某高校《高等几何》期末考试试卷(含答案)
高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 以下哪个选项是欧几里得几何的公理?A. 两点之间线段最短B. 过直线外一点有且只有一条直线与已知直线平行C. 任意两条直线都相交D. 圆的周长与直径的比值是一个常数答案:B2. 球面上的最短路径是:A. 直线B. 曲线C. 大圆D. 任意路径答案:C3. 以下哪个定理是球面几何中的定理?A. 勾股定理B. 泰勒斯定理C. 球面三角形的内角和大于180度D. 三角形内角和等于180度答案:C4. 以下哪个选项是双曲几何的特征?A. 过直线外一点有且只有一条直线与已知直线平行B. 过直线外一点有无数条直线与已知直线平行C. 过直线外一点没有直线与已知直线平行D. 过直线外一点有一条直线与已知直线平行答案:B二、填空题(每题5分,共20分)1. 在欧几里得几何中,一个平面上任意两个点确定一条________。
答案:直线2. 球面几何中,球面上的两点之间的最短路径称为________。
答案:大圆3. 在双曲几何中,过直线外一点可以画出________条直线与已知直线平行。
答案:无数4. 根据球面几何的性质,球面上的三角形内角和________180度。
答案:大于三、解答题(每题15分,共30分)1. 证明:在球面几何中,任意两个大圆的交点最多有两个。
证明:假设球面上有两个大圆A和B,它们相交于点P和Q。
如果存在第三个交点R,则R必须位于大圆A和B上。
由于大圆A和B是球面上的最短路径,它们在球面上的交点必须是球面上的最短路径的端点,因此R不可能存在。
因此,任意两个大圆的交点最多有两个。
答案:证明完毕。
2. 已知球面上的三角形ABC,其内角分别为α、β、γ,且α+β+γ=180°+ε,其中ε为正数。
求证:三角形ABC的边长之和小于球面上的任意其他三角形的边长之和。
证明:设球面上的任意其他三角形为DEF,其内角分别为α'、β'、γ'。
高等几何试卷及答案

《高等几何》考试试题A 卷(120分钟)一、填空题(2分⨯12=24分)1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0) 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -19、一点列到自身的两射影变换a):21→,32→,43→; b):10→,32→,01→ 其中为对合的就是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件就是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它就是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。
解:射影对应式为'2'10λλλλ-++=。
由两线束的方程有:1233,'x xx x λλ==。
将它们代入射影对应式并化简得,2122313320x x x x x x x +-+=此即为所求二阶曲线的方程。
三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。
(10分)证明:三点形ABC 与三点形C B A '''内接于二次曲线(C),设 AB I C B ''=D AB I C A ''=E B A ''I BC=D ' B A ''I AC=E ',则),,,(B A B A C '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线(C '),亦即三点形ABC 与三点形C B A '''的边外切一条二次曲线。
《高等代数与解析几何(下) 》期末考试试卷(A 卷)

6.(10 分) 用非退化线性替换将二次型
化为标准型.
q(x1, x2 , x3 ) = x12 − 2x1x3 + x22 + 2x2 x3 − x32
7.(13 分)设V1 与V2 分别是齐次线性方程组 x1 + x2 + + xn = 0 与 x1 = x2 = = xn
的解空间,证明 K n = V1 ⊕V2 .
5 5 λ+7 5 5 λ+7故特征向量为 Nhomakorabea2 和 3.
………………5 分
⎛ −1⎞ ⎛ −1⎞
当 λ1
=
−2 时,特征向量η1
=
⎜ ⎜
1
⎟ ⎟
,η2
=
⎜ ⎜
0
⎟ ⎟
.
⎜⎝ 0 ⎟⎠
⎜⎝ 1 ⎟⎠
………………2 分
⎛ −1⎞
当 λ2
=
3 时,特征向量η3
=
⎜ ⎜
−1⎟⎟ .
⎜⎝ 1 ⎟⎠
………………2 分
命题共 2 页第 1 页
三.解答题:(共 80 分)
⎛3 5 5⎞
1.(15 分)
设
A
=
⎜ ⎜ ⎜⎝
5 −5
3 −5
5
⎟ ⎟
,问矩阵
A 是否可以相似于一个对角矩阵,若可
−7 ⎟⎠
以,求一个可逆矩阵T ,使T −1AT 为对角形矩阵.
2.(10 分) 求单叶双曲面 x2 + y2 − z2 = 1上过点(-3,-2,4)的直母线的方程. 9 4 16
矩
阵.
4. n 维线性空间V 的线性变换 A 在某个基下的矩阵为对角矩阵的充要条件是 A
学历自考模拟试卷(专升本)《高等几何》期末考试试卷【附答案】

…………○…………内…………○…………装…………○…………订…………○…………线…………○………5.( B.1C.装订线内不许答题15.().A.B.C.D.16.().A. B.C.D.17.().A.B.C.D.18.().A.B.1C.D.19.()A. B.C.D.20.() A.B.C. D.二、填空题(本题共10小题,每题3分,共30.0分)21.直线=22.已知OX 轴上的射影变换式为,则原点的对应点为23.求射影变换的自对应元素的参数24.过点的实直线的齐次方程为25.ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则A(BC,DE)=26.平行四边形的仿射对应图形为27.两个线束点列成透视的充要条件是28.已知29.求点(1,-1,0)关于二阶曲线的极线方程30.直线上无穷远点坐标为三、问答题(本题共3小题,每题10.0分,共30.0分)1.求通过平面4x-y+3z-1=0与x+5y-z+2=0的交线且与平面垂直的平面方程(10.0分)2.(10分)3.试求L1与L2间的距离与它们的公垂线方程。
(10分)得分评卷人得分评卷人高等几何参考一、1-10 DACAD CACAD 11-20 BBBCB DDDDD二、填空1.答案:1.2.答案:-1/3. 3.答案:1.4.答案:.5.答案:-1.6.答案:平行四边形7.答案:底的交点自应8.答案:3,-29.答案:. 10.答案:(5,-1,0)三、1.2.3.。
福师《高等几何》期末复习题

(单选题)1.(2,4,-1)的非齐次坐标为()A: (-2,4)B: (2,4)C: (-2,-4)D: (-4,-2)正确答案: C(单选题)2.(0,1,0)的非齐次坐标为()A: (0,1)B: (0,-1)C: (1,0)D: 不存在正确答案: D(单选题)3.点(0,2)的齐次坐标为()A: (2,0,1)B: (-2,0,1)C: (0,2,1)D: (0,-2,1)正确答案: C(单选题)4.点(-3,0)的齐次坐标为()A: (0,-3,1)B: (3,0,1)C: (0,3,1)D: (-3,0,1)正确答案: D(单选题)5.已知A(1,2,1),B(2,-3,1),C(1,9,-4),D(8,-5,1),则(AB,CD)=()A: 3B: 6C: 9D: -2/9正确答案: D(单选题)6.已知A(2,1,-1),B(1,-1,1),C(1,0,0),D(1,5,-5),则(AB,CD)=()A: 2B: 2/3C: -3/2D: -2/3正确答案: D(单选题)7.若(P1P2, P3P4)=4,则(P1P2, P4P3)=()A: 1/4B: -1/4C: 1/2D: -1/2正确答案: A(单选题)8.若(P1P2, P3P4)=4,则(P2P3, P4P1)=()A: 1/4B: -1/4C: 3/4D: -3/4正确答案: C(单选题)9.(2,4,-3)的非齐次坐标为()A: (-2,4)B: (2,4)C: (-2/3,4/3)D: (-2/3,-4/3)正确答案: D(单选题)10.正方形的下列性质哪个是仿射性质()A: 对边平行B: 四角相等C: 四边相等D: 对角线互相垂直正确答案: A(单选题)11.下列结论正确的是()A: 射影变换群是一个六维群B: 仿射变换群是一个六维群C: 相似变换群是一个六维群D: 正交变换群是一个六维群正确答案: B。
西南大学网络教育[0464]《高等几何》期末考试复习题及参考答案
![西南大学网络教育[0464]《高等几何》期末考试复习题及参考答案](https://img.taocdn.com/s3/m/985a5dbab0717fd5360cdcc5.png)
[0464]《高等几何》一、计算题(5题,共70分)1.经过A(-3,2)和B(6,1)两点的直线被直线x+3y-6=0截于P 点,求简比(ABP). (10分)解:设AP PB =λ,则点P 的坐标为P (361-+λ+λ,21+λ+λ),因为点P 在直线x +3y -6=0上,所以有361-+λ+λ+3(21+λ+λ)-6=0 ,有1=λ,1)(-=-=λABP . 2.从原点向圆(x -2)2+(y -2)2=1作切线t 1, t 2。
试求x 轴,y 轴,t 1, t 2顺这次序的交比. (10分)解:设直线y=kx 与圆相切,则12212+-=k k ,两边平方得到03832=+-k k ,3742,1±=k 因此1t 的方程为0374=--x y ,2t 的方程为0374=+-x y ,故7474),(21+-=t t xy .3.求射影变换⎪⎩⎪⎨⎧='+='+='33322211ax x x ax x x ax x ρρρ的固定元素.(15分) 解:射影变换的特征方程是100010001--+λλλ=0,即1=λ或1-=λ把1=λ代人方程组⎪⎩⎪⎨⎧=-=-=+0)1(0)1(0)1(321x x x λλλ,解得不变点是一条直线01=x把1-=λ代入上述方程组,解得不变点(1,0,0).把1=λ代人方程组⎪⎩⎪⎨⎧=-=-=+0)1(0)1(0)1(321u u u λλλ,解得不变直线是过(1,0,0)的所有直线..把1-=λ代入上述方程组,解得不变直线01=x4.已知二阶曲线(C ):221121332460x x x x x x +++=(1)求点(1,2,1)P 关于曲线的极线(2)求直线123360x x x -+=关于曲线的极点. (20分)解:(1)二阶曲线221121332460x x x x x x +++=的矩阵是⎪⎪⎪⎭⎫ ⎝⎛103002322点(1,2,1)P 关于曲线的极线方程是(1,2,1) ⎪⎪⎪⎭⎫ ⎝⎛103002322⎪⎪⎪⎭⎫ ⎝⎛321x x x =0,即0429321=++x x x(2)设直线123360x x x -+=关于曲线的极点为(a,b,c),则有⎪⎪⎪⎭⎫ ⎝⎛-613ρ=⎪⎪⎪⎭⎫ ⎝⎛103002322⎪⎪⎪⎭⎫ ⎝⎛c b a ,解得a=2,b=-30,c=37.所求极点是(2,-30,37)。
高校《高等几何》期末考试试卷含答案

某高校高等几何期末考试试卷120分钟一、填空题2分⨯12=24分1平行四边形 ;2、直线0521=+x x 上无穷远点坐标为: 5,-1,03、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -24、过点A1,i - ,2的实直线的齐次方程为: 0231=-x x5、方程065222121=+-u u u u 表示的图形坐标 1,2,0 1,3,0 6、已知OX 轴上的射影变换式为312'+-=x x x ,则原点的对应点 -317、求点)0,1,1(-关于二阶曲线054753323121232221=+++++x x x x x x x x x 的极线方程063321=++x x x8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a :21→,32→,43→; b :10→,32→,01→ 其中为对合的是: b10、求射影变换012'=+-λλλ的自对应元素的参数 1 11、两个线束点列成透视的充要条件是 底的交点自对应12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1 二、求二阶曲线的方程,它是由下列两个射影线束所决定的:130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=;解:射影对应式为'2'10λλλλ-++=;由两线束的方程有:1233,'x xx x λλ==;将它们代入射影对应式并化简得, 此即为所求二阶曲线的方程;三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线;10分证明:三点形ABC 和三点形C B A '''内接于二次曲线C,设AB C B ''=D AB C A ''=E B A '' BC=D 'B A '' AC=E ',则),,,(B A B AC '''∧),,,(B A B A C ''所以,),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B 即),E ,D ,(B A ∧)D ,,,E (''''A B这两个点列对应点的连线AC,B C '',A C '',BC 连同这两个点列的底AB,B A ''属于同一条二级曲线C ',亦即三点形ABC 和三点形C B A '''的边外切一条二次曲线; 四、已知四直线1l ,2l ,3l ,4l 的方程顺次为12x -2x +3x =0,13x +2x -32x =0,17x -2x =0,15x -3x =0, 求证四直线共点,并求1l 2l ,3l 4l 的值;10分解:因为17213112---=0且15017213---=0 所以1l ,2l ,3l ,4l 共点;四直线与x 轴2x =0的交点顺次为A1,0,-2,B2,0,3,C0,0,1,D1,0,5,非齐次坐标为A-21,0,B 32,0,C0,0,D 51,0, 所以 1l 2l ,3l 4l =AB,CD=)2151)(320()3251)(210(+--+=21 五、求两对对应元素,其参数为121→,0→2,所确定的对合方程;10分解 设所求为a λλ'+b λ+λ'+d=0 ① 将对应参数代入得:21a+1+21b+d=0 ②0+2b+d=0 ③从①②③中消去a,b,d 得120123211λλλλ'+'=0 即λλ'+λ+λ'-2=0为所求六、求直线32163x x x +-=0关于2122212x x x x -++231x x -632x x =0之极点;12分 解:设0p 030201,,x x x 为所求,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----031311111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡030201x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-613 解线性方程组得即,1,1,3030201-=-==x x x 3,-1,-1为所求极点的坐标七、叙述帕萨卡定理的内容并证明其定理;12分定理:内接于二阶曲线的简单六点形,三对对应边的交点在同一直线上; 证明:设简单六点形654321A A A A A A ,其三对对边的交点分别为L,M,N, L= 21A A 54A A ,M=32A A 65A A ,N=43A A 16A A 以1A ,3A 为中心,分别连接其他四点,则由定理得到()65421A A A A A ∧()65423A A A A A设P A A A A =5421 , Q A A A A =4365则()65421A A A A A ∧()P A A L 54,,,()65423A A A A A ∧()65,,A A Q M所以,()P A A L 54,,∧()65,,A A Q M 由于两个点列底的交点5A →5A ,故有 所以LM,Q A 4,5PA 三点共点,但Q A 4 5PA =N, 即L,M,N 三点共线; 八、用两种方法求双曲线0423222=-+-+y x xy y x 的渐近线方程;12分解:方法一设渐近线的方程为 根据公式得解之,得31,121-==k k ,所以渐近线方程为和化简,得所求为2x-2y-1=0 和2x+6y+5=0 方法二先求出中心,因为131=A ,332=A ,433-=A所以中心为⎪⎭⎫⎝⎛--43,41C 代入公式得渐近线方程分解因式得⎪⎭⎫ ⎝⎛+41x -⎪⎭⎫ ⎝⎛+43y =0⎪⎭⎫ ⎝⎛+41x +⎪⎭⎫ ⎝⎛+433y =0化简,得所求为2x-2y-1=0 和2x+6y+5=0。
高等几何试题及答案

高等几何试题及答案一、选择题(每题5分,共20分)1. 已知直线l的方程为Ax+By+C=0,直线m的方程为Dx+Ey+F=0,若l与m平行,则以下哪个条件成立?A. A/D = B/E ≠ C/FB. A/D = B/E = C/FC. A/D = B/E ≠ C/FD. A/D ≠ B/E = C/F答案:A2. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β垂直,则以下哪个条件成立?A. AE + BF + CG = 0B. AE + BF + CG ≠ 0C. AE + BF + CG = D + HD. AE + BF + CG = D - H答案:A3. 已知点P(x1, y1, z1)在平面α:Ax+By+Cz+D=0上,则以下哪个条件成立?A. Ax1+By1+Cz1+D=0B. Ax1+By1+Cz1+D≠0C. Ax1+By1+Cz1+D>0D. Ax1+By1+Cz1+D<0答案:A4. 已知直线l的参数方程为x=x0+at,y=y0+bt,z=z0+ct,其中a、b、c为直线的方向向量,若直线l与平面α:Ax+By+Cz+D=0平行,则以下哪个条件成立?A. Aa+Bb+Cc=0B. Aa+Bb+Cc≠0C. Aa+Bb+Cc=DD. Aa+Bb+Cc=-D答案:A二、填空题(每题5分,共20分)5. 已知直线l的方程为Ax+By+Cz+D=0,直线m的方程为Ex+Fy+Gz+H=0,若l与m相交,则它们的交点坐标为__________。
答案:((BF-CE)/(AF-CD), (AG-CF)/(AF-CD), (AE-BF)/(AF-CD))6. 已知平面α的方程为Ax+By+Cz+D=0,平面β的方程为Ex+Fy+Gz+H=0,若α与β相交,则它们的交线方程为__________。
答案:(Ax+By+Cz+D)(EF-GH) - (Ex+Fy+Gz+H)(AF-CD) = 07. 已知点P(x1, y1, z1)到平面α:Ax+By+Cz+D=0的距离为d,则d=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某高校《高等几何》期末考试试卷
(120分钟)
一、填空题(2分⨯12=24分)
1、平行四边形的仿射对应图形为: 平行四边形 ;
2、直线0521=+x x 上无穷远点坐标为: (5,-1,0)
3、已知3),(4321=l l l l ,则=),(1234l l l l 3 =),(4231l l l l -2
4、过点A(1,i - ,2)的实直线的齐次方程为: 0231=-x x
5、方程0652
22121=+-u u u u 表示的图形坐标 (1,2,0) (1,3,0)
6、已知OX 轴上的射影变换式为312'+-=
x x x ,则原点的对应点 -3
1
7、求点)0,1,1(-关于二阶曲线0547533231212322
21=+++++x x x x x x x x x 的极线方程063321=++x x x
8、ABCD 为平行四边形,过A 引AE 与对角线BD 平行,则),(DE BC A = -1 9、一点列到自身的两射影变换a ):21→,32→,43→;
b ):10→,32→,01→ 其中为对合的是: b
10、求射影变换012'=+-λλλ的自对应元素的参数 1
11、两个线束点列成透视的充要条件是 底的交点自对应
12、直线02321=+-x x x 上的三点)1,3,1(A ,)1,5,2(B ,)0,2,1(C 的单比)(ABC = 1
二、求二阶曲线的方程,它是由下列两个射影线束所决定的:
130x x λ-=与23'0x x λ-= 且 '2'10λλλλ-++=。
解:射影对应式为'2'10λλλλ-++=。
由两线束的方程有:1233
,'x x x x λλ=
=。
将它们代入射影对应式并化简得,
2
122313320x x x x x x x +-+=
此即为所求二阶曲线的方程。
三、证明:如果两个三点形内接于同一条二次曲线,则它们也同时外切于一条二次曲线。
(10分)
证明:三点形ABC 和三点形C B A '''内接于二次曲线(C ),设 AB C B ''=D AB C A ''=E B A '' BC=D '
B A '' AC=E ',则),,,(B A B A
C '''∧),,,(B A B A C ''所以,
),E ,D ,(B A ∧),,,(B A B A C '''∧),,,(B A B A C ''∧)D ,,,E (''''A B
即),E ,D ,(B A ∧)D ,,,E (''''A B
这两个点列对应点的连线AC ,B C '',A C '',BC 连同这两个点列的底AB ,B A ''属于同一条二级曲线(C '),亦即三点形ABC 和三点形C B A '''的边外切一条二次曲线。
四、已知四直线1l ,2l ,3l ,4l 的方程顺次为12x -2x +3x =0,13x +2x -32x =0,
17x -2x =0,15x -3x =0, 求证四直线共点,并求(1l 2l ,3l 4l )的值。
(10
分)
解:因为
01721
3
1
12---=0且1
050172
1
3
---=0 所以1l ,2l ,3l ,4l 共点。
四直线与x
轴(2x =0)的交点顺次为
A(1,0,-2),B(2,0,3),C(0,0,1),D(1,0,5),非齐次坐标为A(-
21,0),B(32,0),C(0,0),D(5
1
,0), 所以 (1l 2l ,3l 4l )=(AB ,CD )=
)
2
151)(320()
32
51)(210(+--+=21 五、求两对对应元素,其参数为12
1
→,0→2,所确定的对合方程。
(10分)
解 设所求为
a λλ'+b(λ+λ')+d=0 ①
将对应参数代入得:
21a+(1+2
1
)b+d=0 ② (0+2)b+d=0 ③ 从①②③中消去a,b,d 得
1
2
012321
1
λλλλ'+'=0 即λλ'+λ+λ'-2=0为所求
六、求直线32163x x x +-=0关于212
2
212x x x x -++231x x -632x x =0之极点。
(12分)
解:设0p (030201,,x x x )为所求,则
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----031311111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡03020
1x x x =⎥⎥
⎥⎦⎤
⎢
⎢⎢⎣⎡-613 解线性方程组
⎪⎪⎩
⎪⎪⎨⎧=--=-+-=+-6133020103020
10
30201x x x x x x x x
得即,1,1,30
30201-=-==x x x (3,-1,-1)为所求极点的坐标
七、叙述帕萨卡定理的内容并证明其定理。
(12分)
定理:内接于二阶曲线的简单六点形,三对对应边的交点在同一直线上。
证明:设简单六点形654321A A A A A A ,其三对对边的交点分别为L ,M ,N , L= 21A A 54A A ,M=32A A 65A A ,N=43A A 16A A 以1A ,3A 为中心,分别连接其他四点,则由定理得到()65421A A A A A ∧()65423A A A A A
设P A A A A =5421 , Q A A A A =4365
则()65421A A A A A ∧()P A A L 54,,,()65423A A A A A ∧()65,,A A Q M
所以,()P A A L 54,,∧()65,,A A Q M 由于两个点列底的交点5A →5A ,故有 ()P A A L 54,,∧()65,,A A Q M
所以LM ,Q A 4,5PA 三点共点,但Q A 4 5PA =N, 即L ,M ,N 三点共线。
八、用两种方法求双曲线042322
2
=-+-+y x xy y x 的渐近线方程。
(12分)
解:方法一
设渐近线的方程为
0)3
23
2
22
1
12
3
13
2
12
1
11
(=+++++x a x a x a k x a x a x a
根据公式得 01232=++-k k
解之,得3
1
,121-==k k ,所以渐近线方程为
0)23(1=--+++y x y x 和
0)23(3
1
1=---++y x y x
化简,得所求为
2x-2y-1=0 和2x+6y+5=0 方法二
先求出中心,因为
131=A ,332=A ,433-=A
所以中心为⎪⎭
⎫
⎝⎛--43,41C 代入公式得渐近线方程
03433434124
3412
2
=-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛
++⎪⎭
⎫ ⎝
⎛+⎪⎭
⎫ ⎝⎛+y x y y x
分解因式得
⎪⎭⎫ ⎝⎛
+41x -⎪⎭⎫ ⎝⎛+43y =0
⎪⎭⎫ ⎝
⎛
+41x +⎪⎭⎫ ⎝⎛+433y =0
化简,得所求为
2x-2y-1=0 和
2x+6y+5=0。