生猪的出售时机数学建模样板

合集下载

数学建模论文猪的最佳销售时期的数学模型 猪的最佳销售时期的数学模型 猪的最佳销售时期的数学模型 猪的最

数学建模论文猪的最佳销售时期的数学模型 猪的最佳销售时期的数学模型 猪的最佳销售时期的数学模型 猪的最

数学建模论文课题:猪的最佳销售时期的数学模型问题重述:一般从事猪的商业性饲养和销售总是希望获得利润,因此,饲养某种猪是否获利,怎样获得最大利润,是饲养者必须首先考虑的问题。

如果把饲养技术水平、猪的类型等因素视为不变的,且不考虑市场的需求变化,那么影响获利大小的一个主要因素是如何选择猪的售出时机。

也许有人认为,猪养得越大,售出后获利越大。

其实不然,因为随着猪的生长,单位时间消耗的饲养费用也就越多,但同时其体重增长的速度却不断下降,所以饲养时间太长是不合算的。

试作适当的假设,引入相应的参数,建立猪的最佳销售时机的数学模型。

一、模型假设1、猪的市场价格的变化是连续的,即市场猪肉价格随时间变化的函数可以视为连续函数。

2、饲料市场价格的变化是连续的,即饲料价格随时间变化的函数可以视为连续函数。

3、成本主要由猪苗价格与饲料消耗组成,不考虑其他因素。

4、饲养技术水平、猪的类型等因素视为不变的,且不考虑市场的需求变化。

二、符号说明1、市场猪肉价格为q(t) 元/公斤2、饲料价格为p(t) 元/公斤3、猪苗价格为r 元/公斤4、猪苗重量为m 公斤5、饲养了t 时间后,猪的重量为M(t)公斤6、t 时刻,单位时间增加重量为a(t)公斤7、t 时刻,每消耗1公斤饲料增加的重量为d(t)公斤8、t 时刻,单位时间消耗的饲料为c(t)公斤9、0~t 内消耗饲料的总花费为Z(t)元10、在t 时刻出售可获的利润为Q(t)元三、模型建立1、饲养了t 时间后,猪的重量M(t)的估计由上述符号说明可知:a(t)=c(t)d(t)当时间很短时,即:t~t +⊿t 内增加的重量可由下式表示:M(t~t +⊿t)-M(t )≈a(t) *⊿t= c(t)d(t) *⊿t 即为:()()()dM t c t d t dt =——————————①初值条件:M(0)=m故:0()()()tM t m c s d s ds =+⎰——————————②2、0~t 内消耗饲料的总花费Z(t)的估计当时间很短时,即:t~t +⊿t 内的总花费可由下式表示:Z(t~t +⊿t)-Z(t )≈c(t)p(t) *⊿t 即为:()()()dZ t c t p t dt=——————————③ 初值条件:Z(0)=0故:0()()()t Z t c s p s ds =⎰———————————④3、在t 时刻出售可获利润Q(t)的估计由于:利润=t 时刻售价*猪重量-饲料总花费-猪苗单价*猪苗重量即为:()()*()()*Q t q t M t Z t r m =--——————————⑤ 将②④式代入可得:00()*(())()*()()()()t tQ t m q t r q t c s d s ds c s p s ds =-+-⎰⎰————————————⑥4、在t 时刻出售可获利润Q(t)最大值的估计由⑥式:要求时刻t ,使得Q(t)最大,必须令()0d Q t d t =即: 0()()*[()()]()*[()*()()]0t dQ t dq t m c s d s ds c t q t d t p t dt dt =++-=⎰———————————⑦由⑦式的方程即可解出使Q(t)达到最大的时间,记为T则最大利润为:00()*(())()*()()()()T TQ T m q T r q T c s d s ds c s p s ds =-+-⎰⎰———————————⑧(模型中的函数p(t)、q(t)、c(t)、d(t)均可由统计数据回归得出)四、模型简化与模型求解如果市场猪肉价格与饲料价格取为长期价格水平的平均值(即为常数),分别为p 元/公斤与q 元/公斤。

姜启源数学建模资料

姜启源数学建模资料

姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。

备要付生产准备费,产量大于需求时要付贮存费。

该厂生产能力非常大,即所需数量可在很短时间内产出。

生产能力非常大,即所需数量可在很短时间内产出。

已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。

试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。

),每次产量多少一次(生产周期),每次产量多少,使总费用最小。

不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。

求需求量、准备费、贮存费之间的关系。

<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。

件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。

元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。

元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。

生猪的出售时机数学建模样板

生猪的出售时机数学建模样板

题目:基于NOTEBOOK的生猪最优出售时机的建模与分析 一. 问题思维视图:1.系统要素:投入资金、生猪体重增量、猪肉出售价格2.要素关联:纯利润=收入-投入-成本=生猪现在的体重*生猪现在的售价-每天成本的投入*时间-生猪的初始体重*生猪的初始售价3.问题脉络形象化:该饲养场什么时候出售这样的生猪会使利润最大?一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80kg重量的生猪每天增加2kg。

目前市场生猪出售价格为8元/kg,但是预测每天会下降0.1元。

由下图可知:二. 数学刻画:1.给定每天投入4元资金使生猪体重每天增加常数r(=2kg);生猪出售的市场价格每天降低常数g(=0.1)。

2.给出如下符号列表:符号 t w p C Q R含义 时间 生猪体重单价 t天资金投入纯利润出售收入单位 天 kg 元/kg 元 元 元三. 模型推演:假设r=2,g=0.1,t天后出售,则:生猪体重:w=80+r*t(r=2); 出售单价:p=8-g*t;出售收入:R=p*w; 资金投入: C=4*t;于是利润为:Q=R-C-8*80.从而得到目标函数(纯利润):Q(t)=(8-g*t)(80+r*t)-4*t-640 (1)其中,求t(>=0)使Q(t)最大。

这是二次函数最值问题,而且是个现实中的优化问题,故Q(t)的一阶导数为零的t(t>=0)值可使Q(t)取最大值。

先求Q(t)一阶导数:syms t;Q(t)=(8-g*t)*(80+r*t)-4*t-640;y=diff(Q(t),t)y =- r*(g*t-8) - g*(r*t + 80) - 4[g,t,r]=solve('-r*(g*t-80)-g*(r*t+80)=4','g=g','r=r')g =z1t =( 40*z1 + 2)/(z*z1)r =z即: t=(4*r-40*g-2)./(r*g ) (2)在这个模型中:取r=2,g=0.1,则:Q(t)=(8-0.1*t)*(80+2*t)-4*t-640)目标函数MATLAB作图如下:ezplot('(8-0.1*t)*(80+2*t)-4*t-640',[0,20])hold onxlabel('t坐标'); ylabel('Q(t)坐标');从图象可知t=10时,Q(t)max=10。

数学建模课件_生猪的出售时机

数学建模课件_生猪的出售时机
40r 60 t , r r 1.5 (3)
t是r的增函数,表1和图3给出它们的关系。
2.设每天生猪体重的增加r=2公斤不变,研 究g变化的影响,由(2)式可得
3 20 g r , g 0 g 0.15 (4)
t是g的减函数,表2和图4给出它们的关系。
可以用相对改变量衡量结果对参数的敏感 程度。t对r的敏感度记作S ( t,r),定义为
Q(t ) p(t ).w(t ) 4t 640 (8)
用微分求解(8)式的极值问题,可知最优 解应满足
p(t ) w(t ) p(t ) w (t ) 4 (9)
(9)式左端是每天利润的增值,右端是每 天投入的资金。于是出售的最佳时机是保 留生猪直到利润的增值等于每天投入的资 金为止。 本例中 p 0.1 , 2是根据估计和预测确 定的,只要它们的变化 不大,上述结论就是 可用的。
按照假设,w 80 rt (r 2),p 8 gt ( g 0.1). 又知道 R p , C 4t , 再考虑到纯利润扣掉以 当前价格(8元 / 公斤)出售80公斤生猪的收入,有 Q R C 8 80,得到目标函数(纯利润)为
Q(t ) (8 gt )(80 rt ) 4t 640
另外,从敏感性分析知 S (t , r ) 3, ,
所以若1.8 w 2.2 (10 % 以内), 则结果应为 7 t 13 (30%以内)。
若设p 0.1是最坏的情况,如果这 个(绝对) 值更小,t就应更大。
所以最好的办法是: 过大约一周后重新估计 p, p, w, w, 再作计算。
即生猪价格每天的降低g增加1%,出售时间 提前3%,r和g的微小变化对模型结果的影 响并不算大。 强健性分析(Robustness) 建模过程中假 设了生猪体重的增加和价格的降低都是常 数,由此得到的w和p都是线性函数,这无 疑是对现实情况的简化。更实际的模型应 考虑非线性和不确定性,如记w = w (t), p = p (t) ,则( r ) r r d r t

数学建模案例之单变量最优化

数学建模案例之单变量最优化

数学建模案例之单变量最优化生猪的最佳销售时间问题1:一头猪重200磅(1磅=0.454公斤),每天增重5磅,饲养每天需花费45美分。

猪的市场价格为每磅65美分,但每天下降0.01美元,求出售猪的最佳时间。

1.问题分析与假设、符号说明涉及的变量:猪的重量w(磅),饲养时间t≥0(天),t天内饲养猪的化费Q(美元),猪的市场价格p(美元/磅),售出生猪所获得的总收益R(美元),我们最终获得的净收益C(美元)。

涉及的常量:猪的初始重量200(磅),饲养每天的花费0.45(美元),生猪每天的增加重量s(磅),当前的市场价格0.65(美元),生猪价格每天的下降比例系数r。

变量之间的联系:假设1:猪的重量从初始的200(磅)按每天s=5(磅)增加,于是有关系:w(磅)=200(磅)+s(磅/天)×t(天)假设2:当前的市场价格0.65(美元/磅),生猪价格每天的下降比例系数r=0.01,那么出售时生猪的价格为:p(美元/磅)=0.65(美元/磅)- r(美元/磅.天)×t(天)因此,我们有如下关系式:饲养生猪的总的费用为:Q(美元)=0.45(美元/天)×t(天)售出生猪时获得的总收益为:R(美元)=p(美元/磅)×w(磅)最终获得的净收益为:C(美元)=R(美元)-Q(美元)当生猪卖出时获得最大净收益的时间即为最佳出售时间,因此原问题转换成数学表述就是求P达到最大时的时间t≥0,其中P的表达式为:=-=⨯-⨯=-+-C t R t Q t p w t rt st t()()()0.45(0.65)(200)0.452.建立数学模型根据前面的分析,原问题的数学模型如下:max ()..()(0.65)(200)0.45,0C t s t C t rt st t t =-+-≥ (1.1)其中,r ,s 为模型参数,此处取值为s=5,r=0.01。

3.模型求解当s=5,r=0.01时,这是一个单变量t 的函数的最优化问题,而且()C t 是一个连续可微的函数。

生猪的出售时机模型

生猪的出售时机模型

§2 生猪的出售时机模型[问题的提出] 一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80公斤重的生猪每天增加2公斤.目前生猪出售的市场价格为每公斤8元,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪.如果上面的估计和预测有出入,对结果有多大影响.[问题分析及符号约定] 投入资金可使生猪体重随时间增长,但售价(单价)随时间减少,应该存在一个最佳的出售时机,使获得利润最大.这是一个优化问题,根据给出的条件,可作如下的简化假设.每天投入4元资金使生猪体重每天增加常数 (=2公斤);生猪出售的市场价格每r 天降低常数g(=0.1元).[模型的建立] 给出以下记号:~时间(天).~生猪体重(公斤);单价 (元/t w ~p 公斤);R-出售的收入(元);C-t 天投入的资金(元);Q-纯利润(元).按照假设,.又知道,再)1.0(8),2(80=-==+=g gt p r rt w t C pw R 4,==考虑到纯利润应扣掉以当前价格(8元/公斤)出售80公斤生猪的收入,有 ,得到目标函数(纯利润)为808⨯--=C R Q其中.求使最大.1.0,2==g r )0(≥t )(t Q [模型的求解] 这是求二次函数最大值问题,用代数或微分法容易得到当时,,即10天后出售,可得最大纯利润20元.1.0,2==g r 20)10(,10==Q t [敏感性分析] 由于模型假设中的参数(生猪每天体重的增加和价格的降低g)是r 估计和预测的,所以应该研究它们有所变化时对模型结果的影响.1.设每天生猪价格的降低元不变,研究变化的影口向,由(2)式可得1.0 g r是的增函数,表1和图3给出它们的关系.t r 2.设每天生猪体重的增加=2公斤不变,研究g 变化的影响,由(2)式可得r是的减函数,表2和图4给出它们的关系. t r可以用相对改变量衡量结果对参数的敏感程度.对的敏感度记作,定义为t r ).(r t S由(3)式,当=2时可算出r 即生猪每天体重增加1%,出售时间推迟3%.r 类似地定义对g 的敏感度,由(4)式,当g=0.1时可算出t ).(g t S即生猪价格每天的降低g 增加1%,出售时间提前3%。

单变量最优化模型的一般方法

单变量最优化模型的一般方法
第一步 提出问题 列出问题所涉及的变量, 列出问题所涉及的变量,包括变量的单位 注意不要混淆变量和常量 列出你对变量所作的所有假设 检查单位从而保证你的假设有意义 用准确的数学术语给出问题的目标
总结以上的分析建模的步骤
第二步 选择建模方法 选择解决问题的一般的求解方法 这一步成功需要经验、 这一步成功需要经验、技巧和熟悉相关领域的知识 第三步 推导模型的数学表达式 将第一步中得到的问题重新表达成第二步选定的建模方 法所需要的形式 你可能需要将第一步中的一些变量名改成与第二步所用 的记号一致
提出问题 选择建模方法 推导模型的数学表达式 求解模型 回答问题
列出所有的变量和变量之间的数量关系
全部的变量: 全部的变量: 猪的重量ω 猪的重量ω(磅); 从现在到猪出售的时间t 从现在到猪出售的时间t(天); 天内饲养的花费С t天内饲养的花费С(元); 猪的市场价格Ρ 猪的市场价格Ρ(元); 售出猪所获得的收益R 售出猪所获得的收益R(元); 净收益P 净收益P(元)
练习题
A地的一家零售商店甲收到从B地和C地运来的货物。假设x表 地的一家零售商店甲收到从B地和C地运来的货物。假设x 示从B地发来的货物量, 表示从C地发来的货物量。 示从B地发来的货物量,Y表示从C地发来的货物量。 写出该零售商店所收到的单位产品总数的表达式; 写出该零售商店所收到的单位产品总数的表达式; 假设从B 地的运费是每单位0.2元 地运到A 假设从B地A地的运费是每单位0.2元,从C地运到A地的运费 是每单位0.25元 写出到该零售商的总运费的目标函数; 是每单位0.25元。写出到该零售商的总运费的目标函数; 假设该零售商店每月的需求是5000单位的产品 单位的产品, 假设该零售商店每月的需求是5000单位的产品,写出要把 5000单位产品运输到该店的约束条件 5000单位产品运输到该店的约束条件。 单位产品运输到该店的约束条件。 在一个月中, 地运出的货物不超过4000单位 而从C 单位, 在一个月中,从B地运出的货物不超过4000单位,而从C地运 出的货物不超过3000单位 写出模拟这个情况的约束条件。 单位。 出的货物不超过3000单位。写出模拟这个情况的约束条件。 假设,货物量是大于0 的单位量。请结合目标函数和约束条件, 假设,货物量是大于0 的单位量。请结合目标函数和约束条件, 写出满足该店需求的成本最低的数学模型。 写出满足该店需求的成本最低的数学模型。

利用数学模型求解生猪的最佳销售时机问题

利用数学模型求解生猪的最佳销售时机问题

b・

于红 (9 0一) 女 , 17 , 河北唐 山人 , 师, 事数 学教 育方面的 讲 从
工作 。
20 -33 0 90 -1
安徽 农业科 学
20 0 9盎
A £ At ( ) , 0<0 ) <1 。
个 主要 因素就是 如何选择生猪 的售 出时机 , 即何时 卖 出获 利
才最 大。可能 会 有人 认 为 , 养得 越 大 , 出 后 获 利越 大。 猪 售
其实 不然 , 精明 的饲 养者 都知道 , 随着 猪的生 长 , 位时 间消 单 耗的饲料 费用也会越来 越多 , 同时其体 重的增 加速 度却 不 但 断下 降 , 销售 价格 不会 随体 重 的增加 而增 加 , 以饲 养 时 而 所 间过 长是不合算 的 。下 面就做 出适 当的假设 , 建立 猪 的最佳 销售 时机 的数 学模 型 。 利用平衡 原理是 建立 微 分方 程模 型 的一 个 常被 选 用 的 且 不考虑市 场需求 , 即可视 P t 为常数 P (, ) 。
‰, 若 () t 为一 头猪在 t 刻 的重 量 , 有 ( )= 。 时 则 0 。又 设
性 、 论 的明确性 和体 系 的完 整性 , 结 而且 在 于它 应用 的广 泛
性 。经 济发展 的全球 化 、 计算 机 的迅 猛 发展 , 学理 论 与 方 数 法 的不 断扩充使得数 学 已经 成 为 当代 高科 技 的一个 重 要组 成部 分 和思想 库 , 数学 已经成 为 一种 能够 普遍 实施 的技 术 。 应用数学去解 决各类 实际 问题 时 , 需要 建立数 学模 型 。建 就 立教 学模 型 的过程 , 把错综 复 杂 的实际 问题 简化 、 象 为 是 抽 合理 的数学 结构 的过 程 。要 通 过 调查 、 集数 据 资料 , 收 观察 和研究实际对象 的 固有特 征和 内在 规律 , 抓住 问题 的 主要 矛 盾 , 立起 反映实 际 问题 的数 量关 系 , 建 然后 利用 数学 的理 论 和方 法去分折和 解决 问题 。数 学 建模 是联 系 数学 与 实际 问 题 的桥 梁 , 是数学 在各 个领 域 广泛 应用 的媒介 , 是数 学科 学 技术转化 的主要途径 , 数学 建模在科 学技术 发展 中的重要 作 用也越来 越受到数学 界和工程 界的普遍 重视 , 已成 为现 代 它
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:基于NOTEBOOK的生猪最优出售时机的建模与分析 一. 问题思维视图:
1.系统要素:投入资金、生猪体重增量、猪肉出售价格
2.要素关联:
纯利润=收入-投入-成本
=生猪现在的体重*生猪现在的售价-每天成本的投入*时间-生
猪的初始体重*生猪的初始售价
3.问题脉络形象化:该饲养场什么时候出售这样的生猪会使利润最
大?一饲养场每天投入4元资金用于饲料、设备、人力,估计可使一头80kg重量的生猪每天增加2kg。

目前市场生猪出售价格为8元/kg,但是预测每天会下降0.1元。

由下图可知:
二. 数学刻画:
1.给定每天投入4元资金使生猪体重每天增加常数r(=2kg);生猪出售的市场价格每天降低常数g(=0.1)。

2.给出如下符号列表:
符号 t w p C Q R
含义 时
间 生猪
体重
单价 t天资金
投入
纯利润出售收入
单位 天 kg 元/kg 元 元 元
三. 模型推演:
假设r=2,g=0.1,t天后出售,则:
生猪体重:w=80+r*t(r=2); 出售单价:p=8-g*t;
出售收入:R=p*w; 资金投入: C=4*t;
于是利润为:Q=R-C-8*80.
从而得到目标函数(纯利润):
Q(t)=(8-g*t)(80+r*t)-4*t-640 (1)
其中,求t(>=0)使Q(t)最大。

这是二次函数最值问题,而且是个现实中的优化问题,故Q(t)的一阶导数为零的t(t>=0)值可使Q(t)取最大值。

先求Q(t)一阶导数:
syms t;
Q(t)=(8-g*t)*(80+r*t)-4*t-640;
y=diff(Q(t),t)
y =- r*(g*t-8) - g*(r*t + 80) - 4
[g,t,r]=solve('-r*(g*t-80)-g*(r*t+80)=4','g=g','r=r')
g =z1
t =( 40*z1 + 2)/(z*z1)
r =z
即: t=(4*r-40*g-2)./(r*g ) (2)
在这个模型中:取r=2,g=0.1,则:
Q(t)=(8-0.1*t)*(80+2*t)-4*t-640)
目标函数MATLAB作图如下:
ezplot('(8-0.1*t)*(80+2*t)-4*t-640',[0,20])
hold on
xlabel('t坐标'); ylabel('Q(t)坐标');
从图象可知t=10时,Q(t)max=10。

即10天后出售,可得最大利润
为20元。

四. 超参数:
1.设每天生猪的降低g=0.1元不变,研究r变化的影响,由(2)式
可得:
t=(40*r-60)./r, r>=1.5 (3)MATLAB作图如下:
ezplot('(40*r-60)./r',[1.5,3])
hold on
xlabel('r坐标');ylabel('t坐标');
2.设生猪体重的增加r=2kg不变,研究g变化的影响,由(2)可知: t=(3-20*g)./g, 0 <=g<=0.15 (4) 作如下:
MATLAB图
ezplot('(3-20*g)./g',[0.06,0.15])
hold on
xlabel('g坐标');ylabel('t坐标');
由上述2个关系图可知:r是t的增函数,t是g的减函数。

于是可
以用相对变量衡量结果对参数的敏感程度。

t对r的敏感度记作S(t,
r),定义为:
s(t,r)=(Δt./t)./( Δr./r)
≈(dt./dr)*(r./t) (5)
由(3)式,当r=2时 s(t,r)≈60./(40*r-60) (6)
即生猪每天的体重r增加1%,出售时间推迟3%。

类似定义t对g的敏感度S(t,g),由(4)式,当g=0.1时可以出:
s(t,g)= (Δt./t)./( Δg./g)
≈(dt./dg)*(g./t)=-3./(3-20)=3 (7)
即生猪价格每天的降低g 增加1%,出售时间提前3%。

五. 超模型:
研究r,g 不是常数时对模型的影响:
综上可知,出售的最佳时机是保留生猪直到每天利润的增值等于每天的费用时为止。

由于本案例:S (t,r)=3,如果1.8≤w'≤2.2(10%),则7≤t ≤13(30%)建议一周后(t=7)重新评估p,p',w,w',再做计算。

六. 评注:
总而言之,这个案例短期内还是有很大的研究价值。

由于在本案例中:当t=10天时,它就能使利润最大化。

也就是说短期内生猪体重增量和市场价格变动不会出现巨大的波动,从而就不会使模型的估计值与实际情况偏差很大。

但是当t 取值很大时,这个案例就会有很大的弊
端。

因为生猪的出售价格就可能受外来同类产品的冲击,各种替代产品的影响,各种节日的影响等等,这些都将会使估算利润出现很大偏差。

相关文档
最新文档