。 构成一个空间格子。

工程材料与热处理 第2章作业题参考答案

工程材料与热处理  第2章作业题参考答案

6。

配位数为12,原子半径为1/2a。

2实际金属中有哪些晶体缺陷?晶体缺陷对金属的性能有何影响?点缺陷、线缺陷、面缺陷一般晶体缺陷密度增大,强度和硬度提高。

3什么叫过冷现象、过冷度?过冷度与冷却速度有何关系?它对结晶后的晶粒大小有何影响?金属实际结晶温度低于理论结晶温度的现象称为过冷现象。

理论结晶温度与实际结晶温度之差称为过冷度。

金属结晶时的过冷度与冷却速度有关,冷却速度愈大,过冷度愈大,金属的实际结晶温度就愈低。

结晶后的晶粒大小愈小。

4金属的晶粒大小对力学性能有何影响?控制金属晶粒大小的方法有哪些?一般情况下,晶粒愈细小,金属的强度和硬度愈高,塑性和韧性也愈好。

控制金属晶粒大小的方法有:增大过冷度、进行变质处理、采用振动、搅拌处理。

5.如果其他条件相同,试比较下列铸造条件下铸件晶粒的大小:(1)金属型浇注与砂型浇注:(2)浇注温度高与浇注温度低;(3)铸成薄壁件与铸成厚壁件;(4)厚大铸件的表面部分与中心部分(5)浇注时采用振动与不采用振动。

(6)浇注时加变质剂与不加变质剂。

(1)金属型浇注的冷却速度快,晶粒细化,所以金属型浇注的晶粒小;(2)浇注温度低的铸件晶粒较小;(3)铸成薄壁件的晶粒较小;(4)厚大铸件的表面部分晶粒较小;(5)浇注时采用振动的晶粒较小。

(6)浇注时加变质剂晶粒较小。

6.金属铸锭通常由哪几个晶区组成?它们的组织和性能有何特点?(1)表层细等轴晶粒区金属铸锭中的细等轴晶粒区,显微组织比较致密,室温下力学性能最高;(2)柱状晶粒区在铸锭的柱状晶区,平行分布的柱状晶粒间的接触面较为脆弱,并常常聚集有易熔杂质和非金属夹杂物等,使金属铸锭在冷、热压力加工时容易沿这些脆弱面产生开裂现象,降低力学性能。

(3)中心粗等轴晶粒区由于铸锭的中心粗等轴晶粒区在结晶时没有择优取向,不存在脆弱的交界面,不同方向上的晶粒彼此交错,其力学性能比较均匀,虽然其强度和硬度低,但塑性和韧性良好。

7.为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性?因为单晶体中的不同晶面和晶向上的原子密度不同,导致了晶体在不同方向上的性能不同的现象,因此其性能呈现各向异性的。

机械工程材料_习题集答案201207013

机械工程材料_习题集答案201207013

20120712 习题解答兰州第1章材料的性能一、选择题1.表示金属材料屈服强度的符号是( B) A.σ B。

σs C.σb D.σ-12。

表示金属材料弹性极限的符号是( A)A.σeB。

σs C.σb D。

σ—13.在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是( B)A。

HB B.HRC C.HV D。

HS 4。

金属材料在载荷作用下抵抗变形和破坏的能力叫(A ) A。

强度B。

硬度C.塑性 D.弹性二、填空1.金属材料的机械性能是指在载荷作用下其抵抗(变形 )或(破坏)的能力。

2。

金属塑性的指标主要有(伸长率)和(断面收缩率)两种。

3。

低碳钢拉伸试验的过程可以分为弹性变形、(塑性变形)和(断裂)三个阶段。

4.常用测定硬度的方法有(布氏硬度测试法)、(洛氏硬度测试法)和维氏硬度测试法。

5.疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。

三、是非题1。

用布氏硬度测量硬度时,压头为钢球,用符号HBS表示。

是2.用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW表示。

是3。

金属材料的机械性能可以理解为金属材料的失效抗力。

四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。

将冲击载荷改成交变载荷2。

渗碳件经淬火处理后用HB硬度计测量表层硬度。

将HB改成HR3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。

将疲劳强度改成冲击韧性4。

衡量材料的塑性的指标主要有伸长率和冲击韧性.将冲击韧性改成断面收缩率5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。

将载荷改成冲击载荷五、简答题1.说明下列机械性能指标符合所表示的意思:σs、σ0.2、HRC、σ—1、σb、δ5、HBS。

σs:屈服强度σ0。

2:条件屈服强度HRC:洛氏硬度(压头为金刚石圆锥)σ—1:疲劳极限σb: 抗拉强度σ5:l0=5d0时的伸长率(l0=5。

65s01/2)HBS:布氏硬度(压头为钢球)第2章材料的结构一、选择题1. 每个体心立方晶胞中包含有(B)个原子A。

工程材料第二章固体结构作业答案

工程材料第二章固体结构作业答案

所以 Cr 的晶体结构为体心立方结构(bcc) 8. 铁在 912℃时由 α–Fe(体心立方)变为 γ–Fe(面心立方) ,已知碳存在于铁 的间隙中,试解释为什么碳在γ–Fe 中的溶解度(最高可达 wc2.11%)比在α–Fe 中的溶解度(最高只有 wc 0.0218% )大?(已知γ–Fe、α–Fe 和碳的原子半径分 别为 0.129nm、0.125nm 和 0.077nm) 解: 实验证明, 碳原子无论是溶入α-Fe 还是γ-Fe 所处的间隙位置都是八面体间隙 现计算两种间隙的大小。 对γ-Fe,如课本面心立方晶体的八面体间隙图所示,以(100)晶面上碳原
因此 c/a=√8/3=1.633 6. Ni 的晶体结构为面心立方结构,其原子半径为 r =0.1243nm,试求 Ni 的晶格 常数和密度。
解:晶格常数 a Ni 的密度
4r 4 0.1243 0.3516(nm) 2 2
4A r 4 58.69 8.967(g/cm3 ) 3 8 3 23 a N A (3.516 10 ) 6.02 10
3
=4.308(g / cm3 )
4 3 4 3 4 rCs+ rCl (0.1673 0.1813 ) 3 K3 =3 0.683 3 3 2rCs+ +2rCl- 2(0.167 0.181) 3 3
4. 立方晶系的各{111}晶面构成一个八面体,试作图画出该八面体,并注出这些 具体晶面的指数。
(111) (111) (111) (111) (111) (111) (111)
(111)
5. 试证明理想密排六方结构的轴比 c/a=1.633。 证明:理想密排六方晶格配位数为 12,即晶胞上底面中心原子与其下面的 3 个 位于晶胞内的原子相切,成正四面体,如图所示

《材料科学与工程基础》-第二章-课后习题答案.pdf

《材料科学与工程基础》-第二章-课后习题答案.pdf

材料科学与工程基础第二章课后习题答案1. 介绍材料科学和工程学的基本概念和发展历程材料科学和工程学是研究材料的组成、结构、性质以及应用的学科。

它涉及了从原子、分子层面到宏观的材料特性的研究和工程应用。

材料科学和工程学的发展历程可以追溯到古代人类使用石器和金属制造工具的时代。

随着时间的推移,人类不断发现并创造出新的材料,例如陶瓷、玻璃和合金等。

工业革命的到来加速了材料科学和工程学的发展,使得煤炭、钢铁和电子材料等新材料得以广泛应用。

2. 分析材料的结构和性能之间的关系材料的结构和性能之间存在着密切的关系。

材料的结构包括原子、晶体和晶界等方面的组成和排列方式。

而材料的性能则反映了材料在特定条件下的机械、热学、电学、光学等方面的性质。

材料的结构直接决定了材料的性能。

例如,金属的结晶结构决定了金属的塑性和导电性。

硬度和导电性等机械和电学性能取决于晶格中原子的排列方式和原子之间的相互作用。

因此,通过对材料的结构进行了解,可以预测和改变材料的性能。

3. 论述材料的性能与应用之间的关系材料的性能决定了材料的应用范围。

不同的材料具有不同的性能特点,在特定的应用领域中会有优势和局限。

例如,金属材料具有良好的导电性和导热性,适用于制造电子器件和散热器件。

聚合物材料具有良好的绝缘性和韧性,适用于制造电线和塑料制品等。

陶瓷材料具有良好的耐高温性和耐腐蚀性,适用于制造航空发动机和化学设备等。

因此,在材料科学和工程学中,对材料性能的研究是为了确定材料的应用和优化材料的性能。

4. 解释与定义材料的特性及其测量方法材料的特性是指材料所具有的特定性质或行为。

它包括了物理、化学、力学、热学、电学等方面的特性。

测量材料的特性需要使用特定的实验方法和设备。

例如,材料的硬度通常可以通过洛氏硬度试验仪或布氏硬度试验仪进行测量。

材料的强度可以通过拉伸试验或压缩试验来测量。

材料的导电性可以通过四探针法或霍尔效应进行测量。

通过测量材料的特性,可以对材料的性能进行评估和比较,并为材料的应用提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题集部分参考答案
2金属的晶体结构
思考题
1.晶体和非晶体的主要区别是什么?
答:晶体和非晶体的区别在于内部原子的排列方式。

晶体内部的原子(或分子)在三维空间按一定规律作周期性排列,而非晶体内部的原子(或分子)则是杂乱分布的,至多有些局部的短程规律排列。

因为排列方式的不同,性能上也有所差异。

晶体有固定的熔点,非晶体没有,晶体具有各向异性,而非晶体则是各向同性。

2.何为各向异性?
答:各向异性是指晶体的某些物理性能和力学性能在不同方向上具有不同的数值。

3.为什么单晶体呈各向异性,而多晶体通常呈各向同性?
答:单晶体是原子排列方位完全一致的一个晶粒,由于在不同晶向上原子密度不同,原子间的结合力不同,因而导致在单晶体中的各个方向上性能差异。

对于多晶体中的任意一个晶粒来看,基本满足单晶体的特征,呈现各向异性,但是在多晶体系统中,单一晶粒的各向异性已经被周围其他位向的晶粒所“干扰”或“抵消”,整个多晶系统呈现其各向同性。

4.什么叫晶体缺陷?晶体中可能有哪些晶体缺陷?他们的存在有何实际意义?
答:晶体缺陷是指金属晶体中原子排列的不完整性。

常见的晶体缺陷有点缺陷、线缺陷和面缺陷三类,它们都会造成材料的晶格畸变。

点缺陷是指呈点状分布的缺陷,包含有空位、间隙原子和置换原子等,它对材料中的原子扩散、固态相变,以及材料的物理性能(电阻、体积、密度)等都会产生重大影响。

过饱和的点缺陷还可以提高材料的强度。

线缺陷是各种类型的位错。

对材料的变形、扩散以及相变起着非常大的作用。

特别它很好地解释了塑性变形的微观机理,使我们了解到滑移是借助于位错的运动来实现的。

当位错密度不高的情况下,位错支持了滑移,材料的塑性很好,但是当位错密度达到了较高的水平时,位错间的相互作用会造成位错的彼此“纠缠”,使滑移运动受阻,这时表现出材料的塑性变形的抗力提高,材料的强度提高。

金属晶体中面缺陷主要有晶界、亚晶界、孪晶界和相界等。

比如:晶界处原子的平均能量比晶内高,在高温时,晶粒容易长大。

晶界和亚晶界均可提高金属的强度。

单位体积中的晶粒数目越多,晶界面积越大,晶格畸变越严重,材料的强度越高,同时材料的塑性也较好(同样的变形量可以分散到更多的晶粒中去进行,说明材料可以承受更大的变形量)。

5.体心立方晶格中原子排列最密的晶面是哪个?原子排列最密的晶向是哪个?而在面心立方晶格中原子排列最密的晶面是哪个?原子排列最密的晶向是哪个?试分别绘出以上原子排列最密晶面和晶向。

答:体心立方晶格中原子排列最密的晶面族是{110},包含的晶面有(110),(101),(011),(10),(01),(01),(10),(10),(01),(0),(0),(0)共十二个晶面。


1−
1−
1−
1−
1−
1−1−
1−
1−
1−1−
1体心立方晶格中原子排列最密的晶向族是<111>,包含的晶向有 [111],[11],[11],[11],[1],[1],[1],[]共八个晶向。


1−
1−
1−1−
1−
1−
1−1−
1−1−1−
1
体心立方晶格中密度最大的晶面和晶向
面心立方晶格中原子排列最密的晶面族是{111},包含的晶面有(111),(11),(11),(11),(1),(1),(1),()共八个晶面。


1−
1−
1−1−
1−
1−
1−1−
1−1−1−
1面心立方晶格中原子排列最密的晶向族是<110>, 包含的晶向有[110],[101],[011],[10],[01],[01],[10],[10),[01],[0],[0],[0]共十二个晶向。


1−
1−
1−
1−
1−
1−1−
1−
1−
1−1−
1
面心立方晶格中密度最大的晶面和晶向
(在没有了解晶面族和晶向族知识时或答为:面心立方晶格中原子排列最密的晶面是(111)原子排列最密的晶向是[110]体心立方晶格中原子排列最密的晶面是(110)原子排列最密的晶向是[111]。


6.何为金属键?金属键有何特点?
答:金属处于气态时,彼此不存在结合键,当金属原子相互靠近到一定程度而作为液体金属或固体金属时,原子间就形成结合键,使原子紧凑而规则地排列在一起,这种金属原子
间的结合键称为金属键。

金属键的基本特点是“电子公有化”,就是金属原子成晶体时,价电子在整个晶体内运动。

金属键使金属具有导电、正的电阻温度系数、光泽和塑性等特性。

习题
1.名词解释
晶格;晶胞;晶粒;晶界;亚晶粒;亚晶界;晶面;晶向;晶格常数;单晶体;多晶体;致密度。

答:晶格:用以描述晶体中原子排列规律的空间格架。

晶胞:晶格中能完全放映晶格特征的最小几何单元。

晶粒:结晶物质在生长过程中,由于受到外界空间的限制,未能发育成具有规则形态的晶体,而只是结晶成颗粒状,称晶粒。

晶界:晶粒与晶粒之间的接触界面叫晶界。

亚晶粒:在多晶体的每一个小晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小,位向差很小的小晶块,它们相互镶嵌形成晶粒,其中的小晶块
叫做“镶嵌块”或称为亚晶粒。

晶面:晶格中由一系列原子所构成的平面。

晶向:能代表晶体中原子在空间的排列位相的任意二原子之间连线所指的方向。

晶格常数:晶体物质的基本结构参数,它与原子间的结合能有直接的关系,晶格常
数的变化反映了晶胞的大小及形状等晶体学体征。

单晶体:晶粒晶格排列方位完全一致的晶体。

多晶体:由晶格位向彼此不同的晶粒组成的晶体。

致密度:单位晶胞体积中原子所占的体积与晶胞体积之比。

2.常见的金属晶格类型有哪些?他们的原子排列和晶格常数有什么特点?
α-Fe、ß-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn各属于何种晶体结构?
答:常见的金属晶格类型有但三种,即体心立方、面心立方和密排六方。

前二种属于立方晶系,后一种属于六方晶系。

α-Fe、、Pb、V属于体心立方结构;ß-Fe、Al、Cu、Ni属于面心立方结构。

Cr、Mg、Zn属于密排六方结构。

3.点缺陷的形式有哪些?位错属于那种缺陷。

答:点缺陷有空位、间隙原子和置换原子三种。

位错属于线缺陷。

4.在立方晶系中划出下列晶面和晶向?(010)与[010];(011)与[011];(111)与[111];(122)与[122];(112)与[112]。

解:
5.已知Cu 的原子直径为2.56,求Cu 的晶格常数,并计算1mm •
A 3中Cu 中的原子数。

(=10•
A -10米)
解:Cu 为面心立方结构。

a=b=c=(2.56×2)/2•
A =3.62

A α=β=γ=900
面心立方n=4
1mm 3中Cu 中的原子数为4×1×10-9m 3/(3.62×3.62×3.62×10-30)≈8.43×1019
6.在立方晶系中结构中,一平面通过y=0.5、z=3并平行于X 轴,它的晶面指数
7.体心立方晶格中的晶面族{110}包括几个原子排列相同而空间位相不同的晶面?试绘图表示。

答:晶面族{110}共十二个晶面,独立存在的有6个晶面,它们是:(110)、(11-
0)、(101)、(01-1)、(1-01)、(011)。

8.在面心立方晶格中哪个晶面和晶向的原子密度最大?
答:面心立方晶格中原子排列密度最大的晶面是{111}晶面族中的所有晶面。

{111}晶面族中有8个晶面,独立存在的有4个,它们是:(111)、(1-1-1)、(11-1)、(1-
11)
面心立方晶格中原子排列密度最大的晶向是<110>晶向族中的所有晶向。

(略)
9.已知γ-Fe 的晶格常数大于α-Fe 的晶格常数,但为什么γ-Fe 冷却到9120C 转变为α-Fe 时体积反而增加?
答:因为γ-Fe 为面心立方晶格,一个晶胞含4个原子;γ-Fe 冷却到9120
C 后转变为α-Fe 后,变成体心立方晶格,一个晶胞含2个原子,尽管γ-Fe 的晶格常数大于α-Fe 的晶格常数,但多的体积部分抵不上因原子排列不同γ-Fe 变成α-Fe 体积增大的变化部分。

故γ-Fe 冷却到9120
C 后转变为α-Fe 时体积反而增加。

相关文档
最新文档