ansys有限元案例分析实施报告

合集下载

ANSYS有限元分析报告

ANSYS有限元分析报告

1、三维托架实体受力分析三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。

托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。

1.1、定义单元及材料1、新建单元类型运行主菜单Preproccssor—ElementType—Add/Edit/Delete命令,接着在对话框中单击“Add”按钮新建单元类型。

2、定义单元类型先选择单元形式为Strucral Mass Solid,在右边的滚动框中单击“Brick 8node 185”,然后确定,完成单元类型选择。

3、设置材料属性执行Main Menu/Preproccssor/Material/Props/ Material Models命令,将弹出Define MaterialModel Behavior的对话框。

依次双击Structural,Linear,Elastic,和Isotropic,将弹出1号材料的弹性模量EX和泊松比PRXY的定义对话框。

在EX文本框中输入2.9E7,PRXY文本框中输入0.3.定义材料的弹性模量为2.9E7,泊松比为0.3,单击“OK”按钮,关闭对话框。

完成对材料模量的定义。

1.2、创建几何模型1、生成托架执行Main Menu/Preproccssor/Modeling/Create/Areas/Rectangle/By Dimensions创建剖面,在由面生成体,最后生成三角托架.2、生成两个小圆孔执行执行Main Menu/Preproccssor/Modeling/Create/Areas/Circle/Soild Circle命令,在弹出的对话框中填入圆心位置、半径、高度,确认生成。

3、执行面相减操作执行Main Menu/Preproccssor/Modeling/Operate/Booleans/Subtract/Aeras命令,弹出拾取框。

ansys有限元分析案例

ansys有限元分析案例

ansys有限元分析案例ANSYS有限元分析案例。

在工程设计和分析领域,有限元分析是一种常用的数值模拟方法,它可以有效地预测结构在受力作用下的变形和应力分布。

而ANSYS作为目前应用最为广泛的有限元分析软件之一,具有强大的建模和仿真功能,被广泛用于航空航天、汽车、船舶、建筑等领域。

本文将通过一个实际案例,介绍如何使用ANSYS进行有限元分析。

案例背景:某工程结构在实际使用过程中出现了裂纹现象,为了找出裂纹的成因并进行有效的修复措施,我们决定利用ANSYS进行有限元分析。

首先,我们需要建立结构的有限元模型,然后施加相应的载荷和边界条件,最终得出结构的应力分布和变形情况,从而找出裂纹的位置和原因。

建立有限元模型:首先,我们需要将结构进行几何建模,并进行网格划分,将结构划分为有限元单元。

在建立模型的过程中,需要考虑到结构的几何形状、材料属性以及实际工况下的载荷和边界条件。

在ANSYS中,可以通过几何建模模块进行结构建模,然后选择合适的单元类型和网格划分方法,对结构进行离散化处理。

施加载荷和边界条件:在建立完有限元模型之后,我们需要定义结构的加载情况,包括静载荷、动载荷、温度载荷等。

同时,还需要定义结构的边界条件,如约束条件、支撑条件等。

这些载荷和边界条件的设置需要符合实际工况,并且需要考虑到结构的非线性、材料的非均质性等因素。

进行仿真分析:一切准备就绪后,我们可以进行仿真分析,通过ANSYS求解器对结构进行有限元分析。

在仿真分析过程中,ANSYS会根据定义的载荷和边界条件,对结构进行求解,并得出结构的应力分布、位移和变形情况。

通过对仿真结果的分析,可以找出结构中的弱点和故障部位,为后续的修复工作提供参考依据。

结果分析与修复措施:最后,我们需要对仿真结果进行深入分析,找出裂纹的具体位置和成因。

根据分析结果,可以制定针对性的修复措施,如增加加强筋、更换材料、改变结构设计等。

通过对仿真结果的分析,可以有效地指导后续的结构修复工作,并提高结构的安全性和可靠性。

ansys有限元分析报告02

ansys有限元分析报告02
分析2:平面钢板受力分析
姓名: 班级:10 机制二班 学号:1038
1、概述
图示为一个 130mm×200mm×15mm 的钢制平板,钢板上沿板的中 心线钻出三个孔(半径 12mm),钢板底部已施加约束,钢板顶 边受 300N/mm 均布拉力。忽略重力影响。材料属性:杨氏模量: 190GPa;泊松比:0.3 求:钢板的应力分布情况及变形情况(提 示可参看课本第三章实例,可采用 Plane82 单元模拟;也可三维 建模采用 Solid45 实体单元模拟,注意单位制! )
0.113e9 N。 最大应力在图中红色区域,最大应力为 最大应力在图中红色区域,最大应力为0.113e9 0.113e9N
单元类型。再修改单元类型选项(options)
� Main Menu>Preprocessor>Material Models 定义材料属性
� Main Menu>Preprocessor>Real Constants 定义的截面的厚度。
� Main Menu>Preprocessor>Mesh>MeshTool 直接用 meshtool 对模型进行自由 网格划分
0. 255 e8m 最大变形在图中红色区域,最大变形为 最大变形在图中红色区域,最大变形为0. 0.255 255ee-8 � 应力云图
Main Menu>General Posproc>Plot Results>Contour Plot>Nodal Solu 弹出对话框选择Stess>von Mises stress获取下图
� 将模型底边自由度完全约束;
Байду номын сангаас
� 顶部边加载 F = -300000 N/M

ansys实验报告

ansys实验报告

ansys实验报告ANSYS实验报告一、引言ANSYS是一款广泛应用于工程领域的有限元分析软件,它能够模拟和分析各种结构和物理现象。

本实验旨在通过使用ANSYS软件,对一个具体的工程问题进行模拟和分析,以探究其性能和行为。

二、实验目的本次实验的主要目的是通过ANSYS软件对一个简单的悬臂梁进行分析,研究其在不同加载条件下的应力和变形情况,并进一步了解悬臂梁的力学行为。

三、实验步骤1. 准备工作:安装并启动ANSYS软件,并导入悬臂梁的几何模型。

2. 材料定义:选择适当的材料,并设置其力学性质,如弹性模量和泊松比。

3. 约束条件:定义悬臂梁的边界条件,包括支撑点和加载点。

4. 加载条件:施加适当的力或压力到加载点,模拟实际工程中的加载情况。

5. 分析模型:选择适当的分析方法,如静力学分析或模态分析,对悬臂梁进行计算。

6. 结果分析:根据计算结果,分析悬臂梁在不同加载条件下的应力和变形情况,并进行比较和讨论。

四、实验结果经过计算和分析,我们得到了悬臂梁在不同加载条件下的应力和变形情况。

在静力学分析中,我们观察到加载点附近的应力集中现象,并且应力随着加载的增加而增大。

在模态分析中,我们研究了悬臂梁的固有频率和振型,并发现了一些共振现象。

五、讨论与分析根据实验结果,我们可以得出一些结论和讨论。

首先,悬臂梁在加载点附近容易发生应力集中,这可能导致结构的破坏和失效。

因此,在实际工程中,我们需要采取适当的措施来减轻应力集中的影响,如增加结构的刚度或改变加载方式。

其次,悬臂梁的固有频率和振型对结构的稳定性和动态响应有重要影响。

通过模态分析,我们可以确定悬臂梁的主要振动模态,并根据需要进行结构优化。

六、结论通过本次实验,我们成功地使用ANSYS软件对一个悬臂梁进行了模拟和分析。

通过对悬臂梁的应力和变形情况的研究,我们深入了解了悬臂梁的力学行为,并得出了一些有价值的结论和讨论。

在实际工程中,这些研究结果可以为设计和优化结构提供参考和指导。

ansys有限元分析报告

ansys有限元分析报告

ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。

ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。

本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。

2. 步骤2.1 确定分析目标首先要确定分析的目标。

这可以是结构的强度分析、振动分析、热传导分析等。

根据目标的不同,还需确定所需的加载条件和边界条件。

2.2 几何建模在进行有限元分析之前,需要进行几何建模。

在ANSYS中,可以使用几何建模工具创建和编辑结构模型。

这包括定义几何形状、尺寸和位置等。

2.3 网格划分网格划分是有限元分析的关键步骤。

通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。

在ANSYS中,可以使用网格划分工具进行自动或手动划分。

2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。

这包括弹性模量、泊松比、密度等。

ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。

2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。

加载条件可以是力、压力、温度等。

边界条件可以是支撑、固定或自由。

2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。

ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。

一旦求解完成,可以进行结果分析,包括位移、应力、应变等。

2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。

可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。

完成验证后,可以进行后处理,生成报告或结果图表。

3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。

3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。

ansys实验强度分析报告

ansys实验强度分析报告

ansys有限元强度分析一、实验目的1 熟悉有限元分析的基本原理和基本方法;2 掌握有限元软件ANSYS的基本操作;3 对有限元分析结果进行正确评价。

二、实验原理利用ANSYS进行有限元静力学分析三、实验仪器设备1 安装windows XP的微机;2 ANSYS11.0软件。

四、实验内容与步骤1 熟悉ANSYS的界面和分析步骤;2 掌握ANSYS前处理方法,包括三维建模、单元设置、网格划分和约束设置;3掌握ANSYS求解和后处理的一般方法;4 实际应用ANSYS软件对六方孔螺钉头用扳手进行有限元分析。

五、实验报告1)以扳手零件为例,叙述有限元的分析步骤;答:(1)选取单元类型为92号;(2)定义材料属性,弹性模量和泊松比;建立模型。

先生成一个边长为0.0058的六边形平面,再创建三条线,其中z向长度为0.19,x向长度0.075,中间一段0.01的圆弧,然后把面沿着三条线方向拉伸,生成三维实体1如题中所给形状,只是手柄短了0.01;把坐标系沿z轴方向平移0.01,再重复作六边形面,拉伸成沿z轴相反方向的长为0.01的实体2;利用布尔运算处理把实体1和2粘接成整体。

(4)划分网格。

利用智能网格划分工具划分网格,网格等级为4级。

(5)施加约束。

在扳手底部面上施加完全约束;(6)施加作用力。

在实体2的上部面上施加344828pa(20/(0.01*0.0058))的压强,在实体2的下部面的临面上施加1724138pa(100/0.01/0.0058)的压强;(7)求解,进入后处理器查看求解结果,显示应力图。

2)对扳手零件有限元分析结果进行评价;答:结果如图所示:正确的显示出了受力的最大位置及变形量,同时给出了各处受力的值,分析结果基本正确,具有一定的参考意义。

六、回答下列思考题1.什么是CAE技术?答:CAE是包括产品设计、工程分析、数据管理、试验、仿真和制造的一个综合过程,关键是在三维实体建模的基础上,从产品的设计阶段开始,按实际条件进行仿真和结构分析,按性能要求进行设计和综合评价,以便从多个方案中选择最佳方案,或者直接进行设计优化。

利用有限元软件ANSYS进行车窗玻璃隔声特性的有限元分析的研究报告

利用有限元软件ANSYS进行车窗玻璃隔声特性的有限元分析的研究报告

利用有限元软件ANSYS进行车窗玻璃隔声特性的有限元分析的研究报告本文利用ANSYS有限元软件,对车窗玻璃隔声特性进行有限元分析研究。

首先,我们建立了车窗玻璃模型,并进行了网格划分。

然后,在模型中加入声学边界条件,模拟汽车行驶时的噪声环境。

最后,我们对模型进行了模拟分析,得出了车窗玻璃的隔声特性。

在建立模型时,我们采用了正四面体网格划分方法,使得模型的几何结构更加精细。

在进行模拟分析时,我们首先进行了模态分析,得出了车窗玻璃的固有频率和振型。

然后,在考虑到汽车行驶时复杂的噪声环境下,我们采用了声学边界条件,模拟了车内噪声的传递和隔离。

通过模拟分析,我们得到了车窗玻璃的隔声特性。

我们发现,在某些频率段内,车窗玻璃的隔声效果很好,可以有效地隔绝汽车行驶时的噪声。

然而,在其他频率段内,车窗玻璃的隔声效果不佳,需要进一步的改进和优化。

此外,我们还发现,车窗玻璃的厚度和材料对隔声效果具有重要影响。

随着玻璃厚度的增加,车窗玻璃的隔声效果显著提高。

综上所述,本文利用ANSYS有限元软件进行了车窗玻璃隔声特性的有限元分析研究。

通过模拟分析,我们得到了车窗玻璃的隔声特性,并发现了影响隔声效果的一些关键因素。

这些研究成果可以为车窗玻璃的设计和优化提供重要参考。

在本研究中,我们利用ANSYS有限元软件进行了车窗玻璃隔声特性的有限元分析研究,得出了车窗玻璃的隔声特性。

下面将对相关数据进行分析。

首先,我们对模型进行了模态分析,得出了车窗玻璃的固有频率和振型。

通过模态分析,我们得出车窗玻璃的前三个固有频率为196.8 Hz、262.5 Hz和428.2 Hz。

这些固有频率是车窗玻璃的自然振动频率,是车窗玻璃的重要机械特性参数。

其次,在考虑到汽车行驶时的噪声环境下,我们采用了声学边界条件,模拟了车内噪声的传递和隔离。

通过模拟分析,我们得到了车窗玻璃在不同频率段内的隔声效果。

例如,在250Hz左右的频率段内,车窗玻璃的隔声效果最好,可以隔绝超过15 dB的噪声。

基于ANSYS软件对受压水管疲劳的有限元分析报告

基于ANSYS软件对受压水管疲劳的有限元分析报告

基于ANSYS软件对受压水管疲劳的有限元分析报告一、概述本次大作业主要利用ANSYS软件对水管的疲劳进行分析,计算出水管的最大寿命。

然后与实际情况进行比较,证明分析的正确性,从而为水管的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。

二、问题分析日常生活中经常遇到水管破裂的问题,有的因为受冻破裂,有的因为水压过大,也有的受到水压不停冲击产生的疲劳破坏。

如下图示为参考模型,自行定义尺寸,建立水管模型,施加水压0.1MPa,分析在该水压下,水管能承受多少次冲击。

假设水管两端固定图1 水管三、有限元建模寿命分析之前需要进行强度分析,在Windows“开始”菜单中执行ANSYS—Workbench 命令。

创建项目A,进行静力学分析,双击左侧的static structure即可图 2 强度分析项目如图 3所示,常用的水管为PE管,其弹性模量为2GPa,泊松比为0.39图 3 材料定义双击Geometry进入几何模型建立模块,进行几何建模。

如图所示为二通接头,水管采用面体建模,首先建立其中一根水管,直径为30mm,长度为0.5m,如下所示三通的外径要略大于水管,直径为32.5mm,在水管端部建立圆草绘面,拉伸成二通接头的模型,如下所示同理建立,建立另一侧水管,最终模型如下所进入Workbench进行材料设置,并进行网格划分,设置网格尺寸为2mm,最终有限元网格模型如下图所示:图7 网格设置图8 网格模型模拟实际情况,两端面固定,水管右端施加0.1MPa载荷,如下图所示图9 载荷约束四、有限元计算结果(1)位移变化,如图12所示,结果最大变形为0.001mm,图12 位移云图(2)等效应力计算结果,如图3所示,最大等效应力为15.467MPa图13 等效应力云图添加Fatigue tool进行疲劳分析,Fatigue设置如下寿命云图如下所示,应力最大区域,寿命最小,该水管最多可以使用1.4e5次,此后便会发生裂纹破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS有限元案例分析报告
ANSYS 分析报告
一、 ANSYS 简介:
ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一的美国ANSYS 开发,它能与多数CAD 软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, AutoCAD 等, 是现代产品设计中的高级CAE 工具之一。

本实验我们用的是ANSYS14.0软件。

二、 分析模型:
具体如下:
如图所示,L/B=10,a= 0.2B , b= (0.5-2)a ,比较 b 的变化对 最大应力 x 的影响。

三、 模型分析:
该问题是平板受力后的应力分析问题。

我们通过使用ANSYS 软件求解,首先要建立上图所示的平面模型,然后在平板一段施加位移约束,另一端施加载荷,最后求解模型,用图形显示,即可得到实验结果。

L
四、ANSYS求解:
求解过程以b=0.5a=0.02为例:
1.建立工作平面,X-Y平面画长方形,L=1,B=0.1,a=0.02,b=0.5a=0.01;(操作流程:preprocessor→modeling→create→areas→rectangle)
2.根据椭圆方程,利用描点法画椭圆曲线,为了方便的获得更多的椭圆上的点,我们利用C++程序进行编程。

程序语句如下:
运行结果如下:
本问题(b=0.5a=0.01)中,x在[0,0.02]上每隔0.002取一个点,y值对应于第一行结果。

由点坐标可以画出这11个点,用reflect
命令关于y轴对称,然后一次光滑连接这21个点,再用直线连接两个端点,便得到封闭的半椭圆曲线。

(操作流程:create→keypoints →on active CS→依次输入椭圆上各点坐标位置→reflect→create →splines through keypoints→creat→lines→得到封闭曲线)。

3.由所得半椭圆曲线,生成半椭圆面。

用reflect命令关于x轴对称(操作流程:create→areas by lines→reflect→得到两个对称的半椭圆面)。

4.用substract命令,将两个半椭圆面从长方形板上剪去(操作流程:preprocessor→modeling→create→Booleans→substract→areas.)。

5.定义单元类型和材料属性(preprocessor→element type→add→选solid Quad 4nodes 42,material props→material models→structural→liner→Elastic→isotropic→E=200GPa,μ=0.3)。

5.长板左端施加位移约束,右端施加载荷约束(preprocessor→loads →define loads→apply→structural→displacement(左
边),pressure(右边))。

6.用meshing命令划分单元(meshing→meshtool选mesh→pick all →生成单元)。

7.在solution命令下,选好求解方式后求解(Analysis type→new analysis→static →sol’n controls→pre-condition CG)。

8.在后处理中读取结果(General postproc→read results→first set)。

9.选择plot菜单,显示变形图和应力图。


plotctrl-style-counter-uniform菜单下,可以细分并显示出应力较大的区段(plot→results→deformed shape看变形,contour plot 看应力,选stress,x方向)。

对于每个b值下的椭圆模型,都可按照上述过程进行求解。

b依次取0.5a,0.75a,1.0a,1.25a,1.50a,1.75a,2.00a.
五、结果分析:
1.b=0.5a:
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
2.b=0.75a
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
3.b=a:
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
4.b=1.25a (1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
5.b=1.5a
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
6.b=1.75a
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
7.b=2a
(1)变形图:
(2)X方向应力图(整体):
(3)应力的局部放大图:
根据所得结果,用描点法作出(b/a)-σxmax图像。

用Matlab编程如下:
x(1:7)=[0.5 0.75 1.0 1.25 1.5 1.75 2.0];
y(1:7)=[191.573 242.693 281.89 334.452 390.606 536.279 648.126] ;
plot(x,y)
程序运行结果如下:
分析以上结果可得:
(1)σx的最大值分布在椭圆在y轴上的顶点处,即出现应力集中现象;
(2)σxmax随着(b/a)的增大而增大。

出现以上结果的原因:
(1)本题施加的是均匀载荷,静态分析,应力σ=F/A,由此可得,在x=0处横截面积A最小,应力σ最大,于结果(1)一致;(2)当(b/a)增大时,x=0处的曲率增大,截面积A进一步减小,σxmax增大,与结果(2)一致。

七、心得体会:
1.本次ANSYS案例分析,让我们熟悉了ANSYS软件的基本操作,对
有限元分析的思想方法也有了初步的理解。

我们在试验过程中遇到的问题有:
(1)在施加载荷和位移约束之前,必须先定义单元,平板左边的位移约束应该施加双向(x和y方向)约束才能保证后面的求解顺利,同时载荷约束应该施加pressure;
(2)划分单元之后需选择正确的求解方式,求解结束之后需进行相关后处理。

(3)可以对最大围的主应力进行详细划分,然后显示图形。

即为
应力的局部放大图。

2.本次试验中运用了材料力学的理论知识对实际问题进行分析,加
强了我们对课本知识的掌握。

3.本次ANSYS试验我们组及时向老师答疑解惑,得到了老师的及时
解惑;小组配合默契,有问题相互讨论,在共同努力下问题得以解决。

对于我们,以后的学习还应多多加强交流,取长补短,相互借鉴。

相关文档
最新文档