半导体器件基本原理(1)

合集下载

半导体的基本原理与应用

半导体的基本原理与应用

半导体的基本原理与应用在现代科技领域中,半导体技术作为一种重要的技术手段,广泛应用于电子设备、通信领域、光电子学等众多领域。

本文将介绍半导体的基本原理以及其在各个应用领域的应用。

一、半导体的基本原理半导体是介于导体和绝缘体之间的材料,其电导率介于两者之间。

半导体的电导率可以被外界环境或电磁场的改变所调控,具有可控性很强的特点。

半导体的基本原理有以下几个方面:1. 带隙:半导体的带隙是指能带中能量最高的不可占用能级与能带中能量最低的可占用能级之间的能量间隔。

半导体的带隙决定了其导电性质,一般分为直接带隙和间接带隙两种。

2. 杂质掺杂:半导体通过在其晶体结构中引入少量杂质,掺入一些外来的原子,从而改变其导电性能。

掺杂可以分为施主型掺杂和受主型掺杂两种,分别提高或降低材料的导电性能。

3. PN结:PN结是半导体器件中常见的结构,由两种掺杂类型不同的半导体材料接触而成。

PN结具有单向导电性,形成了半导体器件中重要的基础元件。

二、半导体的应用领域1. 电子设备:半导体技术在电子器件领域中有着广泛应用。

如晶体管、场效应管、二极管等都是基于半导体的器件,广泛应用于计算机、电视、手机等电子设备中。

半导体的小尺寸、低功耗以及高可靠性是其在电子设备中应用的重要原因。

2. 光电子学:半导体材料在光电转换中有着重要作用。

通过对半导体材料施加电场或光照,可以将电能转换为光能,实现光电转换效应。

例如,太阳能电池就是利用半导体材料将光能转化为电能的典型应用。

3. 通信领域:半导体技术在通信领域中发挥着至关重要的作用。

光纤通信系统利用半导体激光器将信号转换为光脉冲,并通过光纤传输实现远距离高速通信。

半导体材料的选择和应用直接影响通信系统的传输性能和稳定性。

4. 工业自动化:半导体器件在工业自动化领域中被广泛应用。

通过应用半导体材料制作的传感器、控制器等设备,可以实现对工业过程的实时监测和自动控制,提高生产效率和产品质量。

5. 医疗科技:半导体技术在医疗科技领域也有重要应用。

半导体器件的原理和应用

半导体器件的原理和应用

半导体器件的原理和应用近年来,随着信息技术的飞速发展,半导体器件逐渐成为支撑现代社会的重要组成部分。

从智能手机到电子游戏机,从电脑到工业自动化,半导体器件的应用范围越来越广泛,其快速的发展也为人们的生活带来了极大的便利。

半导体器件的原理半导体器件是一种能够控制电流的电子元器件,它们的原理基于半导体物理学。

半导体物理学的核心是固体中电子和空穴的扩散,其基本原理和经典电动力学不同。

在半导体中,电子和空穴处于不同的能级上,而且互相之间也会发生相互作用。

这使得电子和空穴在半导体中无法像在金属中那样自由运动。

半导体器件通过控制这些电子和空穴的行为来控制电流的流动。

具体而言,半导体器件可以通过引入掺杂(即将另一种物质添加到半导体中)来改变半导体中电子和空穴的数量和能级分布,以及控制半导体的电阻和导电性。

此外,半导体器件中常常还包含了能够在电场或电压下工作的微小电容器和微型电感器等,并通过将它们与控制晶体管相结合,从而实现了电子设备中的各种功能。

半导体器件的应用半导体器件在通信、信息处理、能源、军事、航天、工业控制等领域发挥着深远的影响。

下面我们将分别介绍几种常见的半导体器件及其应用:1. 整流器整流器是一种将交流电(AC)变成直流电(DC)的装置,其原理是利用半导体器件的电流单向导电特性。

整流器广泛应用于电源、无线电、反向深度充电等领域。

2. 逆变器逆变器是一种将直流电转换成交流电的器件,广泛应用于交流电动驱动器、升压电源、电网与太阳能等电力系统。

3. 晶体管晶体管是半导体器件中最重要的器件之一,它是从真空管器件机械框架中发展出来的。

晶体管的应用范围非常广泛,包括各种计算机、音频设备、消费类电器和通信设备,以及电子储存器等领域。

此外,晶体管还被广泛地用于模拟电路和数字电路中。

4. 光电器件光电器件使用半导体材料的光电效应来将光信号转换为电信号或将电信号转换为光信号。

光电器件包括光电二极管、光敏电阻、光电晶体管和光伏电池等,广泛应用于光通信、光电子计算、显示器和太阳能电池等领域。

半导体物理与器件的基本原理解析

半导体物理与器件的基本原理解析

半导体物理与器件的基本原理解析半导体是一种能够在一定条件下既能导电又能绝缘的物质,因其在电子学领域的广泛应用而备受关注。

本文将对半导体物理及器件的基本原理进行解析,为读者提供更全面的了解。

一、半导体物理基础1. 原子结构半导体是由原子构成的,涉及到原子的结构和性质非常重要。

原子包含了原子核和绕核运动的电子。

每个原子都有自己的特定电子结构和能级分布。

2. 能带理论能带理论是解释电子在固体中运动的模型。

根据能带理论,固体的电子能级可以分为多个能带,其中最高填充的被称为价带,最低未被填充的被称为导带。

价带与导带之间的能量间隙称为禁带宽度。

3. 共价键与禁带在半导体中,原子通过共价键形成晶体。

共价键是由原子之间的电子互相共享形成的。

晶体中的共价键形成了价带,而禁带宽度是导带和价带之间的能隙。

二、半导体器件原理解析1. P-N 结P-N 结是最基本也是最重要的半导体器件。

它由一片N型半导体和一片P型半导体组成。

在P-N 结中,P型半导体中的空穴与N型半导体中的电子发生重组,产生了一个空穴-电子对。

这种特殊的结构和电子重组现象使得P-N 结具有二极管特性。

2. 二极管二极管是一种基本半导体器件,它由P-N 结组成。

二极管具有一个P型区域和一个N型区域,其中P型区域为阳极,N型区域为阴极。

正向偏置时,电流可以流过二极管;反向偏置时,电流无法通过二极管。

3. 晶体管晶体管是一种用来放大和开关电信号的半导体器件。

它由三个区域构成:发射极(Emitter)、基极(Base)和集电极(Collector)。

晶体管的工作原理是通过外加电压控制基区的电流,从而控制集电极和发射极之间的电流流动。

4. MOSFETMOSFET(金属-氧化物-半导体场效应晶体管)是一种常见的半导体器件,用于放大和开关电信号。

MOSFET由金属栅极、绝缘层和半导体通道构成。

通过改变栅极电压,可以控制通道中的电流。

5. 整流器整流器是一种将交流电转换为直流电的设备。

半导体的工作原理

半导体的工作原理

半导体的工作原理半导体是一种材料,其工作原理基于其特殊的电子能级结构和导电性质。

半导体的原子结构类似于晶体结构,但其电子能级分布具有较小的能隙。

在纯净的半导体中,其电子能级被填满,带电的电子与正电荷的原子核相互吸引而保持稳定。

当外部某种条件影响下,例如施加电场或加热,半导体中的电子将被激发,跃迁到较高的能级或离开原子。

半导体中的电子行为可通过以下两种方式解释:1. 带电的电子:当半导体中的某些原子减少了电子,就会出现阳离子空穴(空位)。

这些空穴可以看作带正电的“粒子”,并具有与电子相反的电荷。

空穴在半导体中以一种类似于正电子的方式运动,可以传导电流。

2. 杂质的掺入:半导体中添加一些杂质原子,可以改变其导电性质。

通过掺入杂质,半导体的电子能级结构发生变化,形成额外的能级,称为“杂质能级”。

这些额外的能级可用于电子的传导,从而增加了半导体的导电能力。

根据杂质的种类和掺入量的不同,半导体可以分为N型半导体和P型半导体。

在一个典型的半导体器件中,如二极管或晶体管,N型半导体与P型半导体相接触形成PN结。

PN结的形成会导致电子在P区向N区的扩散,而空穴则从N区向P区扩散。

当电子和空穴相遇后,它们将发生再结合,这导致了PN结的两侧形成空间电荷区域。

这个空间电荷区域在无外部电压作用下阻止了电流的流动。

通过施加外部电压,可以改变PN结的导电行为。

当外部电压为正极性时,即P区连接正电压,N区连接负电压,电子和空穴被推向PN结,形成电流。

这种情况下,PN结被认为是“正向偏置”的。

相反,当外部电压为负极性时,即P区连接负电压,N区连接正电压,电子和空穴被推开,电流无法通过PN 结。

这种情况下,PN结被认为是“反向偏置”的。

半导体器件的工作原理基于电子和空穴在半导体中的运动和再结合行为。

通过控制材料的特性、杂质的掺入和外部电压的施加,可以实现不同类型的半导体器件,如二极管、晶体管等,以实现各种电子功能。

半导体工作原理

半导体工作原理

半导体工作原理半导体是一种具有特殊导电性质的物质,其工作原理是通过控制电子在晶体内的运动来实现电流的流动和信号的传输。

本文将从半导体的基本结构、载流子的行为、PN结的作用以及半导体器件的应用等方面来详细介绍半导体的工作原理。

一、半导体的基本结构半导体的基本结构是由正负离子构成的晶体,其中正离子称为“空穴”,负离子称为“电子”。

半导体的原子排列非常有序,形成了一个晶体结构,使得半导体具有特殊的电学性质。

半导体可以分为P型半导体和N型半导体。

P型半导体中,掺杂了少量的三价杂质原子(如硼、铝等),使得半导体中原本的四价原子失去一个电子,形成一个空穴。

因此,P型半导体中的主要载流子是空穴。

N型半导体中,掺杂了少量的五价杂质原子(如磷、锑等),使得半导体中多出一个电子。

因此,N型半导体中的主要载流子是电子。

二、载流子的行为在半导体中,载流子的行为直接决定了电流的流动方式和特性。

当半导体中没有外加电压时,P型半导体中的空穴和N型半导体中的电子会通过热运动发生扩散,从而形成电荷分布不均匀的区域。

这个区域称为PN结。

当在PN结上加上正向偏压时,P型半导体的空穴会向前推进,N 型半导体的电子会向后推进,两种载流子在PN结区域相互结合,形成一个电子和空穴的复合区域,这个区域称为耗尽层。

在耗尽层内,电子和空穴复合并释放出能量,形成一个电场,阻碍进一步的电子和空穴的扩散。

当在PN结上加上反向偏压时,P型半导体的空穴会被引向N型半导体,N型半导体的电子会被引向P型半导体。

这样,PN结两侧的载流子会被电场阻止,形成一个无法通过的屏障,这个屏障称为势垒。

三、PN结的作用PN结是半导体器件中最基本的结构,具有重要的作用。

在二极管中,PN结的作用是实现电流的单向导通。

当二极管的正向偏压大于势垒电压时,电子和空穴能够克服势垒,通过PN结,形成电流的流动。

而当二极管的反向偏压大于势垒电压时,PN结的势垒会变得更高,电子和空穴无法克服势垒,电流无法通过,实现了电流的截止。

电子学中的半导体器件设计研究

电子学中的半导体器件设计研究

电子学中的半导体器件设计研究近年来随着科技的快速发展,电子学领域中的半导体器件设计研究越来越受到重视。

半导体器件的研究是电子学领域的重要课题之一,因为半导体器件已经成为现代电子设备的核心组件之一。

本文将从半导体器件的基本原理到设计研究方面进行探讨。

一、半导体器件的基本原理半导体器件是利用半导体材料的特性制造的电子元器件,包括二极管、三极管、场效应管等。

半导体器件具有导电能力弱、温度灵敏度高、稳定性好等优点。

其基本原理是半导体材料的导电性能随着温度变化而变化,当半导体材料中掺杂杂质(又叫掺杂剂)时,可以使半导体材料的导电性质和掺杂剂浓度有关。

半导体器件的导电性质受到掺杂剂浓度、材料纯度、温度和外界场强等因素影响。

二、半导体器件设计研究半导体器件的设计研究对于现代电子设备的制造非常重要。

设计研究过程可分为以下几个方面:1. 材料选择和制备半导体器件的制造过程中需要选择合适的半导体材料,其中掺杂剂浓度和加工工艺都是影响器件性能的关键因素。

一般而言,制造半导体器件需要先制造出半导体晶体,然后对晶体进行掺杂和制造工艺加工,最终得到所需要的器件。

2. 设计原理和参数半导体器件设计的原理是通过掺杂材料来调整材料电学特性。

根据电学特性来设计器件原理图和参数。

其中,设计原理的选择需要根据实际应用需求和材料电学特性来确定。

一般情况下,半导体器件的设计提供的是一组最佳工作参数, 包括工作电压、动态交流特性、反向特性等。

3. 材料测试和质量评估材料测试主要是对半导体材料进行电学测试、层析分析和结构分析。

用这些数据评价材料的质量,为器件的制造和精细化设计提供依据。

4. 安全性能测试随着半导体器件的广泛应用,其安全性要求越来越高。

为了保证器件的安全性能,需要进行反向压力测试、耐压测试、温度测试等,以确保器件工作在设计参数范围内,且在极端条件下也能保持工作稳定。

5. 器件性能评估器件性能评估通常是在生产环境中完成的。

主要是通过对器件的电学测试和生产环境测试来确定它所需的性能参数。

功率半导体器件工作原理

功率半导体器件工作原理

邮编:412001TEL : ( 0733) 8498396 URL : 功率半导体器件工作原理1.基本开关过程:功率半导体器件除极少数特殊应用情况外,其余绝大多数都是应用在开关状态下。

应用在所有这些电力电子线路总的器件,它们的基本原理和工作方式都是相同的,我们所有对半导体器件和应用电力电子线路的研究,都是要使其尽可能的工作在低损耗状态。

也就是说应使器件工作在开关状态。

这是因为器件工作在开关状态时,其工作状态是最佳的,通态损耗是最小的。

大家知道,当一个器件在开关状态时,它具有这样的特性: ―导通状态:V =0,-∞<i <∞。

―关断状态: i =0,-∞<V <∞。

功率半导体器件虽然同是工作在开关状态,当其使用状态不同时,他们表现出不同的特性。

当晶闸管和电感一起组成一个回路时,开关可以主动地开通。

也就是说,它能够在任一时刻开通。

当开通时间趋进于零时,开关中不出现损耗,这主要是因为回路电感能够立即吸收所出现的电压差。

导通状态:v s =0;-∞<i s <∞; 关断状态:i s =0;-∞<v s <∞; 开关特性:当s v >0时,主动开通;当i s =0,被动关断2.功率半导体器件基本工作原理功率半导体器件它包括非常多的品种和类别,在这里我们主要介绍晶闸管的结构和工作原理。

晶闸管时具有PNPN 结构的半导体器件,见图1-1。

在阳极P 区和阴极N 区之间施加正向电压时,它具有阻断和导通两个稳定的工作状态。

由图1-2所示的电流-电压特性曲线可以看出,它有一个阻断区和一个导通区。

这一特性可以用于电流的接通和关断。

为了使晶闸管由阻断状态变为动态状态,必须使其电流增加到超过某个阈值。

要实现这个目标,通常我们有两种途径,其一,使用脉冲电流使其通过门极而加于两个中间区的一个来实现。

其二,不断的提高阳极电压,使其超过转折电压(UBO )。

邮编:412001TEL : ( 0733) 8498396 URL :图1-1(a )不加门极电流 (b )加门极电流I G >IGT 。

常用半导体器件原理

常用半导体器件原理

高压能力
IGBT可承受高压,适用于高 压应用,如电动汽车和工业 电机控制。
高开关速度
IGBT具有较快的开关速度, 可实现高频率的开关操作。
低饱和压降
由于其低饱和压降,IGBT能 够在低功耗状态下工作。
光电子器件的工作原理和应用
光电子器件将光能转换为电能或通过光控制电流。它们在通信技术、太阳能电池和光传感器等领域发挥 着重要作用。
需要负电压来控制MOSFET的导通,其导通电阻较高。
3
应用领域
从CPU到手机,各种电子设备都离不开MOSFET的快速开关特性。
JFET的工作原理和应用
JFET是一种具有电压控制的场效应管。它基于电场控制电荷分布,实现信号放大和调制功能。JFET广 泛应用于放大电路和高频应用中。
1 结构简单
JFET由一个N型或P型 半导体材料形成,具有 简单可靠的箭头指向的方向代 表电流流动的方向。
整流二极管
整流二极管将交流电转换为直流电。它在电力系 统和电源供应中使用广泛。
三极管的工作原理和分类
三极管是一种三端口的半导体器件。它可以放大电流和电压,是许多电子设备的核心部件。常见的三极 管有NPN型和PNP型。
NPN型
基极与发射极之间的电流决定了集电极电流的放大倍数。
PNP型
NPN型的相反极性。它可以用于特定的电路设计和应用需求。
MOSFET的工作原理和应用
MOSFET是一种重要的场效应管。它通过改变栅电压来控制漏电流,实现开关和放大功能。MOSFET 广泛用于微处理器和功率电子设备。
1
增强型MOSFET
通过提供正向电压来激活MOSFET,其导通电阻较低。
2
耗尽型MOSFET
化合物半导体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• PN结存在工作温度的上限。
• 在不同的温度下,PN结会表现出不同的特性,因 此温度特性是所有电力电子器件一个重要的方面。 特性变化(恶化) 散热设计 功率处理能力
2021/3/6
ton3g6yibin
预习问题
当一个PN结由正向偏置突然变为反向偏置,会 发生什么?从反向偏置突然变为正向偏置呢?
➢ 在没有外部电场作用下,空穴电子对不断产生又 不断复合,处于无规律的状态。
➢ 在外电场的作用下,电子产生有规律的定向运动, 从一个原子到另一个原子。
本征 半导 体的 导电 性?
2021/3/6
✓在电子定向运动的同时,空穴则按与价电子运动 的方向相反,因此空穴运动相当于正电荷的运动, 称为空穴电流。
的驱动下不断穿越耗尽区进入P区,从而形成电流。
2021/3/6
ton2g7yibin
课堂讨论
➢PN结在正偏置下, P区空穴在外电场的驱动下不断 穿越耗尽区进入N区,而N区电子也在外电场的驱动 下不断穿越耗尽区进入P区。
➢为什么不会象前面的扩散一样形成逐步扩大的内 部电场而阻碍电流的形成呢?
➢正向偏置电压变化有什么影响?
讲课的原则
阐述科技发展的逻辑脉络 着重电力电子器件方面基本知识 着重培养分析电力电子器件性能的能力 着重电力电子器件应用中最复杂和关键的问题
二极管和IGBT 着重锻炼应用电力电子器件的基本技能
2021/3/6
tong1yibin
教学参考书
陈冶明,《电力电子器件基础》 USING IGBT MODULES Use Gate Charge to Design the Gate Drive Circuit for
Power MOSFETs and IGBT
2021/3/6
tong2yibin
第2章 半导体器件基本原理
半导体的基本知识 PN结及半导体二极管 ×特殊二极管
2021/3/6
tong3yibin
本章的学习要求
半导体“神奇”的性能是如何形成的? 半导体材料为什么要使用搀杂工艺? P型和N型半导体内是否具有静电场? 在PN结区域到底发生了什么,使得PN结具有单向
PN结附近的耗尽区相当于一个电容器,因此就有 电容量-PN结的结电容。 结电容和什么因素有关?
• PN结的结电容与PN结的偏置电压有关,可以通 过偏置电压来调节结电容。
有什么实际应用的例子吗? • 在电力电子电路中,有什么影响?
2021/3/6
ton3g5yibin
PN结的热效应
本征激发是PN结受温度影响重要起因。
本征半导体的导电机理
+4
+4
+4
+4
空穴的存在将吸引临近的价 电子来填补,这个过程称为 复合
价电子的移动也可以理解为 空穴反方向在迁移
空穴的迁移相当于正电荷的 移动,因此空穴也可以认为 是载流子
空穴和电子数目相等、移动 方向相反
2021/3/6
ton1g0yibin
电子电流与空穴电流
空 穴 呢?
传统的机械按键设计是需要手动按压按键触动PCBA上的 开关按键来实现功能的一种按
PCBA

开关 键
传统机械按键设计要点: 1.合理的选择按键的类型, 尽量选择平头类的按键,以 防按键下陷。 2.开关按键和塑胶按键设计 间隙建议留0.05~0.1mm,以 防按键死键。 3.要考虑成型工艺,合理计 算累积公差,以防按键手感 不良。
P型半导体材料
• 在本征半导体中掺入三价的,由于每个硼原子有3 个价电子,故在构成共价键结构时将产生一个空 穴。
空穴
Si
Si
+
BSi
Si
B
Si
Si
2021/3/6
ton1g5yibin
•这种以空穴导电作为主要导电方式的半导体称为 空穴型半导体或P(Positive)型半导体。多数载流
子为空穴。
2021/3/6
2021/3/6
ton1g2yibin
N型半导体材料
在本征半导体中掺入五价的磷,由于每个磷原子 有5个价电子,故在构成共价键结构时将产生一 个自由电子。
电子
Si
Si
+
PSi
Si
P
2021/3/6
Si
Si
ton1g3yibin
•这种以自由电子导电作为主要导电方式的半导体 称为电子型半导体或N(Negative)型半导体。
•通过掺杂,半导体材料中电子载流子数目将比本 征激发的载流子多几十万倍。 •掺杂激发的载流子浓度主要取决于掺杂的浓度, 体材料的性能可以得到很好的控制。
如果不考虑本征激发,N型半导体的空穴浓度 大还是电子浓度大?
由于电子浓度高于空穴,因此N型半导体的多数载 流子是电子。
2021/3/6
ton1g4yibin
消弱
增强
形成正向电流
形成反向电流
注入的少数载流子 抽取的少数载流子
受偏置电压影响大 受偏置电压影响小
2021/3/6
ton3g3yibin
PN结的伏安特性(单向导电性)
I
反向击穿电压
2021/3/6
正向导通压降
U
势垒电压 硅PN结约0.7V, 锗PN结约0.2V。
ton3g4yibin
PN结的结电容
ton2g0yibin
2、PN结
在同一片半导体基片上,分别制造P型半导体和N 型半导体,经过载流子的扩散,在它们的交界面 处就形成了PN结。
注意:PN结不可能通过将P型半导体和N型半导体压 在一起而形成。
怎样才能实现PN半导体的“紧密”接触?
在“紧密”接触的PN结区域,会发生什么?
2021/3/6
少数载流子的浓度与什么因素有关?
少数载流子什么时候才会消失?
2021/3/6
ton3g7yibin
在PN结附近,存在两种趋势: 载流子浓度差异引起的扩散← →内部电场引起的漂移 3、少数载流子的浓度是否是均匀的? 当然不是,远离PN的地方浓度低。 4、如果在PN结的两端加上不同方向的电压,会出现什么 情况?
2021/3/6
ton2g5yibin
不同偏置条件下的PN结
正偏置:在PN结的P区加正、N区加负; 负偏置:在PN结的P区加负、N区加正;
2021/3/6
ton2g8yibin
外加电场
P
N
-+ -+ -+ -+ -+








扩散与漂移效果的平衡,一方面将是耗尽区保持稳定,另一方面也将 使少数载流子的浓度随距PN边界的距离增大而下降。
2021/3/6
ton2g9yibin
PN结正向偏置状态总结
2021/3/6
➢PN结在正向偏置的时候,外部电场将消弱内部电场 的影响。
tongyibin
作业(3月21日14点10分前交)
1) 空穴到底是什么? 2) 搀杂半导体中,电子空穴还是成对产生的吗? 3) N型半导体中的自由电子多于空穴,P型半导体中
的空穴多于自由电子,是否N型半导体带负电,P 型半导体带正电? 4) P、N型半导体中是否存在“净”电荷或是静电场?
2021/3/6
2. 随着温度的升高,半导体材料的本征激发越来 越强,本征激发载流子的浓度也越来越高。
3. 当本征激发载流子浓度与搀杂载流子浓度达到 可比拟的程度时,会出现什么现象?
--半导体材料和器件将失效
--温度是影响电力电子器件性能的一个 十分重要的环境因素
2021/3/6
ton1g8yibin
1.什么是传统机械按键设计?
4、P型区由于空穴的扩散,留下带负电的原子,而N 型区由于电子的扩散,留下带正电的原子;
2021/3/6
ton2g3yibin
2021/3/6
5、由于带电的原子被束缚在晶格结构中无法移动, 因此在交界面附近将形成一个空间电荷区,由于该 空间电荷区的载流子已扩散殆尽,因此又称为载流 子的耗尽区;
6、空间电荷区中存在的带电原子将在空间电荷区中 建立内部电场;
ton1g6yibin
对比P型半导体和N型半导体
P型和N型半导体的对比 掺杂材料
空穴和电子浓度 多数载流子类型
P
3价元素 空穴浓度高
空穴
N
5价元素 电子浓度高
电子
2021/3/6
ton1g7yibin
为什么要对半导体采用搀杂工艺
1. 搀杂半导体的载流子浓度主要取决于搀杂类型 和比例,与本征激发载流子相比,受温度的影 响相对小得多,因此工作温度范围宽、性能稳 定。
反向电流
内电场被被加强,耗尽区变宽,多子的扩散受抑制。在增强内
部电场的作用下,少子漂移加强,但少子数量有限,只能形成
较小的反向电流。 2021/3/6
ton3g2yibin
PN结正向偏置与反向偏置的比较
偏置电压
正向偏置
反向偏置
外部电场与内部电场 (耗尽区)的关系 是否形成电流
导电载流子的类型
电流与偏置电压 的关系
2021/3/6
tong5yibin
物体导电性能取决于由自由电子浓度
导体原子核对电子的束缚较小,自由电子浓度高, 导电性能好;
绝缘体中大多数电子都被原子核束缚,自由电子 浓度很低,导电性能差;
半导体则介于两者之间,且易受外界因数的影响;
2021/3/6
tong6yibin
价电子
☆半导体材料原子最外层的电子由于受原子核的束缚 较小,比较容易变成自由电子-价电子
☆现代电子学中,用的最多的半导体是硅和锗,它们 的最外层电子(价电子)都是四个。
2021/3/6
Ge
相关文档
最新文档