伽马γ能谱测量分析近代物理实验报告
实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定γ射线能谱测定以及γ射线的吸收与物质吸收系数μ的测定实验报告摘要原子核的能级跃迁可以产生伽马射线,通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。
同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。
本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。
闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。
γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,波长短于0.2埃的电磁波,具有很强的穿透性。
本实验将γ射线的次级电子按不同能量分别进行强度测量,通过电子学仪器得到它的能谱图。
实验中使用NaI单晶γ闪烁谱仪对γ的能谱进行测定。
最后得到γ射线在160道数及320道数位置的一些相关数据。
在这些位置它的数量和能量的值都比较合适,有一定数量,又有一定的穿透能力。
实验中将了解NaI(Tl)单晶γ闪烁谱仪是如何测量γ射线的能谱,NaI(Tl)单晶γ闪烁谱仪的结构、原理与特性;掌握NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用方法。
并通过对137Cs和60Co 放射源γ能谱的测量,加深对γ射线与物质相互作用的理解以及通过该实验了解多道脉冲幅度分析器在NaI(Tl)单晶γ谱测量中的数据采集及其基本功能。
在第一个实验的基础上,采用NaI闪烁谱仪测全能峰的方法测量137Cs的γ射线在铅、铝材料中的吸收系数。
并且通过实验对核试验安全防护的重要性有初步的认识。
关键词γ射线吸收系数μ60Co、137Cs放射源能谱NaI单晶γ闪烁谱仪多道分析器引言γ射线首先由法国科学家P.V.维拉德发现,γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出γ射线。
γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。
我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。
因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。
同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。
【关键词】γ射线能谱γ闪烁谱仪【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。
而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。
本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。
γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。
人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。
因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。
γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。
本实验主要研究的是窄束γ射线在物质中的吸收规律。
所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。
窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。
γ射线强度随物质厚度的衰减服从指数规律。
本次实验仪器如下:NaI 闪烁谱仪,γ射线源137Cs 和60Co ,高压电源放大器,Pb,Al 吸收片各四片,计算机NaI(TI)闪烁探测器的结构如下图所示。
南京大学近代物理实验-γ射线的能量和强度测量

γ射线的能量和强度测量摘要:闪烁探测器是利用某些物质在射线作用下受激发光的特性来探测射线的仪器。
本实验利用NaI(Tl)闪烁谱仪,进行γ射线的能量和强度测量。
关键词:NaI(Tl)闪烁谱仪,能量分辨率,探测效率一、实验目的1.了解NaI(Tl)闪烁谱仪的组成,基本特性及使用方法。
2.掌握测量γ射线的能量和强度的基本方法。
二、实验原理2.1γ射线与物质的相互作用γ射线与物质的相互作用主要是光电效应、康普顿散射和正负电子对产生三种过程。
(1)光电效应:入射γ光子把能量全部转移给原子中的束缚电子,将其打出形成光电子。
由于电子束缚能一般远小于入射γ光子的能量,所以光电子动能近似等于入射γ光子的能量。
(2)康普顿散射:入射γ光子与核外电子发生非弹性散射。
设入射γ光子能量为hν,散射光子能为hν′,则反冲康普顿电子的动能Ee为Ee=hν−hν′康普顿散射后散射光子能量与散射角θ的关系为hν′=hν/[1+α(1−cosθ)] (1)其中α=hν/m e c2为入射γ射线能量与电子静止质量之比。
由(1)式可得,当θ=0时,hν=hν′,这时Ee=0,即不发生散射;当θ=180°时,散射光子能量最小,为hν/(1+2α),这时康普顿电子的能量最大,为Ee max=hν·2α/(1+2α)(2)所以康普顿电子能量在0至Ee max之间变化。
(3)正负电子对产生:当γ射线能量超过2 m e c2(1.022MeV)时,γ光子受原子核或电子的库仑场的作用可能转化为正负电子对。
入射γ射线能量越大,产生正负电子对的几率也越大。
在物质中正电子的寿命很短,当它在物质中耗尽自己的动能,便同物质原子中的轨道电子发生湮灭反应而变成一对能量各为0.511MeV的γ光子。
2.2闪烁谱仪结构与工作原理NaI(Tl)闪烁谱仪由探头,高压电源,线性放大器,多道脉冲幅度分析器及部分组成。
射线通过闪烁体时,闪烁体的发光强度与射线在闪烁体内损失的能量成正比。
γ射线能谱测量

γ射线能谱测量——物理0805 乔英杰u200810200王振宇u200810256实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。
自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。
目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。
我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。
本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。
实验原理:1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。
这样,我们就得到了对应于γ射线能量强度的电信号。
之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。
2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。
多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。
伽马γ能谱测量分析近代物理实验报告

γ能谱的测量中山大学 2013级材料物理供参(吓)考(你),此报告真心累数据处理注:本实验所有数据来自文件“蝙蝠侠”一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化图1 改变高压,137Cs能谱变化曲线图分析:1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。
高压越大,统计越明显。
2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。
因为闪烁谱仪能量分辨率不变,高压增大,道址增大,∆V V又不变,则∆V大,故宽度变大,高道址的粒子数减少,高度下降。
二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化分析:(见图2)1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500,方便观察。
2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。
因为道数越小,则每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。
三、60Co的γ能谱曲线图(500V,通道数2014)图3 60Co的γ能谱曲线图分析:1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为1173keV、1333keV。
2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。
计算方法如下:全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。
加和结果通过matlab进行求和而得。
虽然计算方式较为粗糙,但基本符合。
对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824四、137Cs的γ能谱曲线图(500V,通道数2014)图4 137Cs的γ能谱曲线图分析:1.全能峰面积为:S(E)=9916-(13+2)*90/2=92412.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是0.662MeV的γ光子与闪烁体发生光电效应产生的。
γ能谱实验1

γ能谱实验1近代物理仿真实验—γ能谱实验γ能谱实验和原⼦的能级间跃迁产⽣原⼦光谱类似,原⼦核的能级间产⽣γ射线谱。
测量γ射线强度按能量的分布即γ射线谱,简称γ能谱,研究γ能谱可确定原⼦核激发态的能级,研究核蜕变纲图等,对放射性分析,同位素应⽤及鉴定核素等⽅⾯都有重要的意义。
在科研、⽣产、医疗和环境保护各⽅⾯,⽤γ射线的能谱测量技术,可以分析活化以后的物质各种微量元素的含量。
测量γ射线的能谱最常⽤的仪器是闪烁谱仪,该谱仪在核物理、⾼能离⼦物理和空间辐射物理的控测中都占有重要地位,⽽且⽤量很⼤。
本实验的⽬的是学习⽤闪烁谱仪测量γ射线能谱的⽅法,要求掌握闪烁谱仪的⼯作原理和实验⽅法,学会谱仪的能量标定⽅法,并测量γ射线的能谱。
⼀实验⽬的(1)学习⽤闪烁谱仪测量γ射线能谱的⽅法(2)要求掌握闪烁谱仪的⼯作原理和实验⽅法,(3)学会谱仪的能量标定⽅法,并测量γ射线的能谱⼆实验原理根据原⼦核结构理论,原⼦核的能量状态时不连续的,存在分⽴能级。
处在能量较⾼的激发态能级E2上的核,当它跃迁到低能级E1上时,就发射γ射线(即波长约在1nm-0.1nm间的电磁波)。
放出的γ射线的光量⼦能量hγ= E2 - E1,此处h为普朗克常熟,γ为γ光⼦的频率。
由此看出原⼦核放出的γ射线的能量反映了核激发态间的能级差。
因此测量γ射线的能量就可以了解原⼦核的能级结构。
测量γ射线能谱就是测量核素发射的γ射线按能量的分布。
闪烁谱仪是利⽤某些荧光物质,在带电粒⼦作⽤下被激发或电离后,能发射荧光(称为闪烁)的现象来测量能谱。
这种荧光物质常称为闪烁体1. 闪烁体的发光机制闪烁体的种类很多,按其化学性质不同可分为⽆机晶体闪烁体和有机闪烁体。
有机闪烁体包括有机晶体闪烁体,有机液体闪烁体和有机塑料闪烁体等。
对于⽆机晶体NaI(Tl)⽽⾔,其发射光谱最强的波长是415nm的蓝紫光,其强度反映了进⼊闪烁体内的带电粒⼦能量的⼤⼩。
应选择适当⼤⼩的闪烁体,可使这些光⼦⼀射出闪烁体就被探测到。
γ射线能谱测量

γ射线能谱测量γ 射线能谱测量中的物质变化过程是:γ 射线(光子)→ 次级电子(三种相互作用)→ 荧光(光子,探头的闪烁体发出)→ 光电子(在打拿极上产生并倍增)→ 光电流打拿极上光电子激发更多次级电子,打拿极上所加电压对电子加速,使形成更多的电子,从而形成足够大的较稳定的可以被探测到的光电流。
电流与极间电压应该成正比关系,计数不能反映初始的电子产生数目,但能反映其统计规律,计数应该是由光电流的大小与单个电子的电量的比值所得到的。
示波器的幅度可以反映射线粒子的能量大小。
数据处理与结果○1 0(6.98,127.6) B (7.67,127.5) C (7.42,255.21)7.42 V U 0.69 V 0.69 W=100%8.97%7.67O A U U U =∆=∆⨯== ○20截距=-0.04473 G=斜率=0.1962线性方程 E(x )0.19620.04473p O p p E E Gx x ==+=- 实验分析○1 示波器上的波形有一波幅最大的曲线,下面的弥漫区域还有小的波形。
这是因为在闪烁体中发生了光电效应,康普顿效应,电子对效应,这三种效应中,光电效应最强,产生的次级电子最多,对应着波幅最大的波形,下面的小波形则是由康普顿效应造成的,其强度要弱于光电效应。
○2 γ射线是单能射线,其对应的能谱应该是单一的分立的,但是我们测得的能谱却是连续的。
这是因为三种效应激发出的电子的能量是不一样的,加上闪烁体分辨能力低,还有其它电子学的干扰存在,因此闪烁体谱仪测量单能射线不可能就一单能峰值。
○3实验中用示波器观察波形的时候,为什么要将光电峰置于8伏左右?我猜想是:示波器的波幅实际上是反应的电流的强弱,光电峰的强度应该是在8伏左右;电子在经过单道分析器的时候,是需经过选择的,只有能量介于某一道宽内的时候才能通过,在设置好道宽后,通过调节阈值就可以测得不同能量的电子了,表现出不同的光电流强度和计数率的变化,也可以解释为什么我们测得的是一条连续的曲线了。
伽马γ能谱测量分析近代物理实验报告

伽马γ能谱测量分析近代物理实验报告近代物理实验报告:伽马γ能谱测量分析摘要:伽马射线是高能电磁辐射,具有较高的穿透能力和较高的能量。
本实验通过使用伽马能谱仪测量伽马射线的能谱,并分析得到的数据,研究不同放射源的放射性产物。
引言:伽马能谱测量是现代核物理实验中的一项重要技术手段。
伽马能谱测量可以提供关于放射源的重要信息,如能量跃迁和原子核结构等。
在本实验中,我们将使用伽马能谱仪测量不同放射源的伽马射线能谱,并通过数据分析得出相关结论。
实验设备与原理:实验使用的伽马能谱仪由探测器、多道分析器和计算机组成。
探测器用于探测伽马射线,将其转化为电信号。
多道分析器用于将电信号转换为频率信号,并将其进行分析和计数。
计算机用于控制实验设备和记录实验数据。
实验步骤:1.打开伽马能谱仪,预热一段时间使其稳定。
2.将放射源放置在探测器附近,并设置适当的探测器和源的距离。
3.开始测量并记录数据,包括每个能道的计数值和对应的能量值。
4.测量不同放射源的能谱,并记录观察到的峰值位置和计数值。
5.分析数据,绘制能谱图,并利用峰位与能量的关系确定放射源的能量特征。
实验结果与讨论:通过与已知伽马能量的标准源进行对比,我们发现通过测量得到的能谱图中的特征峰位对应的能量与标准源的能量相符合,证明测量结果的准确性和可靠性。
同时,我们还发现不同放射源的能谱特征略有差异,这表明放射源的核结构和核能级跃迁的能量差异。
通过分析能谱图,我们可以得到放射源的能级结构和核衰变方式等信息。
结论:通过伽马能谱测量分析,我们可以获得一种放射源的能级结构、核衰变方式和核能级跃迁的能量差异等信息。
伽马能谱测量是一种重要的实验技术手段,被广泛应用于核物理、天体物理等领域的研究中。
[1]“伽马能谱测量技术及应用”,《中国核物理》,2002年,29卷(1):43-49[2]“准确测量伽马射线能谱技术研究”,《物理学报》,2024年,59卷(3):2457-2463[3]“伽马能谱测量及数据分析”,《核物理学报》,2005年,22卷(2):97-103。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
γ能谱的测量
中山大学 2013级材料物理
供参(吓)考(你),此报告真心累
数据处理
注:本实验所有数据来自文件“蝙蝠侠”
一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化
图1 改变高压,137Cs能谱变化曲线图
分析:
1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射
线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。
高压越大,统计越明显。
2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。
因为闪烁谱仪能量
分辨率不变,高压增大,道址增大,∆V V又不变,则∆V大,故宽度变大,高道址的粒子数减少,高度下降。
二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化
分析:(见图2)
1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500,
方便观察。
2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。
因为道数越小,则
每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。
三、60Co的γ能谱曲线图(500V,通道数2014)
图3 60Co的γ能谱曲线图
分析:
1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为
1173keV、1333keV。
2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。
计算方法如下:
全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。
加和结果通过matlab进行求和而得。
虽然计算方式较为粗糙,但基本符合。
对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981
对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824
四、137Cs的γ能谱曲线图(500V,通道数2014)
图4 137Cs的γ能谱曲线图
分析:
1.全能峰面积为:S(E)=9916-(13+2)*90/2=9241
2.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是
0.662MeV的γ光子与闪烁体发生光电效应产生的。
B是一个平台,为康普顿效应产生
的,散射光子逃逸,留下连续的电子谱。
C为反散射峰,没有被闪烁体吸收的γ光子与闪烁体周围的物质发生康普顿散射时,反散射光子可能进入闪烁体发生光电效应,从而造成了反散射峰。
D为X射线峰,Cs衰变产生β粒子,而变成激发态的Ba,放出内转换电子后,K层空缺,外层电子跃迁到K层产生X光子。
因为137Cs的γ射线能量
0.662MeV小于1.02MeV,故只发生光电效应和康普顿散射,而没有发生电子对效应。
五、133Ba的γ能谱曲线图(500V,通道数2014)
图5 133Ba的γ能谱曲线图
分析:
1.133Ba峰射线能量为356keV。
2.全能峰面积为S(E)=32545-(337+31)*60/2=21505
六、22Na的γ能谱曲线图(500V,通道数2014)
分析:
1.22Na峰射线能量为511keV。
2.全能峰面积为S(E)=4197-(51+49)*48/2=1797
图6 22Na的γ能谱曲线图
七、计算谱仪能量分辨率
对于单晶NaI(TI)γ谱仪来说,能量分辨率是以137Cs的0.662MeV单能γ射线的光电峰为标准的。
根据公式相对分辨率:η=∆V V,即谱线的半宽度比上峰值道址。
由实验数据及图4可得相关数据,并计算得:η=∆V V=320−198309=7.12%
谱仪能量分辨率的值一般在8-15%,较好的可达6-7%,依实验结果来看,实验所用谱仪能量分辨率比较好。
八、能量刻度曲线
放射源60Co 60Co137Cs 133Ba 22Na 道址592 684 309 145 237 能量/keV 1173 1333 662 356 511
表1 各种放射源全能峰对应的道址与能量
以表中数据作出能量刻度曲线如下图:
图7 能量刻度曲线
拟合直线方程为:y=1.824x+89.49。
相关系数为0.9997,拟合程度很高,线性很好。
与理论线性方程E(X P)=G X P+E0对比,
可得,G=1.824KeV为每道对应的能量间隔,即增益;
E0为零道对应的能量,为89.49KeV。
九、根据当前已知源活度,结合衰变纲图数据,做探测效率曲线
探测效率定义:ε(E)=S(E)TTT�,其中活度A=T0(0.5)t T12�,A0、T1/2查表得
T为测量时间,b为分支比,查阅资料可得,全能峰面积上面算得,整理:放射源133Ba 22Na 137Cs 60Co
能量/keV 356 511 662 1173/1333
A0/kBq 127.0 40.2 48.0 71.8
T1/2/年10.59 2.60 30.17 5.27
A/kBq 25.83 0.0613 27.45 2.93
T/s 100 1200 100 500
S(E) 21505 1797 9241 3981/3824
b/(Bq-s)-10.620 1.81 0.851 0.998/1.00
ε(E) 3.13% 1.35% 0.40% 0.27%/0.26%
表2 探测效率相关数据
图8 谱仪探测效率与能量关系曲线图
用能量、探测效率进行拟合得到ε(E)=9.745∗105 E−2.944+0.001461,相关系数为0.986,拟合程度较高。
十、计算未知探测源的射线能量,判断其种类,计算其活度。
图9 未知放射源的γ能谱曲线图
分析:
1.计算未知放射源的能量值,并估计其种类
由图可知,两个峰的道址(横坐标)分别为81、136
根据能量刻度曲线拟合方程y=1.824x+89.49,代入横坐标分别算得两个峰的能量分别为
E1=237.2KeV、E2=337.6KeV
对照放射源衰变纲图,估计未知元素为152Eu,与理论值比较得到表3
能量实验值能量理论值相对误差
全能峰1 237.2 KeV226.8 KeV 4.5%
全能峰2 337.6 KeV332.4 KeV 1.5%
表3 未知源能量数据分析表
相对误差较小,可以基本确定未知放射源为152Eu。
2.计算未知放射源的活度
根据探测效率的公式变形可得活度A=S(E)Tε(E)T
�
由图计算全能峰面积S(E)1=26342-(381+296)*(105-57)/2=10094
S(E)2=38992-(296+210)*(162-105)/2=24571
T=100s,b1=0.0755,b2=0.266,又根据实验能量值E1=237.2KeV、E2=337.6KeV 代入拟合方程:ε(E)=9.745∗105 E−2.944+0.001461
算得实验所测效率、活度实验值,并与152Eu的理论活度对比如下表:
ε(E)实验值A实验值/KBq A理论值/KBq 相对误差
全能峰1 10.06 132.90
140 5.1%
全能峰2 3.65 252.07 80.0%
表4 活度数据分析表
误差分析:
a.探测效率曲线拟合不够精确,因为数据点不够,而且拟合情况多样。
b.未知探测源实验测得能量比已知探测源的能量都低,可能不在合适的拟合范围内。
c.实验仪器本身不够精确;一些数据处理方法不够精确,如全能峰面积的计算、道址
选取等。