LTE天线端口的理解
LTE重要知识点总结

LTE总结1、系统帧号(system frame number)SFN位长为10bit,也就就就是取值从0-1023循环。
在PBCH得MIB广播中只广播前8位,剩下得两位根据该帧在PBCH 40ms周期窗口得位置确定,第一个10ms帧为00,第二帧为01,第三帧为10,第四帧为11。
PBCH得40ms窗口手机可以通过盲检确定。
2、codeword-layer-rank-antenna portcodeword 就就是经过信道编码与速率适配以后得数据码流。
在MIMO系统中,可以同时发送多个码流,所以可以有1,2甚至更多得codewords。
但就就是在现在LTE系统中,一个TTI最多只能同时接收与发送2个TB,所以最多2个codewords;layer与信道矩阵得“秩”(rank)就就是一一对应得,信道矩阵得秩就就是由收发天线数量得最小值决定得。
例如4发2收天线,那么layer/rank = 2;4发4收天线,layer/rank=4;codeword得数量与layer得数量可能不相等,所以需要一个layer mapper把codeword流转换到layer上(串并转换);一根天线对应一个layer,经过layer mapper得数据再经过precoding矩阵对应到不同得antenna port发送。
3、层映射(layer mapping)与预编码(precoding)层映射(layer mapping)与预编码(precoding)共同组成了LTE得MIMO部分。
其中层映射就就是把码字(codeword)映射到层(layer),预编码就就是把数据由层映射到天线端口,所以预编码又可以瞧做就就是天线端口映射。
码字可以有1路也可以有两路,层可以有1,2,3,4层,天线端口可以有1个,2个与4个。
当层数就就是3得时候,映射到4个天线端口,不存在3个天线端口得情况。
LTE中得预编码指代得就就是一个广义得precoding,泛指所有在OFDM之前层映射之后所进行得将层映射到天线端口得操作,既包含传统得precoding(也就就就是空分复用,层数)1,可以就就是基于码本与非码本)也包含传统意义上得发送分集(SFBC、空时码之类得)。
LTE知识点(常考点-请优先复习)

1、LTE性能考点1:LTE的峰值速率:下行峰值100Mbps,上行峰值50Mbps考点2:时延:控制面IDLE —〉ACTIVE: < 100ms,用户面单向传输: < 5ms考点3:移动性:350 km/h(在某些频段甚至支持500km/h)120km连接稳定性考点4:频谱灵活性:带宽从1.4MHz~20MHz(1.4、3、5、10、15、20)2、LTE安装规范考点1:RRU与智能天线间的距离宜小于5米,BBU电源线长度限制是20米,单电源板空开要求20A,最小12A。
考点2:2.6G的天线阵元与C网定向天线的同向安装时,垂直距离要求至少1米。
LTE天线与GSM/DCS天线的水平距离要求大于0.5米考点3:GPS与附近金属物水平距离要求至少1.5米、GPS蘑菇头不需要接地。
基站至少要锁定4个卫星才能工作。
GPS需要至少3个卫星才能定位。
安装GPS要求净空120度考点4:BBU机框的宽度与深度分别为:600x600毫米考点5:单扇区8通道的RRH包含:电源线、GPS线缆、光纤、9条馈线考点6:定向天线方位角误差要求5度,下倾角误差要求是0.5度。
考点7:RRU安装首选挂墙(距离墙体为30cm)后选抱杆。
考点8:尾纤半径必须大于8cm考点9:静电达到1000V时损坏器件考点10:地阻要求小于等于5欧考点11:单相或三相电波动范围±10%,直流电波动范围:-40V~-57V考点12:机架水平与C直偏差都要求小于3mm。
室外地排采用95mm2多胶线或40mmⅹ4mm扁铁。
考点13:2.3G频率的1/2馈线每100米损耗12dB,7/8馈线是7dB。
考点14:馈线的弯曲半径必须是其直径的20倍考点15:滴水弯必须是馈线窗下沿的10~20cm24、VSWR=1.5时对应回损(RL)是14dBVSWR=(1+rc)/(1-rc)rc=(Pr/Pf)1/2(W值)RL=Pf-Pr(dB值)rl=pf/Pr(W值)42、中继基站relay部署时采用的传输方式是:无损回传。
LTE_物理信道与传输信道

R0
R0
R1
R1
Two antenna ports
R0
R0
R1
R1
Not used for transmission on this antenan port
R0
R0
R1
R1
Reference symbols on this antenna port
R0
l 0
R0
l 5 l 0 l 5 l 0
主同步信号
辅同步信号
主同步信号
控制区域
数据区域
控制区域
数据区域
FS1,常规CP
FS2,常规CP
主/辅同步信号序列
主同步信号使用Zadoff-Chu序列 副同步信号使用的序列由两个长度为31的二进制序列通过交织级联产生,并且 使用由主同步信号序列决定的加扰序列进行加扰,长度为31的二进制序列以及加 扰序列都由m序列产生。
7 symbols
7 symbols
下行Unicast/MBSFN子帧
MBSFN传输时,控制区域1~3个符号 MBSFN传输时,控制区域1~2个符号
Nc subcarriers
(完整版)码字,层映射,秩,预编码

传输块(transport block),码字(codeword),层映射(layermapping),传输层(transmission layer), 阶(rank),和预编码Precoding),天线端口(antennaport)是LTE物理层的几个基本概念,搞清楚这几个概念的定义和相互关系才能透彻理解LTE多天线技术和调度算法。
传输块(Transport block):理解为MAC PDU一个传输块就是包含MACPDU的一个数据块,这个数据块会在一个TTI上传输,也是HARQ重传的单位。
LTE规定:对于每个终端一个TTI最多可以发送两个传输块。
码字(codeword):经过信道编码和速率匹配以后的数据码流一个码字就是在一个TTI上发送的包含了CRC位并经过了编码(Encoding)和速率匹配(Ratematching)之后的独立传输块(transport block)。
LTE规定:对于每个终端一个TTI最多可以发送两个码字。
层映射(Layer mapping):将码流映射到层,由于码字与层不相等,所以需要层映射将对一个或两个码字分别进行扰码(Scrambling)和调制(Modulation)之后得到的复数符号根据层映射矩阵映射到一个或多个传输层。
层映射矩阵的维数为C×R,C为码字的个数,R为阶,也就是使用的传输层的个数。
传输层(Transmissionlayer)和阶(Rank)一个传输层对应于一个无线发射模式。
使用的传输层的个数就叫阶(Rank)。
RI:Rank indicator:用于指示PDSCH物理信道的传输层数预编码(Precoding):根据预编码矩阵将传输层映射到天线端口。
预编码矩阵的维数为R×P,R为阶,也就是使用的传输层的个数;P为天线端口的个数。
天线端口(Antenna Port)一个天线端口(antennaport)可以是一个物理发射天线,也可以是多个物理发射天线的合并。
LTE天线端口的理解.

1对于来自上层的数据,进行信道编码,形成码字;2对不同的码字进行调制,产生调制符号;3对于不同码字的调制信号组合一起进行层映射;4对于层映射之后的数据进行预编码,映射到天线端口上发送。
码字、层和天线端口的区分。
1、码字:码字是指来自上层的业务流进行信道编码之后的数据。
不同的码字q区分不同的数据流,其目的是通过MIMO发送多路数据,实现空间复用。
由于LTE系统接收端最多支持2天线,所以发送的数据流数量最多为2。
这决定了不管发送端天线数为1、2或者4,码字q的数量最多只为2。
当发送端天线只有一根时,实际能够支持的码流数量也只能为1,所以码字数量最多也只能为1。
如果接收端有两根接收天线,但是两根天线高度相关。
如果发送端仍然发送两组数据流(两个码字,则接收端无法解码。
因此,在收端信道高度相关的情况下,码字数量也只能为1。
综上,码字q的数量决定于信道矩阵的秩。
2、层由于码字数量和发送天线数量不一致,需要将码字流映射到不同的发送天线上,因此需要使用层与预编码。
层映射与预编码实际上是“映射码字到发送天线”过程的两个的子过程。
层映射首先按照一定的规则将码字流重新映射到多个层(新的数据流,参见P68表3-23、3-24。
(注:层的数量小于物理信道传输所使用的天线端口数量P。
预编码再将数据映射到不同的天线端口上。
在各个天线端口上进行资源映射,生成OFDM符号并发射,参见P67页图3-11。
3、天线端口天线端口指用于传输的逻辑端口,与物理天线不存在定义上的一一对应关系。
天线端口由用于该天线的参考信号来定义。
等于说,使用的参考信号是某一类逻辑端口的名字。
具体的说:p=0,p={0,1},p={0, 1, 2, 3}指基于cell-specific参考信号的端口;p=4指基于MBSFN 参考信号的端口;p=5为基于UE-specific参考信号的端口。
从层到物理天线端口传输是通过预编码来完成的,参见P69的两个公式。
由公式可见,无论层数是多少,只要其小于用于物理传输的端口数,即可通过预编码矩阵W(i将其映射到物理的传输天线上。
TD-LTE题库解析大全

1、判断题1.X2接口是E-NodeB之间的接口(对)2.一个时隙中,频域上连续的宽度为150kHz的物理资源称为一个资源块(PRB)(错)(一个PRB在频域上包含12个连续子载波,在时域上包含7个连续的OFDM符号。
即,频域宽度为180kHz,时间长度为0.5ms(1个时隙))3.对于每一个天线端口,一个OFDM或者SC-FDMA符号上的一个子载波对应的一个单元叫做资源单元(RE)(对)4.LTE的天线端口与实际的物理天线端口一一对应(错)1.1天线端口(天线逻辑端口与天线物理端口)一个天线端口(antenna port)可以是一个物理发射天线,也可以是多个物理发射天线的合并。
在这两种情况下,终端(UE)的接收机(Receiver)都不会去分解来自一个天线端口的信号,因为从终端的角度来看,不管信道是由单个物理发射天线形成的,还是由多个物理发射天线合并而成的,这个天线端口对应的参考信号(Reference Signal)就定义了这个天线端口,终端都可以根据这个参考信号得到这个天线端口的信道估计。
L TE定义了最多4个小区级天线端口,因此UE能得到四个独立的信道估计,每个天线端口分别对应特定的参考信号模式。
为了尽量减小小区内不同的天线端口之间的相互干扰,如果一个资源元素(Resource element)用来传输一个天线端口的参考信号,那么其它天线端口上相应的资源元素空闲不用。
LTE还定义了终端专用参考信号,对应的是独立的第5个天线端口。
终端专用参考信号只在分配给传输模式7(transmission mode)的终端的资源块(Resource Block)上传输,在这些资源块上,小区级参考信号也在传输,这种传输模式下,终端根据终端专用参考信号进行信道估计和数据解调。
终端专用参考信号一般用于波束赋形(beamforming),此时,基站(eNodeB)一般使用一个物理天线阵列来产生定向到一个终端的波束,这个波束代表一个不同的信道,因此需要根据终端专用参考信号进行信道估计和数据解调。
天线端口(Antenna Port)和参考信号(Reference Signal)的关系

LTE下行物理层传输机制(1)-天线端口Antenna Port和小区特定参考信号CRS1.天线端口(Antenna Port)和参考信号(Reference Signal)的关系天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系。
在下行链路中,天线端口与下行参考信号(Reference signal)是一一对应的:如果通过多个物理天线来传输同一个参考信号,那么这些物理天线就对应同一个天线端口;而如果有两个不同的参考信号是从同一个物理天线中传输的,那么这个物理天线就对应两个独立的天线端口。
R9协议定义了四种下行参考信号,天线端口与这些参考信号的对应关系如下:(1)小区特定参考信号(Cell-specific reference signals,CRS),或小区专用参考信号。
CRS支持1个、2个、4个三种天线端口配置,对应的端口号分别是:p=0,p={0,1},p={0,1,2,3}。
(2)MBSFN参考信号(MBSFN reference signals),只在天线端口p=4中传输。
这种信号用的不多,本文不涉及。
(3)UE特定参考信号(UE-specific reference signals),或UE专用参考信号,有的英文资料中也把这种信号称作解调参考信号(Demodulation reference signals,DM-RS)。
可以在天线端口p=5,p=7,p=8,或p={7,8}中传输。
这块内容在后面的博文中再写。
(4)定位参考信号(Positioning reference signals),只在天线端口p=6中传输。
这种信号用的不多,本文不涉及。
2.小区特定参考信号的结构示意图设计小区特定参考信号(Cell-specific reference signals)的目的并不是为了承载用户数据,而是在于提供一种技术手段,可以让终端进行下行信道的估计。
终端可以通过对小区特定参考信号的测量,得到下行CQI、PMI、RI等信息。
NR逻辑天线端口介绍

天线端口在5G-NR或4G-LTE中,MIMO传输是下行链路中的关键技术。
对于未知的接收器,从gNB/eNB经由不同天线发射的信号或受到不同影响的信号,即使MIMO 天线位于同一站点,多天线预编码也将经历不同的无线信道。
一般来说,对于UE来说,根据不同下行链路传输所经历的无线信道之间的关系来考虑特定的假设是非常关键的,例如UE需要理解对于特定下行链路传输的信道估计应该使用什么样的参考信号并确定相关的信道状态信息用于调度和链路自适应目的。
出于同样的原因,在5G NR中使用了天线端口的概念,并且它遵循与LTE 相同的原则。
天线端口的定义使得可以从传送同一天线端口上的另一符号的信道,推断出传送天线端口上的符号的信道。
换言之,每个单独的下行链路传输是从特定的天线端口执行的,UE知道该天线端口的标识,并且UE可以假设两个发送的信号在并且仅当它们是从相同的天线端口发送时经历了相同的无线信道。
在实际中,每个天线端口(至少用于下行链路传输)可以被声明为对应于特定参考信号。
UE接收机可以假设该参考信号可用于估计与特定天线端口相对应的信道。
UE也可以使用参考信号来导出与天线端口相关的信道状态信息。
3gpp 规范38.211中为5G NR定义的天线端口组如下所示:Dowlink➢PDSCH (Dwonlink Shared Channel): Antenna Port Starting from 1000 (1000 Series)➢PDCCH (Control Channel): Antenna Port Starting from 2000 (2000 Series) ➢CSI-RS (Channel State Information): Antenna Port starting from 3000 (3000 Series)➢SS-Block/PBCH (Broadcast Channel): Antenna Port Starting from 4000 (4000 Series)Uplink➢PUSCH/DMRS (Uplink Shared Channel): Antenna Port Starting from 1000(0 Series)➢SRS, precoded PUSCH: Antenna Port Starting from 1000 (1000 Series) ➢PUCCH (Uplink Control Channel): Antenna Port Starting from 2000 (2000 Series)➢PRACH (Random Access): Antenna Port Starting from 4000 (4000 Series)天线端口和物理端口的映射:在NR和LTE中,没有严格的天线端口到物理天线端口的映射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)对于来自上层的数据,进行信道编码,形成码字;
2)对不同的码字进行调制,产生调制符号;
3)对于不同码字的调制信号组合一起进行层映射;
4)对于层映射之后的数据进行预编码,映射到天线端口上发送。
码字、层和天线端口的区分。
1、码字:
码字是指来自上层的业务流进行信道编码之后的数据。
不同的码字q区分不同的数据流,其目的是通过MIMO发送多路数据,实现空间复用。
由于LTE系统接收端最多支持2天线,所以发送的数据流数量最多为2。
这决定了不管发送端天线数为1、2或者4,码字q的数量最多只为2。
当发送端天线只有一根时,实际能够支持的码流数量也只能为1,所以码字数量最多也只能为1。
如果接收端有两根接收天线,但是两根天线高度相关。
如果发送端仍然发送两组数据流(两个码字),则接收端无法解码。
因此,在收端信道高度相关的情况下,码字数量也只能为1。
综上,码字q的数量决定于信道矩阵的秩。
2、层
由于码字数量和发送天线数量不一致,需要将码字流映射到不同的发送天线上,因此需要使用层与预编码。
层映射与预编码实际上是“映射码字到发送天线”过程的两个的子过程。
层映射首先按照一定的规则将码字流重新映射到多个层(新的数据流),参见P68表3-23、3-24。
(注:层的数量小于物理信道传输所使用的天线端口数量P)。
预编码再将数据映射到不同的天线端口上。
在各个天线端口上进行资源映射,生成OFDM符号并发射,参见P67页图3-11。
3、天线端口
天线端口指用于传输的逻辑端口,与物理天线不存在定义上的一一对应关系。
天线端口由用于该天线的参考信号来定义。
等于说,使用的参考信号是某一类逻辑端口的名字。
具体的说:p=0,p={0,1},p={0, 1, 2, 3}指基于cell-specific参考信号的端口;p=4指基于MBSFN 参考信号的端口;p=5为基于UE-specific参考信号的端口。
从层到物理天线端口传输是通过预编码来完成的,参见P69的两个公式。
由公式可见,无论层数是多少,只要其小于用于物理传输的端口数,即可通过预编码矩阵W(i)将其映射到物理的传输天线上。
对于p=4、5的情况,再P69第4行有介绍。
P={0,4,5}都指单天线端口预编码,即使用的发送天线为1。
由于层数量必须小于天线端口的数量,所以此时层数为1,适用表3-23第一种情况,层映射前后的码字是相同的。
曾有人指出,p=4、5时,发送端可以使用发送分集。
理论上这是可行的,但是在LTE 的规范中,p=4、5仅适用于单天线端口的预编码。
由P69的预编码中的1 、2 、3 小点分别介绍单端口、空间复用、传输分集的三种预编码方式。
P=4、5不属于传输分集。
4、总结
码字用于区分空间复用的流;层用于重排码字数据;天线端口决定预编码天线映射。