五年级希望杯题完整答案

合集下载

第二届小学“希望杯”全国数学邀请赛五年级试题及答案

第二届小学“希望杯”全国数学邀请赛五年级试题及答案

第二届小学“希望杯”全国数学邀请赛五年级第1试2004年3月14日上午8:30至10:00一、填空题1.0.4×[]×26=。

2.根据规律填空:0.987654,0.98765,0.9877,0.988,,1.0。

3.一个数被7除,余数是3,该数的3倍7除,余数是。

4.2004的约数中,比100大且比200小的约数是。

5.下边的加法算式中,每个“□”内有一个数字,所有“□”内的数字之和最大可达到。

6.甲、乙、丙三人掷骰子,每人掷三次,他们掷出的点数的积都是24。

将每人掷出的点数的和由大到小排列,依次是甲、乙、丙,则点数3是掷出的。

(点数:向上的一面上的数字。

骰子的六个面上的点数分别是1至6)7.在一个四位数的某位数字的前面添上一个小数点,再和原来的四位数相减,差是1803.6,则原来的四位数是。

8.,,都是质数,并且+=33,+=44,+=66,那么=,9.如果A◆B=,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=。

10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有个。

11.甲、乙、丙三个网站定期更新,甲网站每隔一天更新1次,乙网站每隔两天更新1次,丙网站每隔三天更新1次。

在一个星期内,三个网站最少更新网站次。

12.下图中共有个正方形。

13.如图,每个小格的边长都是1个单位长度,一只甲虫在水平方向上每爬行1个单位长度需要5秒,在竖直方向上每爬行1个单位长度需要6秒,每拐弯一次需要1秒。

它从A点爬到B点,最少需要秒。

14.将长15厘米,宽9厘米的长方形的长和宽都分成三等份,长方形内任意一点与分点及顶点连结,如图3,则阴影部分的面积是平方厘米。

15.沿图中的虚线折叠,可以围成一个长方体,它的体积是立方厘米。

16.小永的三门功课的成绩,如果不算语文,平均分是98分;如果不算数学,平均分是93分;如果不算英语,平均分是91分。

2024 IHC(希望杯) 5培训题五年级数学-答案版

2024 IHC(希望杯) 5培训题五年级数学-答案版

2024 IHC 5培训题答案1.计算:223×7.5+22.3×12.5+230÷4 – 0.7×2.5+1=________。

答案:20082.计算:202.32024.2024202.42023.2023⨯-⨯=________。

答案:03.计算:(1+3+5+…+2025) – (2+4+6+…+2024)=________。

答案:10134.如果:21120.7530.39852⎡⎤⎛⎫+⨯++⊗⨯÷=⎪⎢⎥⎝⎭⎣⎦,那么⊗=()。

A. 10B. 9.5C. 9D. 8.5E. 8答案:E5.定义A&B=A×A÷B,则3&(2&1)=________。

答案:2.256.定义新运算“⊕”和“◎”:a⊕b=a×b,c◎d=d×d×d…×d(c个d相乘),如2⊕4=8,3◎4=64,则(5⊕7) ⊕(3◎6)=________。

答案:75607.一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是15,那么原来的分母是________。

答案:898. 在计算一个大于0的数与3.57∙的乘积时,小明误把3.57∙看成了3.57,结果与正确答案相差1.4,则其正确答案是________。

答案:6449. A 是比90大,比100小的质数,它被B 除,得商C ,余D ,如果C =B +D ,那么B =________。

答案:710. 将1,2,3,4,6,7六个数字,填入图中正方体的6个顶点上,使每个面4个数之和相等。

答案:11. 将1~11这11个数填入下图圆圈中,使每条线上的数之和都相等。

答案:12.如图是一个4×4的“魔方阵”,其中7个格子已经填好,在剩余格子中填入合适的数,使每行、每列及每条对角线上4个数的和都相等,则“?”处应该填的是________。

第十五届小学五年级“希望杯”全国数学邀请赛试题及答案

第十五届小学五年级“希望杯”全国数学邀请赛试题及答案

第⼗五届⼩学五年级“希望杯”全国数学邀请赛试题及答案第⼗五届⼩学“希望杯”全国数学邀请赛五年级第1试试题以下每题6分,共120分。

1、计算:1.25×6.21×16+5.8= .2、观察下⾯数表中的规律,可知=x.3、图1是⼀个由26个相同的⼩正⽅体堆成的⼏何体,它的底层由45?个⼩正⽅体构成。

如果把它的外表⾯(包括底⾯)全部涂成红⾊,那么当这个⼏何体被拆开后,有3个⾯是红⾊的⼩正⽅体有块。

4、⾮零数字a,b,c能组成6个没有重复数字的三位数,且这6个数的和是5994,则这6个数中任意⼀个数都被9整除.(填“能”或“不能”)5、将4个边长为2 的正⽅形如图放置在桌⾯上,则它们在桌⾯上所能覆盖的⾯积是 .6、6个⼤于0的连续奇数的乘积是135135,则这6个数中最⼤的是.7、A,B两桶⽔同样重,若从A桶中倒2.5千克⽔到B桶中,则B桶中⽔的重量是A桶中⽔的重量的6倍,那么B桶原来有⽔千克.8、如图是⼀个正⽅体的平⾯展开图,若该正⽅体相对的两个⾯上的数值相等,则c-的值a?b是 .9、同学们去春游,带⽔壶的有80⼈,带⽔果的有70⼈,两样都没带的有6⼈。

若既带⽔壶⼜带⽔果的⼈数是所有参加春游⼈数的⼀半,则参加春游的同学有⼈。

10、如图,⼩正⽅形的⾯积是1,则图中阴影部分的⾯积是.11、6个互不相同的⾮零⾃然数的平均数是12,若将其中⼀个两位数ab 换成ba (a ,b 是⾮零数字),那么这6个数的平均数变为15,所以满⾜条件的ab 共有个。

12、如图,在ABC ?中,D ,E 分别是AB ,AC 的中点,且图中两个阴影部分(甲和⼄)的⾯积差是5.04,则ABC ?的⾯积是。

13、松⿏A ,B ,C 共有松果若⼲,松⿏A 原有松果26颗,从中拿出10颗平凡给B ,C ,然后松⿏B 拿出⾃⼰的18颗松果平分给A ,C ,最后松⿏C 把⾃⼰现有松果的⼀半平分给A ,B ,此时3只松⿏的松果数量相同。

2023希望杯五年级数学思维训练题(含答案)

2023希望杯五年级数学思维训练题(含答案)

2023希望数学——5年级培训100题1. 计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7) = ________.2. 计算:0.8750.8+0.750.4+0.50.2 =________.3. 计算:3.5634.50.73569.1535.6 1.96256 =________.4. 计算: 0.10.30.50.20150.20.40.60.2014 ________.5. 比较A 、B 、C 三个数的大小_____<_____<_____.147118369120A;3691204710121B ;111C .6. 对于任意两个自然数a 和b ,如果规定a @b =a ×b +a +1,那么41@99=________.7. 规定:a △b =(b – 0.2a )(a – 0.2b ),a □b =ab – a +b ,则5△(4□3) =________.8. 定义:[]a 表示不超过数a 的最大整数,如[0.1]0 ,[8.23]8 ,则57997993579597= ________.9. 小马虎在计算一道有余数的除法算式时,把被除数247错写成了427.这样商比原来大了6,而余数正好相同.那么这个算式的除数是________.10. 小明将20.08乘以一个数,误写成20.08乘以一个数,结果与正确答案正好相差20.08,则正确答案是________.11. 在横线上填写一个自然数,使下面的等式成立:2 + 0.6 + 0.06 + 0.006 + …… = 48 ÷ ________.12. 已知A – B = 1.981,但小华因没看到A 和B 中的小数点,得到“A – B = 4087”,则A = ________.13. a 除以7的商的小数点后面第2021个数字是2,则a 是________.(a 为小于7的自然数) 14. 11111111112345678910的结果的小数点后第2012位的数字是________.15. 在一列数:1357,,,3579……中,从哪一个数开始,1与每个数之差都小于11000?16. 已知1+2+3+ …… + n 的和的个位数字为3,十位数字为0,百位数字不为0,n 的最小值是________.17. 从1开始的n 个连续的自然数,从中去掉最大的3个数,若剩下的自然数的平均数是30,则n =________.18. 在下式中A 、B 、C 、D 、E 、F 代表1~9中的不同数字,那么ABCDEF =________.AB CC DEE C C F F19. 下面的乘法竖式谜中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数云雾花开是________.20. 图中的除法竖式中,商是一个循环小数,那么被除数可能是多少?21. 若两个不同的数字A 、B 满足3(70.6)AAB B,则A +B =________.22. 在三位数abc 中,2b +c =12,一定能整除这个三位数的最大自然数是________.23. 四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)移到这个数最左边得到一个新的六位数,然后与原六位数相加.他们的得数分别是172535,568741,620708,845267,其中只有一名同学做对了,他的得数是________.24. 互为反序数的两个自然数的积是92565,这两个互为反序数的自然数的和是________.(注:把一个数的数码倒过来写,所得的新数叫做原数的反序数,如123的反序数为321)25. 一个七位数,能被3、5、7、11、13整除,且各位数字互不相同,这个七位数最大是________.□是24的倍数,这样的四位数有________个.26.四位数54827.某个自然数除以2 余1,除以3 余2,除以4 余1,除以5 也余1,则这个数最小是________.28.2012201220122012的计算结果除以10的余数是________.123201329.三个不同质数的平方之和是9438,这三个质数分别是多少?30.一条道路由甲村经乙村到丙村.甲乙两村相距450米,乙丙两村相距630米.现在准备在路边栽树,要求相邻两棵树之间的距离相等,并且在甲乙两村中点和乙丙两村中点都要栽树.那么相邻两棵树之间的距离最多是________米.31.一个偶数恰有12个因数不是3的倍数,恰有15个因数不是5的倍数,这个数是________.32.要使下面算式的乘积的最后四个数字都是0,小括号中最小应填________.975×935×972×()33.5×6×7×…×2014×2015的末尾有_______个连续的零.34.360与一个三位数的乘积是完全平方数,这个三位数最小是_________.35.已知a与b的最大公因数是4,a与c、b与c的最小公倍数都是100,而且a ≤ b.满足条件的自然数a、b、c共有________组.36.已知两个自然数的乘积是2016,这两个数的最小公倍数是168,那么这两个数的最大公因数是_________.37.四位数ABBA的所有因数中,有3个是质数,其它39个不是质数,那么四位数BAAB有________个因数.38.算式125×125=16324是在________进制下的正确算式.39.老师写了一个三位数给甲、乙、丙、丁、戊五个同学看.甲说:这个数是27的倍数;乙说:这个数是11的倍数;丙说:这个数的数字之和为15;丁说:这个数是个平方数;戊说:它是648000的因数.老师说:他们中间只有三个人说真话.那么这个数是________.40.用3、4、5、7、9这5个数字组成两个各位数字不同的五位数,若这两个五位数的差是12555,则这两个数中较大的一个是_________.41.在一种数学游戏中,主持人要求某参赛者想好一个三位数abc,然后,主持人要求他记下5个数acb,bca,bac,cba,cab,并把这5个数加起来求出和N.只要参赛者讲出N的大小,主持人就能说出原数abc是什么.如果N=2743,那么abc=_________.42.如图,从长方形纸片上裁掉正方形ABCD和正方形CEFG,其中正方形ABCD的面积是1369,则余下的长方形纸片DGFH的周长是________.43.如图,已知正方形ABCD的边长为10,E为AD中点,F为CE中点,G为BF中点,则△BDG的面积是________.44.图中正六边形的面积是54,AP=2PF,CQ=2BQ.阴影部分的面积是________.45.如图,正方形中A1、A2、A3、A4为各边中点,B1、B2、B3、B4、C1、C2、C3、C4为各边三等分点,已知正方形的边长是6,那么阴影部分的面积是________.46.下图中的阴影部分的面积是_________.47.把一个正方形四个方向分别往外增加1厘米、2厘米、3厘米和4厘米,结果面积增加了74平方厘米,那么原正方形的面积为________平方厘米.48. 如图,若阴影部分的面积为53,则外侧的正方形的面积为________.49. 如图,在平行四边形ABCD 中,点M 在对角线AC 上,BM 延长线交AD 于点F .若ABM 的面积是3,BCM 的面积是5.则BCF 的面积是_______.50. 下图的大长方形是由6个正方形拼成的,已知最小的正方形的面积是4平方厘米,大长方形的面积是________平方厘米.51. 如图,直角△ABC 中,∠C =90 °,DE 和BC 平行,F 是BC 上一点,已知AD =2,BF =5,则阴影部分的面积是_________.52.如图,大、小两个正方形的周长和是128厘米,大正方形比小正方形的面积大128平方厘米,小正方形面积是________平方厘米.53.如图,F是长方形ABCD的边BC上的一点,BM=MF,AF与对角线BD交于点O,DF与CO交于点N.△OND的面积是70平方厘米,△OMF的面积是25平方厘米.△NFC的面积是________平方厘米.54.D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已知上、下两块阴影部分的面积分别是150平方厘米和180平方厘米,则三角形BDE的面积是________平方厘米.55.如图,ABCD是一张正方形纸片,将纸片沿着CE对折,点D被折到点G的位置,再沿着CF对折纸片,将点B折到点G的位置.如果DE=18,BF=6,那么△AEF的面积是_________.56.四个正方形如图摆放,如果较小的两个正方形面积分别为15和60,那么较大的两个正方形面积差为__________.57.一个正方体的木块,各个面上分别写着1,2,3,4,5,6,并且相对面上的两个数字的和是7,将这个木块按如图所示箭头方向翻转,当翻到最后一格时,木块上方的数字是________.58.地面上放置着一个由若干个小正方体搭成的立体图形,且三视图如下图所示,则这个立体图形中共有________个小正方体.59.如图,一个棱长为6厘米的大正方体,从前向后打穿一个“L”形方洞.挖洞后剩余部分的表面积是________平方厘米.(单位:厘米)60.如图,在空的长方体容器内放入一个圆柱体铁块,然后往容器中灌水.5分钟时水面恰好与圆柱体的顶面相平,再过12分钟水灌满容器.已知长方体容器的高是50厘米,圆柱体铁块的高是20厘米,则长方体容器的底面积是圆柱体铁块底面积的________倍.61.一堆模具中长方形模具的数量是圆形模具的2倍,现要将它们装箱出售,每24个长方形模具和9个圆形模具合装一箱,如此装了若干箱后,长方形模具还剩8个,圆形模具还剩37个.这堆模具中,有长方形模具________个.62.一片牧场,每天草生长的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4只羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃_________天.63.一辆汽车的速度是每小时121千米,现有一个每小时比标准表多走30秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时________千米.64.张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是110°,回家时发现还未到七点,且时针与分针的夹角仍是110°.张强外出锻炼了_______分钟.65.月底了,小明把这个月节省下来的钱全部兑换成1元硬币,放在桌面上.他先把全部的硬币围成一个正三角形,刚好用完;又改围成一个正方形,也刚好用完(都是只围最外圈一层).已知正方形每条边比正三角形的每条边少用8枚硬币,那么小明的所有硬币总共价值_________元.66.歌唱比赛中有5名评委为选手打分,小强的得分情况是:如果去掉一个最高分和一个最低分,平均分是9.56分;如果只去掉一个最高分,平均分是9.45分;如果只去掉一个最低分,平均分是9.62分;如果保留最高分和最低分,而去掉其他评委的打分,小强的平均分是________分.67.工厂举办劳动技能竞赛,一车间的平均分是85分,二车间的平均分是92分,两个车间的平均分是88分.已知一车间参加竞赛的人数比二车间多10人,那么一车间参加竞赛的人数是________人.68.爷爷告诉李刚:“当我在你爸爸现在这个年龄时,你爸爸当时的年龄比你现在的年龄大了5岁.”如果爷爷、爸爸和李刚三人今年的年龄和刚好是100岁,则爸爸今年是_______岁.69.若干年后,爷爷的年龄比小高年龄的12倍多1岁;再过几年,爷爷的年龄比小高年龄的8倍多4岁.已知今年小高 4 岁,那么爷爷今年_______岁.(今年爷爷年龄不到100岁)70.某车间加工一批零件,计划每天加工50个.为提高质量,放缓了加工速度,实际每天少加工6 个,这样超过计划时间2 天的时候,还有32 个零件没有完成,这批零件有________个.71.甲、乙、丙、丁四人一起完成一项工程,按工作时间分配报酬,开始每人预领了相等的劳动报酬,可是丁工作一天就病倒了,结果是甲工作6天,乙工作5天,丙工作4天后把工程完成了,丁退回480元补偿给其他三人,最后甲得报酬________元.72.一项工程,按甲、乙、丙各一天的顺序循环工作,恰好整数天完成;如果按照丙、甲、乙各一天的顺序循环工作,比原计划晚0.5天完成;如果按照乙、丙、甲各一天的顺序循环工作,比原计划晚1天完成.已知乙单独完成这项工程需30天,那么甲、乙、丙同时做的话,需要________天完成.73.已知一艘轮船顺水航行48千米需4小时,逆水航行48千米需6小时.现在轮船从上游A码头到下游B码头,距离72千米,开船时一乘客扔到水里了一块木板,那么船到B码头时,木板离B码头还有________千米.74.A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍.今天两船的相遇地点与12月2号相比,将变化________千米.75.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇.甲比乙速度快,甲每小时比乙快________千米.76.A,B两地相距1000米,甲从A 地、乙从B地同时出发,在A,B间往返锻炼.甲跑步每分钟行150米,乙步行每分钟行60米.在30分钟内,甲、乙两人第________次相遇时距A地最近,最近距离是________米.(同向追上也算作相遇,结果四舍五入取整数)77.甲、乙两人分别从A、B两地同时出发,相向而行,并在A、B两地往返运动.甲每分钟行120米,乙每分钟行80米.若两人第一次相遇点C与第二次相遇点D之间的距离是100米.则A、B两地间的距离________米.78.某一天,甲乙两人分别从A、B两地同时出发相向而行,两人在C点相遇.第二天,甲乙两人分别从B、A两地出发相向而行,甲比乙提前20分钟出发,两人又在C点相遇.第三天,甲乙两人分别从A、B两地出发相向而行,甲行了360米后乙才出发,结果两人在A、B中点相遇.甲的速度是每分钟________米.79.如图,一个长方形的房屋长13米,宽8米,甲乙两人分别从房屋的两个墙角出发,甲每秒行3米,乙每秒行2米,经过________秒,甲第一次看见乙.80.如图,AB是圆的直径,甲、乙分别从A、B两点同时沿圆周顺时针方向出发,已知甲走一圈需要12分钟,乙走一圈需要15分钟.那么甲出发后________分钟可以追上乙.81.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么这个班中三项运动都会的至少有________人.82.科学家A、B、C、D、E依次坐成一排为同学们答疑解惑,已知每位同学都恰好找座位相邻的三位科学家答疑,一共有22个同学同时找了B和D答疑,C一共答疑38次,A比E多答疑6次,那么B一共答疑________次.83.用4种颜色给下图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有_________种不同的染法.84.“过五关、斩六将”是小说《三国演义》中的著名故事,故事中关羽连过曹操的东岭关、洛阳关、虎牢关、荥阳关、滑州黄河渡口五个关卡,斩了六员大将,才摆脱曹操投奔刘备.以下为五个关口的方位简图,请用红、黄、蓝、绿、黑五种颜色对这五块区域进行染色,要求相邻区域颜色不同,那么共有________种不同的染色方法.85.一张圆形纸片被对折成一个半圆形,在半圆形上画三条直线,然后沿直线切三刀,能将纸片最多分成_________块.86.将2019个小球放入编号分别为1,2,…,63的63个箱子中,要求:所有箱子中小球的个数不同,且小球个数不小于箱子的编号,则不同的放法有________种.87.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每步只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3步,途中从未相遇的跳法共有________种.88.数一数,图中有________个梯形.89.图中有________个平行四边形.90.如图,由若干个小等边三角形构成,其中每个三角形的顶点都被称为格点,则以图中的格点为顶点的等边三角形有________个.91.某次书法比赛,共有1123名同学参加,小明说:“至少有10名同学来自同一个学校.”如果他的说法是正确的,那么最多有________个学校参加了这次比赛.92.从1~9中至少要取出________个数,才能保证取出的数中一定有3个数可以排成等差数列.93.光大小学要从12名候选同学中投票选出“校庆十佳少年”,规定每位同学必须从这12人中任选两名,那么至少有_______人参加投票,才能保证必有不少于4个同学投了完全相同的票型.94.一列数21,22,24,28,……,从第二个数开始,每一个数都等于它前一个数加上这个数的个位数字,例如22=21+1.那么这列数中的第21个是________.95.有一列长度为90米的火车A和一列长度为180米的火车B,两车相向而行,有四人分别发布了一条消息:甲说:我坐在火车A上,看到火车B经过用时6秒.乙说:我坐在火车B上,看到火车A经过用时2秒.丙说:我在路边看风景,火车B从我身边经过用时9秒.丁说:我在路边跑步,先被火车B超过,1分钟后火车A从我身边经过,用时3秒.已知四人中只有1人的话是错误的,那么丁的速度是每秒________米.96.天天、Cindy、Kimi、石头、Angela五人按某种顺序依次取出21个球.Kimi:“我取了剩下个数的三分之二”;Cindy:“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部”,Angela:“大家取的个数都不同哎!”请问:Kimi是第______个取小球的,取了______个.97.将1、2、3……49、50任意分成10组,每组5个数,在每组中取数值居中的那个数为“中位数”,这10个中位数之和的最大值是________.98.小聪玩一个三国集卡游戏,有曹操、刘备、孙权三种武将卡,每种武将卡都有一星、二星、三星这三个星级,三张同名称的低星级卡片可以合成一张同名称的高一星级卡片,一张高星级卡片可以分解成另两种低一星级的卡片各一张(比如:三个一星曹操可以合成一个二星曹操,一个三星曹操可以分解为一个二星孙权和一个二星刘备).已知小聪可以购买的卡片只有一星卡片,武将随机.那么小聪至少一次性购买_________张卡片,才能保证自己可以通过合成或者分解获得互不相同的三张三星卡片.99.2000个学生排成一行,依次从左到右编号1~2000,然后从左到右按1、2报数,凡是报1的离开队伍,然后剩下的人再从左到右按1、2报数,重复进行,直到剩1人为止.那么最后剩余的人原来的编号是________.100.将1到16这16个数填入4×4的网格中,将一个数与相邻(相邻是指上、下、左、右,角上的数只有2个相邻的数)的数进行比较,如果最多只有1个数比它大,那么就称这个数是“欢乐数”.1到16这16个数中最多有________个“欢乐数”.2023希望数学——5年级培训100题答案1. 计算:(4.8×7.5×8.1)÷(2.4×2.5×2.7) = ________.答案:182. 计算:0.8750.8+0.750.4+0.50.2 =________.答案:1.13. 计算:3.5634.50.73569.1535.6 1.96256 =________.答案:1964. 计算: 0.10.30.50.20150.20.40.60.2014 ________.答案:1.45085. 比较A 、B 、C 三个数的大小_____<_____<_____.147118369120A ; 3691204710121B ; 111C .答案:A < C < B6. 对于任意两个自然数a 和b ,如果规定a @b =a ×b +a +1,那么41@99=________.答案:41017. 规定:a △b =(b – 0.2a )(a – 0.2b ),a □b =ab – a +b ,则5△(4□3) =________.答案:288. 定义:[]a 表示不超过数a 的最大整数,如[0.1]0 ,[8.23]8 ,则57997993579597= ________. 答案:489. 小马虎在计算一道有余数的除法算式时,把被除数247错写成了427.这样商比原来大了6,而余数正好相同.那么这个算式的除数是________.答案:3010. 小明将20.08乘以一个数,误写成20.08乘以一个数,结果与正确答案正好相差20.08,则正确答案是________.答案:45380.811. 在横线上填写一个自然数,使下面的等式成立:2 + 0.6 + 0.06 + 0.006 + …… = 48 ÷ ________.答案:1812. 已知A – B = 1.981,但小华因没看到A 和B 中的小数点,得到“A – B = 4087”,则A = ________.答案:4.32113. a 除以7的商的小数点后面第2021个数字是2,则a 是________.(a 为小于7的自然数)答案:414. 11111111112345678910 的结果的小数点后第2012位的数字是________.答案:515. 在一列数:1357,,,3579……中,从哪一个数开始,1与每个数之差都小于11000? 答案:1999200116. 已知1+2+3+ …… + n 的和的个位数字为3,十位数字为0,百位数字不为0,n 的最小值是________.答案:3717. 从1开始的n 个连续的自然数,从中去掉最大的3个数,若剩下的自然数的平均数是30,则n =________.答案:6218. 在下式中A 、B 、C 、D 、E 、F 代表1~9中的不同数字,那么ABCDEF =________.AB CC DEE C C F F答案:78614219. 下面的乘法竖式谜中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数云雾花开是________.答案:865020. 图中的除法竖式中,商是一个循环小数,那么被除数可能是多少?答案:19,2621. 若两个不同的数字A 、B 满足3(70.6)AAB B,则A +B =________.答案:622. 在三位数abc 中,2b +c =12,一定能整除这个三位数的最大自然数是________.答案:423. 四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)移到这个数最左边得到一个新的六位数,然后与原六位数相加.他们的得数分别是172535,568741,620708,845267,其中只有一名同学做对了,他的得数是________.答案:62070824. 互为反序数的两个自然数的积是92565,这两个互为反序数的自然数的和是________.(注:把一个数的数码倒过来写,所得的新数叫做原数的反序数,如123的反序数为321)答案:72625. 一个七位数,能被3、5、7、11、13整除,且各位数字互不相同,这个七位数最大是________.答案:7402395□是24的倍数,这样的四位数有________个.26.四位数548答案:127.某个自然数除以2 余1,除以3 余2,除以4 余1,除以5 也余1,则这个数最小是________.答案:4128.2012201220122012的计算结果除以10的余数是________.1232013答案:129.三个不同质数的平方之和是9438,这三个质数分别是多少?答案:2,5,9730.一条道路由甲村经乙村到丙村.甲乙两村相距450米,乙丙两村相距630米.现在准备在路边栽树,要求相邻两棵树之间的距离相等,并且在甲乙两村中点和乙丙两村中点都要栽树.那么相邻两棵树之间的距离最多是________米.答案:4531.一个偶数恰有12个因数不是3的倍数,恰有15个因数不是5的倍数,这个数是________.答案:4050032.要使下面算式的乘积的最后四个数字都是0,小括号中最小应填________.975×935×972×()答案:2033.5×6×7×…×2014×2015的末尾有_______个连续的零.答案:50234.360与一个三位数的乘积是完全平方数,这个三位数最小是_________.答案:16035.已知a与b的最大公因数是4,a与c、b与c的最小公倍数都是100,而且a ≤ b.满足条件的自然数a、b、c共有________组.答案:936.已知两个自然数的乘积是2016,这两个数的最小公倍数是168,那么这两个数的最大公因数是_________.答案:1237.四位数ABBA的所有因数中,有3个是质数,其它39个不是质数,那么四位数BAAB有________个因数.答案:1238.算式125×125=16324是在________进制下的正确算式.答案:七39.老师写了一个三位数给甲、乙、丙、丁、戊五个同学看.甲说:这个数是27的倍数;乙说:这个数是11的倍数;丙说:这个数的数字之和为15;丁说:这个数是个平方数;戊说:它是648000的因数.老师说:他们中间只有三个人说真话.那么这个数是________.答案:32440.用3、4、5、7、9这5个数字组成两个各位数字不同的五位数,若这两个五位数的差是12555,则这两个数中较大的一个是_________.答案:5793441.在一种数学游戏中,主持人要求某参赛者想好一个三位数abc,然后,主持人要求他记下5个数acb,bca,bac,cba,cab,并把这5个数加起来求出和N.只要参赛者讲出N的大小,主持人就能说出原数abc是什么.如果N=2743,那么abc=_________.答案:36542.如图,从长方形纸片上裁掉正方形ABCD和正方形CEFG,其中正方形ABCD的面积是1369,则余下的长方形纸片DGFH的周长是________.答案:7443.如图,已知正方形ABCD的边长为10,E为AD中点,F为CE中点,G为BF中点,则△BDG的面积是________.答案:6.2544.图中正六边形的面积是54,AP=2PF,CQ=2BQ.阴影部分的面积是________.答案:3145.如图,正方形中A1、A2、A3、A4为各边中点,B1、B2、B3、B4、C1、C2、C3、C4为各边三等分点,已知正方形的边长是6,那么阴影部分的面积是________.答案:21.646.下图中的阴影部分的面积是_________.答案:12047.把一个正方形四个方向分别往外增加1厘米、2厘米、3厘米和4厘米,结果面积增加了74平方厘米,那么原正方形的面积为________平方厘米.答案:2548.如图,若阴影部分的面积为53,则外侧的正方形的面积为________.答案:10049.如图,在平行四边形ABCD中,点M在对角线AC上,BM延长线交AD于点F.若△ABM的面积是3,△BCM的面积是5.则△BCF的面积是_______.答案:850.下图的大长方形是由6个正方形拼成的,已知最小的正方形的面积是4平方厘米,大长方形的面积是________平方厘米.答案:57251.如图,直角△ABC中,∠C=90 °,DE和BC平行,F是BC上一点,已知AD=2,BF=5,则阴影部分的面积是_________.答案:552.如图,大、小两个正方形的周长和是128厘米,大正方形比小正方形的面积大128平方厘米,小正方形面积是________平方厘米.答案:19653.如图,F是长方形ABCD的边BC上的一点,BM=MF,AF与对角线BD交于点O,DF与CO交于点N.△OND的面积是70平方厘米,△OMF的面积是25平方厘米.△NFC的面积是________平方厘米.答案:2054.D是三角形ABC一边上的中点,两个长方形分别以B、D为顶点,并且有一个公共顶点E,已知上、下两块阴影部分的面积分别是150平方厘米和180平方厘米,则三角形BDE的面积是________平方厘米.答案:1555.如图,ABCD是一张正方形纸片,将纸片沿着CE对折,点D被折到点G的位置,再沿着CF对折纸片,将点B折到点G的位置.如果DE=18,BF=6,那么△AEF的面积是_________.答案:10856.四个正方形如图摆放,如果较小的两个正方形面积分别为15和60,那么较大的两个正方形面积差为__________.答案:2757.一个正方体的木块,各个面上分别写着1,2,3,4,5,6,并且相对面上的两个数字的和是7,将这个木块按如图所示箭头方向翻转,当翻到最后一格时,木块上方的数字是________.答案:458.地面上放置着一个由若干个小正方体搭成的立体图形,且三视图如下图所示,则这个立体图形中共有________个小正方体.答案:959.如图,一个棱长为6厘米的大正方体,从前向后打穿一个“L”形方洞.挖洞后剩余部分的表面积是________平方厘米.(单位:厘米)答案:25860.如图,在空的长方体容器内放入一个圆柱体铁块,然后往容器中灌水.5分钟时水面恰好与圆柱体的顶面相平,再过12分钟水灌满容器.已知长方体容器的高是50厘米,圆柱体铁块的高是20厘米,则长方体容器的底面积是圆柱体铁块底面积的________倍.8答案:361.一堆模具中长方形模具的数量是圆形模具的2倍,现要将它们装箱出售,每24个长方形模具和9个圆形模具合装一箱,如此装了若干箱后,长方形模具还剩8个,圆形模具还剩37个.这堆模具中,有长方形模具________个.答案:27262.一片牧场,每天草生长的速度相同.这片牧场可供14头牛吃30天,或者可供70只羊吃16天.如果4只羊的吃草量相当于1头牛的吃草量.那么17头牛和20只羊一起吃这片牧场上的草,可以吃_________天.答案:10。

希望杯五年级历届试题与答案

希望杯五年级历届试题与答案

2011年第九届初赛1.计算:1.25×31.3×24= 。

2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。

4.如图1,从A到B,有条不同的路线。

(不能重复经过同一个点)5.数数,图2中有个正方形。

6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。

7.如果六位数2011□□能被90整除.那么它的最后两位数是。

8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。

那么,1000以内最大的“希望数”是。

9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。

10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。

11.星期天早晨,哥哥和弟弟去练习跑步。

哥哥每分钟跑110米,弟弟每分钟跑80米。

弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。

那么,哥哥跑了米。

12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。

那么,笔记本每个元,笔每支元。

13.数学家维纳是控制论的创始人。

在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。

维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。

”那么.维纳这一年岁。

(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。

第9-11届希望杯数学竞赛五年级二试试题含答案

第9-11届希望杯数学竞赛五年级二试试题含答案

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

第十四届“希望杯”五年级第二试试题及答案

第十四届“希望杯”五年级第二试试题及答案

第十四届小学“希望杯”全国数学邀请赛五年级一、填空题(每题5分,共60分)。

1、=÷÷÷÷÷÷)05.004.0()04.03.0()3.02(10 .2、小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 元.3、将1.41的小数点向右移动两位,得a ,则41.1-a 的整数部分是 .4、定义:n n m m n m ⨯-⨯=⊗,则=⊗--⊗-⊗-⊗10098866442 .5、从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是 .E 在6、如图1,四边形ABCD 是正方形,ABGF 和FGCD 都是长方形,点AB 上,EC 交FG 于点M 。

若6=AB ,∆ECF 的面积是12,则∆BCM 的面积是 .7、在一个出发算式中,被除数是12,除数小于12,则可能出现的不同余数之和是 .8、如图2,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 .9、正方形A 、B 、C 、D 的边长一次是15,b ,10,d (b ,d 都是自然数),若它们的面积满足D C B A S S S S ++=,则=+d b .10、根据图3所示的规律,推知=M .…… …… 3 7 5 9 11 81 1215 20 2736 47 M 图311、一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的去法有a 种;若每次取奇数颗,若干次后刚好去完,不同的去法有b 种,则=+b a .(每次去珍珠的颗数相同)12、若A 是质数,并且4-A ,6-A ,12-A ,18-A 也是质数,则=A .二、解答题(每题15分,共60分)。

13、张强骑车从公交的A 站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A 站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟. 若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14、如图4,水平方向和竖直方向上相邻两点之间的距离都是m ,若四边形ABCD 的面积是23,求五边形EFGHI 的面积.15、定义:[]a 表示不超过数a 的最大自然数,如[]06.0=,[]125.1=. 若[]7.039.05+=-a a ,则a 的值.16、有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?第十四届“希望杯”数学邀请赛五年级2试参考答案。

第五届小学“希望杯”全国数学邀请赛五年级试题及答案

第五届小学“希望杯”全国数学邀请赛五年级试题及答案
15.甲、乙、丙三人打牌。第一局,甲输给了乙和丙,使得乙、丙手中的点数都翻了一番。第二局,甲 和乙赢了,从而甲、乙手中的点数翻了一番。最后一局,甲、丙获胜,两人手中的点数翻了一番。 这样,甲、乙、再三人每人都是二赢一输,并且每人手中的点数完全相等,可是甲发现自己输了 100 点。 请问:开始时,甲手上有多少点?(每局三人的点数总和保持不变)
2.(7.88+6.77+5.66)×(9.31+10.98+10)-(7.88+6.77+5.66+10)×(9.31+10.98)=______。
3.对于非零自然数 a,b,c,规定符号 的含义: (a,b,c)=
,那么
=______。
4.如下左图所示的 4 根火柴棒形成象形汉字“口”,平移火柴棒后,左图能变成的象形汉字是右图中的 ______。(填序号)
13.一个容器内注满了水。将大、中、小三个铁球这样操作:
第一次,沉入小球;
第二次,取出小球,沉入中球;
第三次,取出中球,沉入大球。
已知第一次溢出的水量是第二次的 3 倍,第三次溢出的水量是第一次的 2 倍。求小、中、大三球的体 积比。
14.2006 年夏天.我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了 一个蓄水池,每小时有 40 立方米泉水注人池中。第一周开动 5 台抽水机 2.5 小时就把一池水抽完, 接着第二周开动 8 台抽水机 1.5 小时就把一池水抽完。后来由于旱情严重,开动 13 台抽水机同时供 水,请问几小时可以把这池水抽完?
5.小芳在看一本图画书,她说:
由她所说.可知这本书共有______页。 6.某商场每月计划销售 900 台电脑,在 5 月 1 日至 7 日黄金周期同,商场开展促销活动。但 5 月的销
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年希望杯五年级赛前100题【1-4,简便计算】1)计算:×+×+。

=×(++1)=×10=2)计算:2015-2014+2013-2012+…+3-2+1。

=(2015-2014)+(2013-2012)+…+(3-2)+(1-0)=10083)计算:21×+350×+×+×2015。

=21×+35×+41×+3×=×(21+35+41+3)=×100=20154)计算:2015×20×。

=2015×(+1)-2014×(-1)=2015×+2015-(2014×20)=2015+2014=40295)5个连续奇数的和是2015,求其中最大的奇数。

【奇偶数】中间数:2015÷5=403最大者:403+2+2=407答:最大的奇数为407。

6)若将2015分解成5个自然数的和,则这5个自然数的积是“奇数”,“偶数”,还是“奇数或偶数”【奇偶数】5个自然数之和为2015,是奇数,所以其中有奇数个奇数。

如果全为5个奇数的话,其积为奇数;如果不全为奇数的话,其积为偶数。

答:这五个自然数的积是奇数或偶数。

7)若a是质数,b是合数,试写出一个合数(用a,b表示)。

【质数与合数】答:ab为合数。

8)1,3,8,23,229,2015的和是奇数还是偶数【奇偶数】其中有5个奇数,所以和为奇数。

答:和是奇数。

9)有两个自然数,它们的最大公约数是14,最小公倍数是210,问:这样的自然数有多少组【最大公约数与最小公倍数】210=14×1×3×514,210; 42,70答:这样的自然数有两组。

10)由2,0,1,1可以组成多少个读法中只有一个“1”的两位小数【数的读法】十位的1可以读作十,把1放在十位就可以了。

所以共有6个,它们是:;; ; ; ;11)若10个不同整数的和为一个偶数,且偶数比奇数多,则偶数最少有多少个【奇偶数】偶数个奇数的和是偶数,偶数与偶数的和是偶数,所以奇数最多有4个,偶数最少有6个。

12)根据表中的x,y的对应规律,求A的值。

【找规律】观察得:y=2×x-1;所以,A=1313)10010÷99的余数是多少。

【找规律】100÷99=1...1; 10000÷99=101 (1)所以,余数是1另: 10010÷99=(99+1)10÷99,结果余1。

14)有四个数,其中的每一个数与另外三个数的平均数的和分别为19,90,20,15,求原来四个数的平均数。

【平均数】设这四个数为A,B,C,D。

A+(B+C+D)÷3=19,即3A+B+C+D=57;同样,A+3B+C+D=270;A+B+3C+D=60;A+B+C+3D=45四个式子相加得,6A+6B+6C+6D=432这四个数的平均数为:(A+B+C+D)÷4=18答:原来四个数的平均数为18。

15)÷2015的余数是多少。

【求余】÷2015=(20) ÷2015=(20+74) ÷2015答:余数是74。

16)有一列数3、4、2、8、…,从第三个数起,每个数都是它前面两个数乘积的个位数字,求这列数的第150个数。

【找规律】3,4,(12)2,8,(16)6,(48)8,(48)8,(64)4,(32)2,8,…规律是:4 2 8 6 8 8(150-1)÷6=24 (5)所以第150个数是8。

17)若四位数3a50能同时被2、3、5整除,则a有多少个不同的值【整除】一个数能被2整除,则个位是偶数;一个数能被5整除,则个位是0或5;一个数能被3整除,各位之和能被3整除;显然这个数能被2和5整除,要能被3整除,a有10/3=3个不同的值,它们分别是:1,4,7。

18)如果a,b都是质数,并且3a+7b=47,求a+b。

【质数与合数】两个数的和是奇数,则必定是一个奇数与一个偶数的和。

所以a,b中有一个是2。

a=2时,7b=41,不可能;b=2时, 3a=33, a=11,可以a+b=1319) 将2017人分成若干组,要求任意两个组的人数都不相同,问:这些人之多可以分成多少组【数列】分组越多,每组的数越少,但又不同。

1+2+…+63=(1+63)×64÷2=2048>2017 1+2+…+62=(1+62)×62÷2=1953<2017 所以最多分63组。

20) 规定:a △b=a ×(a+b),求(2△3)△4 【定义新运算】(2△3)=2×(2+3)=10 (2△3)△4=10△4=10×(10+4)=140 21) 规定:bc ad db c a -= ,ba b a b a +-=⊗,求632 1 4⊗。

【定义新运算】解:632 1 4⊗=(4×3-1×2) 6⊗=41610610=+-22) 已知12个数的平均数是10,将其中一个改成它的一半后,这12个数的平均数变成8,求被改变的数。

【平均数】(12×10-12×8)×2=4823) 在四位数2015的后面添一位数,使这个五位数能被7整除,则加上的这个数是多少【整除】20150÷7=2878…4 20153能被7整除.24) 图1中有多少个三角形图1ABCDO 图2【数图形】基本图形有16个;4个基本图形构成的三角形有,上6下1; 9个基本图形构成的三角形有,上3下0; 16个基本图形构成的三角形有,上1 共有:16+6+1+3+1=27个25) 如图2,已知O 为直线AB 上一点,经过O 点作射线OC 和OD ,且OD 平分∠BOC ,问:互补的角(度数之和为180°的两个角)有几对【数图形】∠BOD=∠DOC ,共有3对,它们是: ∠BOD 与∠DOA ;∠AOD 与∠DOC ;∠AOC 与∠BOC26) ab ,cd 分别代表一个两位数,若ab +cd =179,求d c b a +++。

【整数计算】b+d 个位是9,不可能进位,所以a+c=17 A+b+c+d=17+9=2627) 冬季的某日,海南的温度是3/20℃,北京的温度是-2/8℃,问:这一天,海南的最高气温比北京的最低气温高多少度【整数计算】20-(-2)=2228) 哥哥和妹妹共有50支铅笔,哥哥给妹妹7支后,两人的铅笔支数一样多,问:哥哥原来有多少支铅笔【整数计算】哥哥比妹妹多2×7=17支 哥哥原有:50÷2+14=39(支)29) 有48个糖果,第一个小朋友拿了x 个,第二个小朋友拿了x 2个,第三个小朋友拿了x 3个,还剩下(13+x )个,求x 的值。

【简易议程】x+2x+3x+(13+x)=48 7x=35 x=530) 将一堆桔子分给小朋友,若每人6个,则剩5个。

若每人8个,则还差3个。

问:有多少个小朋友【和差倍问题】(5+3)÷(8-6)=4 答:有4个小朋友。

31) 每个容器可以装1.5千克的水,将17千克的水装在这样的容器里,问:至少需要多少个这样的容器【倍数问题】17÷=11… 11+1=12答:至少需要12个这样的容器。

32) 甲、乙两个茶杯中分别装有60克和36克的水。

若在第一个茶杯中加盐5克,则在第二个茶杯中加盐多少克,可使两个茶杯中的盐水一样咸【浓度问题】第1个杯子中,水与盐的倍数关系,60÷5=12要使两杯一样咸,第2个杯子中,水与盐的倍数关系也应该是12 第2杯中应加盐:36÷12=3(克) 答:第2杯中加3克盐。

33) 如图3是由同样的小正方体组成的几何体的俯视图和左视图,问:这个几何体中最多有多少个小正方体俯视图左视图图3【视图】左视图可以看到几何体最高二层;从俯视图看有12个位置上放有正方体 所以最多有:12×2=24个。

..图4PMQO34) 如图4,点M 在圆O 上,P ,Q 两点同时从M 出发,分别按逆时针、顺时针方向沿圆周运动,速度分别为0.5米/秒、1米/秒,6秒后相遇,求圆周的长。

【相遇问题】6×+1)=9 答:圆周长9米。

35) 一辆长200米的火车以每分钟2千米的速度穿过一条长3千米的隧道,问:需要多少分钟【火车过桥(隧道)问题】200米=0.2千米(3+)÷2=(分钟)答:需要分钟。

36)一次数学竞赛中,8名同学的平均成绩是82分,其中小王的成绩是96分,求其他7名同学的平均成绩。

【平均数问题】总分:8×82=656(分)其他7名同学总分:656-96=560(分)560÷7=80(分)答:其他7位同学的平均成绩是80分。

37)一只虫子沿着一根7cm长的木棒向上爬,每向上爬3cm,就下退1cm,若虫子的速度是每分钟1cm,则虫子要多少分钟首次爬到木棒顶端【虫子爬杆、青蛙爬井问题】7-3=4(cm)4÷(3-1)=2(次)(3+1)×2+3=11(cm)11÷1=11(分钟)答:虫子要11分钟首次爬到木棒顶端。

38)某商店规定三个牛奶瓶可以换一瓶牛奶,现在小明有8个空瓶(可以借空瓶子,但必须归还),问:他最后能喝到几瓶牛奶【虫子爬杆、青蛙爬井问题】8+1=9,小明借了一个空瓶子9÷3=33÷3=1,小明还回空瓶子4+1=4答:最后能喝到4瓶牛奶。

39)小红从家步行到学校。

如果每分钟走120米,则早到5分钟;如果每分钟走90米,则迟到3分钟,问:小红家离学校多少米【和差倍问题】5+3=8(分钟)8×90=720(米)120-90=30(米/分钟)720÷30=24(分钟)24×120=2880(米)答:小红家离党校880米。

40)由多于45人而少于55人的学生围成一个圆圈,从某人开始连续报数,如报“55”和“205”的是同一个人,则这个圆圈有多少人【和差倍问题】“55”到“205”5共经历的205-55+1=151人“55”和“205”的是同一个人,那么之间有150人150=50×345<50<55答:这圈共有50人。

41)有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再将这个小数与原四位数相减,得数是,求这个四位数。

【和差倍问题】差是两位小数,说明小数点加在百位之后,小数比原数缩小100倍÷(100-1)=×100=2645答:这个四位数是2645。

相关文档
最新文档