高分子第5章——离子聚合

合集下载

高分子化学第五章 聚合实施方法

高分子化学第五章 聚合实施方法
如涂料、胶粘剂、浸渍液、合成纤维纺丝液
溶剂对聚合的影响:
溶剂对聚合活性有很大影响,因为溶剂难以做到完全惰 性,对引发剂有诱导分解作用,对自由基有链转移反应。 溶剂对引发剂分解速率依如下顺序递增: 芳烃、烷烃、醇类、醚类、胺类。 向溶剂链转移的结果使分子量降低。 向溶剂分子链转移: 水为零, 苯较小, 卤代烃较大。 溶剂对聚合物的溶解性能与凝胶效应有关: 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应
第五章 聚合方法
1、聚合方法和体系分类
2、本体聚合
3、溶液聚合 4、悬浮聚合 5、乳液聚合
聚合方法概述
本体聚合

自由基聚合方法
溶液聚合 悬浮聚合 乳液聚合 溶液聚合

离子和配位聚合方法
本体聚合
熔融缩聚

逐步聚合方法
溶液缩聚
界面缩聚
固相缩聚
一、聚合方法和体系分类 (一)按单体在介质中的分散状态分类
而且还常比形成的聚合物的熔融温度高出10-20℃ 。 整个聚合体系始终处于熔融状态的聚合反应;由于这类 反应常是固体单体的官能团的缩聚,故常称熔融缩聚。 这种聚合除有时加入少量催化剂外,一般均不加任何溶 剂,所以实质上它也是本体聚合。
界面缩聚— 两种单体分别溶于互不相溶的介质中,随后
把两种单体溶液倒在一起,后,即成纺丝液。
例二. 醋酸乙烯酯溶液聚合
以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率60%,过高
会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作合成纤维时, 聚合度1700,醇解度98%~100%(1799);用作分散剂和织物助剂 时,聚合度1700,醇解度88%左右(1788)。

高分子化学第5章

高分子化学第5章
–(1)水溶性有机高分子物质;
• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)

高分子化学第五章聚合方法

高分子化学第五章聚合方法
2、缺点
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽;重则 温度失调,引起爆聚。(关键:散热)
➢解决办法:分段聚合
预聚:在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度。
后聚:在模板中聚合,逐步升温,使聚合完全。
5
聚合实例:聚苯乙烯,有机玻璃(PMMA)
32
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂 少量在水相中
单体
引发剂 大部分在水中
大部分形成胶束 部分吸附于单体液滴
一部分增溶胶束内 大部分在单体液滴内
33
聚合场 所
水相中?
单体液滴?
胶束?
水相中单体浓度小, 反应成聚合物则沉 淀,停止增长,因 此不是聚合的主要 场所。
预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%。
后聚合:预聚体流入聚合塔,可以热聚合或加 少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
9
例二. 苯乙烯连续本体聚合
聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃, 典型的硬塑料,伸长率仅1%-3%。尺寸稳定性优, 电性能好,透明色浅,流动性好,易加工。性脆、不 耐溶剂、紫外、氧。
2). CMC: 形成胶束的临界浓度。不同乳化剂的CMC不同,愈小, 表示乳化能力愈强
3). 三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(使用最低温度)
高于此温度,溶解度突增,凝胶消失,乳化剂只以分子溶解和胶 束两种状态存在。
4). 浊点:非离子型乳化剂开始分相变浊时的温度。(使用最高温度)

聚合物合成工艺学每章节后面的思考题

聚合物合成工艺学每章节后面的思考题

第一章课后思考题(聚合物合成工艺学)1.简述高分子化合物的生产过程?答:(1)原料准备与精制过程:包括单体、溶剂、去离子水等原料的贮存、洗涤、精制、干燥、调整浓度等过程相设备。

(2)催化剂(引发剂)配制过程:包括聚合用催化剂、引发剂和助剂的制造、溶解、贮存、调整浓度等过程与设备。

(3)聚合反应过程:包括聚合和以聚合釜为中心的有关热交换设备及反应物料输送过程与设备。

(4)分离过程:包括未反应单体的回收、脱除溶剂、催化剂,脱除低聚物等过程与设备。

(5)聚合物后处理过程:包括聚合物的输送、干燥、造粒、均匀化、贮存、包装等过程与设备。

(6)回收过程:主要是未反应单体和溶剂的回收与精制过程及设备。

此外三废处理和公用工程如供电、供气、供水等设备。

2.比较连续生产和间歇生产工艺特点?答:连续生产:优点:聚合反应条件稳定,容易实现操作过程中的自动化;若条件一致,则产品质量规格稳定;设备密闭,减少污染;适合大规模生产;劳动生产率高,成本较低。

缺点:不便于小批量生产某牌号产品。

间歇生产:优点:反应条件以控制;物料在聚合反应器内停留时间相同;便于改变工艺条件。

缺点:不易实现操作过程的全部自动化;必须按配方规定的顺序进行;不适合大规模生产,生产能力低。

3.合成橡胶和合成树脂在生产过程中的那两个过程?试比较他们在这两个生产过程上的主要差别是什么?答:主要差别是分离过程和聚合物后处理过程;分离过程:合成橡胶:不能用第二种溶剂以分离合成橡胶,其分离方法是将高粘度橡胶溶液喷入沸腾的水中,同时进行强烈搅拌,未反应的单体和溶剂与一部分水蒸气被蒸出,合成橡胶则以直径10~20mm左右的胶粒析出,且悬浮于水中,经过滤洗涤得到胶粒;合成树脂:将合成树脂溶液逐渐加入第二种非溶剂中,而此溶剂是可以与原来的容剂混溶的,再沉淀釜中搅拌则合成树脂呈粉末状固体析出,如果通过细孔进入沉淀用溶剂中,则生成纤维状产品。

后处理过程:合成橡胶:采用箱式干燥机活挤压膨胀干燥机进行干燥;合成树脂:用加热的空气作为载热体进行气流干燥,含有机溶剂时,用加热的氮气进行干燥。

高分子化学第五章 离子聚合

高分子化学第五章 离子聚合
是阳离子聚合的主要终止方式
链终止剂 XA 主要有;水、醇、酸、酐、酯、醚、胺
HMnM (CR) + XA
ktr,s
HMnMA + X (CR)
苯醌既是自由基聚合的阻聚剂,又对阳离子聚合起阻聚作用
2 HMnM (CR) + O
2 HMnM +
O
HO OH
2
(CR)2
25
阳离子聚合机理的特点:
快引发,快增长,易转移,难终止
757
791
质子亲和力较大,有利于反应 但一个烷基的供电性不强,Rp不 快;仲碳阳离子较活泼,容易重 排,生成更稳定的叔碳阳离子
6
H
+
CH2
CH C2H5
CH3 CH C2H5
(CH3)3C
可见,丙烯、丁烯阳离子聚合只能得到低分子油状物
CH3 CH2 C CH3

两个甲基使双键电子云密度增加很多,易与 质子亲合 所生成的叔碳阳离子较稳定,可得高分子量 的线型聚合物

绝大部分Lewis酸都需要共(助)引发剂,作为质子或碳阳离子 的供给体
12
共引发剂有两类:
析出质子的物质:H2O,ROH,HX,RCOOH
析出碳阳离子的物质:RX,RCOX,(RCO)2O
如:无水BF3不能引发无水异丁烯的聚合,加入痕量水,聚合 反应立即发生:
BF3 + H2O
CH3 CH2 C + H (BF3OH) CH3
CH3 CH2 C CH3 CH2
CH3 C CH3
亚甲基上的氢,受四个甲基的保护,不 易夺取,减少了重排、支化等副反应 是唯一能进行阳离子聚合的-烯烃
7

高分子第5章离子聚合答案

高分子第5章离子聚合答案

第五章 离子聚合1.试从单体、引发剂、聚合方法及反应的特点等方面对自由基、阴离子和阳离子聚合反应进行比较。

答:见课本175面。

2.在离子聚合反应过程中,活性中心离子和反离子之间的结合有几种形式?其存在形式受哪些因素的影响?不同存在形式和单体的反应能力如何?答:在离子聚合反应过程中,活性中心离子和反离子之间的结合形式:其存在形式受溶剂性质、温度及反离子等因素的影响。

溶剂的溶剂化能力越大,温度越低,越利于形成松离子对或自由离子。

反离子半径越大,形成松离子对或自由离子的几率越低。

一般情况下,它们与单体的反应能力为:自由离子>松离子对>紧离子对。

3.为什么进行离子聚合时须预先将原料和聚合容器净化、干燥、除去空气并在密封条件下聚合?答:离子聚合的引发剂和活性链易于被空气中的水,二氧化碳,氧等破坏,因此聚合时须预先将原料和聚合容器净化、干燥、除去空气并在密封条件下聚合。

4.以RK 为引发剂合成以下嵌段共聚物,加料顺序如何?(1)[MMA]n ——[Bd]m (2)[St]n ——[Bd]m ——[AN]p(3)[St]n ——[CH 2CH 2O]m (4)[St]n ——[Bd]m ——[St]p答:(1)先以RK 引发丁二烯活性聚合,然后在加入MMA 使之聚合;(2)依次加入苯乙烯,丁二烯,丙烯腈;(3)先加入苯乙烯,再加入环氧乙烷;(4)依次加入苯乙烯,丁二烯,苯乙烯。

5.写出用阴离子聚合方法合成四种不同端基(-COOH ,-OH ,-SH ,-NH 2)的聚丁二烯遥爪聚合物的反应过程。

答:C+X_C+//X _C++X _紧离子对松离子对自由离子CH 2=CHCH=CH 2NaH 2CHC=HCH 2C CH 2CH=CHCH 2NaCH 2CH=CHCH 2CH 2CH 2CH 2ONaH+OH CO 2CH 2CH=CHCH 2COONa H+COOH6.以BuLi 为引发剂,环己烷为溶剂,合成线型三嵌段共聚物SBS 。

高分子化学—离子聚合

高分子化学—离子聚合
- Na + Na+ 苯 乙烯 ? + H2C CH Na+
H2C CH Na+ 2
Na+ - HC CH2 CH2 CH - Na+
引 发聚 合
电子间接转移引发
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
实施聚合反应时,先将金属钠与萘在惰性溶剂中反应后 实施聚合反应时, 再加入聚合体系引发聚合反应,属均相引发体系。 再加入聚合体系引发聚合反应,属均相引发体系。 (2)阴离子加成引发: )阴离子加成引发: 引发剂离解产生的阴离子与单体加成引发聚合反应: 引发剂离解产生的阴离子与单体加成引发聚合反应:
O
Na+ - HC CH2 CH2 CH - Na+ + CO2
+ Na+ OOC HC CH2 CH2 CH COO Na
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
O
4.2 链转移与链终止 链转移:阴离子聚合从增长链上脱去氢阴离子 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链 转移的活化能相当高,一般难以进行; 转移的活化能相当高,一般难以进行;
高分子化学
N
H
C
S
阴 离 子 聚 合 反 应
Bu CH2 CH Li+ X
O
BuLi + H2C CH X
有机金属化合物的活性与其金属的电负性有关, 有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 负性越小,活性越高。
(iv)格氏试剂: )格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 键极性弱,不能直接引发阴离子聚合, 烷基镁由于其 键极性弱 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 但制成格氏试剂后使 键的极性增大, 键的极性增大 的单体聚合。 的单体聚合。

高分子化学第五章_聚合方法

高分子化学第五章_聚合方法
第五章 聚合方法
1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。

溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 离子聚合1.2.0 mol/L 苯乙烯的二氯乙烷溶液,于25℃时在4.0×10-4 mol/L 硫酸存在下聚合,计算开始时的聚合度。

假如单体溶液中含有浓度为8.0×10-5 mol/L 的异丙苯,那么聚苯乙烯的聚合度是多少?为便于计算,可利用下列数据。

参数: 数值 k p [L/(mol·S)] 7.6 k t 1(s -1)自发终止 4.9×10-2 k t 2(s -1)与反离子结合终止 6.7×10-3 k tr,M (L/mol·s) 1.2×10-1 Cs(25℃,在二氯乙烷中用异丙苯作转移剂) 4.5×10-2解:阳离子聚合速率方程为R p = k p [M][M +]=7.6×2.0×4.0×10-4=6.08×10-3 mol /( L·S)该体系终止反应为自发终止、与反离子结合终止、向单体转移终止之和 ∴ R t = k t1[M +]+k t2[M +]+ k tr,M [M +][M]][][)(210M k k k M k R R X trm t t p tp n ++==4.510.2102.1107.6109.40.26.7132=⨯⨯+⨯+⨯⨯=---存在链转移剂异丙苯时][][)(110M S C X X S n n +=0195.00.2100.8105.44.51152=⨯⨯⨯+=--∴4.51=n X2.将1.0×10-3mol 萘钠溶于四氢呋喃中,然后迅速加入2.0mol 的苯乙烯,溶液的总体积为1L 。

假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。

解:无终止的阴离子聚合速率为R p =k p [M -][M]以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心∴[M-]=[C]=1.0×10-3mol/L将R p式改写为-d[M]/dt=k p[C][M]积分得ln([M]0/[M])=k p[C]t已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式:ln2=k p×2000∴k p[C]=ln2/2000设当t2=4000秒时,剩余单体浓度为[M]2ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386∴[M]2= [M]0/4则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4根据阴离子聚合的聚合度公式x n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0x n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000∴=n已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4x n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000∴=n3.用TiCl4作催化剂和水作共催化剂,使异丁烯在一定反应条件下于苯中进行阳离子聚合时,实验的聚合速率方程式为R p=k[TiCl4][M][H2O]0如果链终止是通过活性增长中心重排进行的,并产生不饱和端基聚合物和催化剂-共催化剂络合物。

(1)试写出这个聚合反应的机理、推导聚合速率和聚合度方程。

(2)又在什么条件下聚合速率可为对[H2O]为一级反应,对[TiCl4]为零级反应以及对[M]为二级反应,即R p=k[H2O][M]2[TiCl4] 0。

解:(1)根据题意,有下述机理:引发:TiCl4+H2O H (TiCl4OH)K络为引发剂和共引发剂的络和平衡常数为H (TiCl4OH)K络=TiCl4 H2OH (TiCl 4OH) + CH 2C CH 3CH 3k iCH 3C (TiCl 4OH)CH 3CH 3链增长CH 3 C (TiCl 4OH) CH 3CH 3+CH 2C CH 3CH 3k pCH 3C CH 2C CH 3CH 3CH 3CH 3(TiCl 4OH)…………CH 2C3CH 3k p3CH 34OH)CH 2C …………链终止,属自发终止:3CH 3(TiCl 4CH 2C CH 2C CH 3CH 2 +H (TiCl 4OH)当引发剂和共引发剂的络合反应是慢反应时:引发速率:Ri=K 络[TiCl 4][H 2O]聚合速率:R p =k p[HM (TiCl 4OH) ] [M]自发终止时有:R t =k t[HM (TiCl 4OH) ]假定稳态:则Ri=RtK 络[TiCl 4] [H 2O]=k t [HM (TiCl 4OH) ]∴ [HM (TiCl 4OH) ] =(K 络/k t )[TiCl 4] [H 2O]代入Rp 式得:Rp= (k p K 络/ k t ) [TiCl 4][M] [H 2O]当[H 2O]过量,则[H 2O]视为一常数,一并合并到速度常数项中,则 R p =K 总[TiCl 4][M][H 2O]0可见,在水过量以及在引发剂和共引发剂的络合反应是慢反应时,聚合速率对引发剂为一级反应,对单体为一级反应,对水为零级反应。

而X n =R t R p =[HM (TiCl 4OH) ]k p [M]k t [HM (TiCl 4OH) ] k p k t [M]=推毕(2)当引发剂引发单体生成碳阳离子的反应为慢反应时,则R i =k i [H (TiCl 4OH) ] [M] = K 络k i [TiCl 4] [H 2O] [M]稳态时,R i =R t ∴=[HM (TiCl 4OH) ] k t[M]K 络k i[TiCl 4] [H 2O]代入R p 式得k t[M]2K 络k p k i [TiCl 4] [H 2O] R p =而X n =R t R p =[HM (TiCl 4OH) ]k p [M]k t [HM (TiCl 4OH) ] k p k t [M]=当TiCl 4浓度过量时,[TiCl 4]可视为一常数,一并合并到速率常数中,则 Rp=K 总[H 2O] [M]2 [TiCl 4]0可见,在TiCl 4浓度过量以及在引发反应中引发剂引发单体生成碳阳离子的反应为慢反应时,聚合速率对[H 2O]为一级反应,对单体为二级反应,对TiCl 4为零级反应。

4.异丁烯在四氢呋喃中用SnCl 4-H 2O 引发聚合。

发现聚合速率R p ∝[SnCl 4][H 2O][异丁烯]2。

起始生成的聚合物的数均分子量为20000。

1.00g 聚合物含3.0×10-5mol 的OH 基,不含氯。

写出该聚合的引发、增长、终止反应方程式。

推导聚合速率和聚合度的表达式。

指出推导过程中用了何种假定。

什么情况下聚合速率是水或SnCl 4的零级、单体的一级反应?解:根据题意,终止是活性中心与反离子碎片结合。

① 引发:SnCl 4+H 2H (SnCl 4OH)H (SnCl 4OH)+CH 2C CH 3CH 3k iCH 3C CH 3CH 3(SnCl 4OH)增长:CH 3C CH 33(SnCl 4OH)+CH 2C CH 33pCH 2C CH 33C CH 3CH 33(SnCl 4OH)+MCH 2C CH 3CH 3C CH 3CH 2CH 3CCH 3CH 3CH 3(SnCl 4OH)n终止:CH 2C CH 33C CH 3CH 23C CH 3CH 33(SnCl 4OH)n tCH 2C CH 3CH 3C CH 3CH 2CH 3C CH 3CH 3CH 3OH+SnCl 4n② 各步反应速率方程为R i =k i [H +(SnCl 4OH)-][CH 2=C(CH 3)2]=k 络k i [SnCl 4][H 2O][CH 2=C(CH 3)2] (k 络=[H +(SnCl 4OH)-]/[SnCl 4][H 2O]) R p =k p [HM +(SnCl 4OH)-][CH 2=C(CH 3)2] R t =k t [HM +(SnCl 4OH)-] 假定 R i =R t (稳态) 则[HM +(SnCl 4OH)-]=k 络k i [SnCl 4][H 2O][CH 2=C(CH 3)2]/k t 代入R p 式得R p = k 络k i k p [SnCl 4] [H 2O][CH 2=C(CH 3)2]2/k tn x =R p /R t = k p [HM +( SnCl 4OH)-][CH 2=C(CH 3)2]/(k t [HM +( SnCl 4OH)-])=k p [CH 2=C(CH 3)2] /k t③ 若[H 2O]>>[SnCl 4],且k i >>k 络,则在引发反应中,第一步(生成络合物的反应)为控制步骤,且[H 2O]基本保持恒定。

∴R i =k 络[H 2O][SnCl 4] = k 1[SnCl 4]稳态时:k t [HM +( SnCl 4OH)-]= k 1[SnCl 4] ∴[HM +( SnCl 4OH)-]=k 1/k t [SnCl 4] 代入R p 式得R p =k p k 1/k t [SnCl 4][CH 2=C(CH 3)2] 即R p 是水的零级,单体的一级反应。

④若[SnCl 4]>>[H 2O],且k i >>k 络则在引发反应中,生成络合物的反应为控制步骤,且[SnCl 4]基本恒定。

∴R i = k 络[H 2O][SnCl 4]=k 2[H 2O]稳定时:k t [HM +( SnCl 4OH)-]=k 2[H 2O] ∴[HM +( SnCl 4OH)-]=k 2/k t [H 2O] 代入R p 式得:R p =k p k 2/k t [H 2O] [CH 2=C(CH 3)2] 即R p 是SnCl 4的零级、单体的一级反应。

5.在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi 和20kg 苯乙烯。

当单体聚合了一半时,向体系中加入1.8g H 2O ,然后继续反应。

假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算(1)水终止的聚合物的数均分子量;(2)单体完全聚合后体系中全部聚合物的数均分子量; (3)最后所得聚合物的分子量分布指数。

解一:(1)单体反应一半时加入1.8g H 2O ,由水终止所得聚合物的分子量1n M 为500002.02/20000n ·n M 1==活性中心摩尔数参加反应的单体的克数=(2)单体完全转化后全部聚合物的数均分子量,仍然是个平均的概念,即指的是平均来讲每一个活性种所加上的单体的克数(若是数均聚合度,即为所加上的单体的个数),不管中途是否加有终止剂,还是发生了其他不均匀增长∴单体完全转化后全部聚合物的数均分子量n M 为1000002.020000n ·==活性中心摩尔数所有单体的克数=解二:整个体系由两种分子组成:由水终止的大分子,其摩尔数为1.8/18=0.1mol ,分子量1n M 为50000没被水终止而继续增长所形成的大分子,其摩尔数为0.2-0.1=0.1mol ,分子量设为2n M1500001.02.02/2000050000n ·n M n M 12=+=剩余活性中心摩尔数剩余单体的克数+=-这样,单体完全聚合后体系中全部聚合物的数均分子量为:1000001.01.01500001.0500001.0n =+⨯+⨯==∑∑Ni NiMi M(3)已知在这一体系中存在两类分子,一是由水终止的大分子,另一是没被水终止而得以继续增长所形成的大分子,且已知这两类分子的分子量分布指数均为1,说明它们各自均为均一体系,分子量都是单一值,分别求出这两种分子的摩尔数和数均分子量,即可求得HI. 由水终止的大分子,其摩尔数为0.1mol ,分子量1n M 为50000,单分布没被水终止而继续增长所形成的大分子,其摩尔数为0.1mol ,分子量为150000,单分布 ∴最后所得聚合物的分子量分布指数为25.11.01.0n M 1.0n M 1.0n M 1.0n M 1.0nM 1.0n M 1.0212122212=++++==∑∑∑∑NiNiMi NiMiNiMiMnMw6.用萘钠为引发剂,制备分子量为354000的聚α-甲基苯乙烯1.77kg ,问需要多少克钠? 解:根据萘钠引发剂的反应CnWM n =, W 为单体重量, C 为引发剂摩尔数 代入数据:C100077.12354000⨯⨯=解得C =0.01 mol∴ 需要钠为0.01×23=23 g7.在-35℃以TiCl 4为引发剂、水为共引发剂,异丁烯进行低温聚合,单体浓度对平均聚合度的影响,有下列数据[M] (mol/L) 0.667 0.333 0.278 0.145 0.059 DP 6940 4130 2860 2350 1030 根据以上数据计算速率常数比:k tr /k p 和k t /k p 。

相关文档
最新文档