初中七年级上册数学期末复习题
七年级数学上册期末考试卷及答案【完整版】

七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .46.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定8.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若13a +与273a -互为相反数,则a=________. 三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
部编版七年级数学上册期末复习测试题(八套)(含答案)

七年级数学上册期末复习考(一)一、选择题(本题有10个小题,每小题3分,满分30分,下面每小愿给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.B.﹣C.2 D.﹣22.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4 B.﹣2 C.2 D.43.下列各式中,正确的是()A.3a+b=3ab B.4a﹣3a=1C.3a2b﹣4ba2=﹣a2b D.﹣2(x﹣4)=﹣2x﹣44.若代数式x+4的值是2,则x等于()A.2 B.﹣2 C.6 D.﹣65.太阳中心的温度可达15500000℃,这个数用科学记数法表示正确的是()A.0.155×108B.15.5×106C.1.55×107D.1.55×1056.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个7.下列各等式的变形中,等式的性质运用正确的是()A.由=0,得x=2 B.若a=b则=C.由﹣2a=﹣3,得a=D.由x﹣1=4,得x=58.将一张长方形纸片按如图所示的方式折叠,EC,ED为折痕,折叠后点A',B′,E在同一直线上,则∠CED的度数为()A.75°B.95°C.90°D.60°9.下列说法正确的是()A.单项式的系数是3B.3x2﹣y+5xy2是三次三项式C.单项式﹣22a4b的次数是7D.单项式b的系数是1,次数是010.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c二、填空题(本题有6个小题,每小题3分,共18分,)11.﹣9的绝对值是.12.如果∠α=35°,那么∠α的余角为.13.已知有理数x,y满足:x﹣2y﹣3=﹣5,则整式2y﹣x的值为.14.已知2x6y2和﹣x3m y n是同类项,则2m+n的值是.15.观察下列图形:它们是按一定规律排列的,依照此规律,第19个图形共有个★.16.观察下列式子:1⊕3=1×2+3=5,3⊕1=3×2+1=7,5⊕4=5×2+4=14.请你想一想:(a﹣b)⊕(a+b)=.(用含a,b的代数式表示)三、解答题(本大题有9小题,共72分,解答要求写出文字说明,证明过程或计算步骤,)17.(8分)计算:(1)6×(﹣2)+27÷(﹣9)(2)(﹣1)9×3﹣(﹣2)4÷(8)18.(10分)解方程:(1)5x=3(x﹣2)(2)﹣=119.(8分)先化简,再求值:2(3a2b﹣ab2+1)﹣(a2b﹣2ab2),其中a=﹣2,b=﹣1 20.(8分)如图1,已知线段a,b,其中a>b(1)用圆规和直尺作线段AB,使AB=2a+b(不写作法,保留作图痕迹);(2)如图2,点A、B、C在同一条直线上,AB=6cm,BC=2cm,若点D是线段AC的中点,求线段BD的长.21.(8分)某车间每天能制作甲种零件300只,或者制作乙种零件200只,1只甲种零件需要配2只乙种零件.(1)若制作甲种零件2天,则需要制作乙种零件只,才能刚好配成套.(2)现要在20天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?22.(10分)如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°(1)若∠AOC=40°,求∠BOE和∠DOE的度数;(2)若∠AOC=α,求∠DOE的度数(用含α的代数式表示).23.(10分)已知:代数式A=2x2﹣2x﹣1,代数式B=﹣x2+xy+1,代数式M=4A﹣(3A﹣2B)(1)当(x+1)2+|y﹣2|=0时,求代数式M的值;(2)若代数式M的值与x的取值无关,求y的值;(3)当代数式M的值等于5时,求整数x、y的值.24.(10分)为了更好的宣传低碳环保理念,天河区工会计划开展全民“绿道健步行”活动,甲、乙两人积极响应,相约在一条东西走向的笔直绿道上锻炼.两人从同一个地点同时出发,甲向东行进,乙向西行进,行进10分钟后,甲到达A处,乙到达B处,A、B两处相距1400米.已知甲、乙两人的速度之比是4:3.(1)求甲、乙两人的行进速度;(2)若甲、乙两人分别从A、B两处各自选择一个方向再次同时行进,行进速度保持不变,问:经过多少分钟后,甲、乙两人相距700米?参考答案及解析一、选择题(本题有10个小题,每小题3分,满分30分,下面每小愿给出的四个选项中,只有一个是正确的.)1.【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.故选:D.【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.3.【分析】根据合并同类项的法则即可求出答案.【解答】解:(A)原式=3a+b,故A错误;(B)原式=a,故B错误;(D)原式=﹣2x+8,故D错误;故选:C.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.4.【分析】根据已知条件列出关于x的一元一次方程,通过解一元一次方程来求x的值.【解答】解:依题意,得x+4=2移项,得x=﹣2故选:B.【点评】题实际考查解一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.5.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15500000=1.55×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【分析】分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.【解答】解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故选:D.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.7.【分析】利用等式的基本性质判断即可.【解答】解:A、由=0,得x=0,不符合题意;B、由a=b,c≠0,得=,不符合题意;C、由﹣2a=﹣3,得a=,不符合题意;D、由x﹣1=4,得x=5,符合题意,故选:D.【点评】此题考查了等式的性质,熟练掌握等式的基本性质是解本题的关键.8.【分析】根据折叠的性质和角平分线的定义即可得到结论.【解答】解:由题意知∠AEC=∠CEA′,∠DEB=∠DEB′,则∠A′EC=∠AEA′,∠B′DE=∠B′EB,所以∠CED=∠AEB=×180°=90°,故选:C.【点评】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.9.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别判断得出答案.【解答】解:A、单项式的系数是:,故此选项错误;B、3x2﹣y+5xy2是三次三项式,正确;C、单项式﹣22a4b的次数是5,故此选项错误;D、单项式b的系数是1,次数是1,故此选项错误;故选:B.【点评】此题主要考查了单项式和多项式,正确把握多项式与单项式的次数确定方法是解题关键.10.【分析】观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【解答】解:依题意,得:b=a+1,c=a+7,d=a+8.A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,∴a+d=b+c,选项D不符合题意.故选:A.【点评】本题考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.二、填空题(本题有6个小题,每小题3分,共18分,)11.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣9的绝对值是9,故答案为:9.【点评】本题考查了绝对值,负数的绝对值是它的相反数.12.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠α=35°,∴∠α的余角=90°﹣35°=55°.故答案为:55°.【点评】本题考查了余角,熟记互为余角的两个角的和等于90°是解题的关键.13.【分析】由x﹣2y﹣3=﹣5知x﹣2y=﹣2,从而得﹣(x﹣2y)=2,即2y﹣x=2.【解答】解:∵x﹣2y﹣3=﹣5,∴x﹣2y=﹣2,则﹣(x﹣2y)=2,即2y﹣x=2,故答案为:2.【点评】本题主要考查代数式的求值,解题的关键是熟练掌握等式的性质.14.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m,n的值,根据代数式求值,可得答案.【解答】解:根据题意得6=3m,n=2,解得m=n=2,则2m+n=4+2=6.故答案为:6【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.15.【分析】将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中★的个数的关系式,然后把n=19代入进行计算即可求解.【解答】解:观察发现,第1个图形★的个数是,1+3=4,第2个图形★的个数是,1+3×2=7,第3个图形★的个数是,1+3×3=10,第4个图形★的个数是,1+3×4=13,…依此类推,第n个图形★的个数是,1+3×n=3n+1,故当n=19时,3×19+1=58,故答案为:58.【点评】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.16.【分析】将第1个数乘以2,再加上第2个数,据此列出算式,再计算可得.【解答】解:(a﹣b)⊕(a+b)=2(a﹣b)+(a+b)=2a﹣2b+a+b=3a﹣b,故答案为:3a﹣b.【点评】本题主要考查有理数的混合运算和整式的运算,解题的关键是熟练掌握有理数和整式的混合运算顺序和运算法则.三、解答题(本大题有9小题,共72分,解答要求写出文字说明,证明过程或计算步骤,)17.【分析】(1)先计算乘法和除法,再计算加减可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣12﹣3=﹣15;(2)原式=﹣1×3﹣16÷(﹣8)=﹣3+2=﹣1.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:5x=3x﹣6,移项得:5x﹣3x=﹣6,合并同类项得:2x=﹣6,系数化为1得:x=﹣3,(2)方程两边同时乘以6得:3(x﹣1)﹣2(3﹣x)=6,去括号得:3x﹣3﹣6+2x=6,移项得:3x+2x=6+6+3,合并同类项得:5x=15,系数化为1得:x=3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.19.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=6a2b﹣2ab2+2﹣a2b+2ab2=5a2b+2,当a=﹣2,b=﹣1时,原式=5×4×(﹣1)+2=﹣20+2=﹣18.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【分析】(1)作射线AP,在射线AP上依次截取AM=MN=a,NB=b,据此可得;(2)先求出线段AC的长,再由中点得出DC的长,依据DB=DC﹣BC可得.【解答】解:(1)如图所示,线段AB即为所求.(2)∵AB=6cm,BC=2cm,∴AC=AB+BC=8cm,∵点D是线段AC的中点,∴DC=AC=4cm,∴DB=DC﹣BC=2cm.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握作一线段等于已知线段的尺规作图和线段的和差计算.21.【分析】(1)由需生产乙种零件的数量=每天生产甲种零件的数量×生产甲种零件的时间×2,即可求出结论;(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,根据生产零件的总量=每天生产的数量×生产天数结合要生产的乙种零件数量是甲种零件数量的2倍,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)300×2×2=1200(只).故答案为:1200.(2)设应制作甲种零件x天,则应制作乙种零件(20﹣x)天,依题意,得:2×300x=200(20﹣x),解得:x=5,∴20﹣x=15.答:应制作甲种零件5天,乙种零件15天.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量之间的关系,列式计算;(2)找准等量关系,正确列出一元一次方程.22.【分析】(1)先由邻补角定义求出∠BOC=180°﹣∠AOC=140°,再根据角平分线定义得到∠COD=∠BOC=70°,那么∠DOE=∠COE﹣∠COD=20°;(2)先由邻补角定义求出∠BOC=180°﹣∠AOC=180°﹣α,再根据角平分线定义得到∠COD=∠BOC,于是得到结论.【解答】解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=40°,∵∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=50°,∴∠BOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣70°=20°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.23.【分析】先化简代数式M(1)利用绝对值与平方的非负性求出x、y的值,代入代数式即可求解.(2)要取值与x的取值无关,只要含x项的系数为0,即可以求出y值.(3)要使代数式的值等于5,只要使得M=5,再根据x,y均为整数即可求解.【解答】解:先化简,依题意得:M=4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B,将A、B分别代入得:A+2B=2x2﹣2x﹣1+2(﹣x2+xy+1)=2x2﹣2x﹣1﹣2x2+2xy+2=﹣2x+2xy+1(1)∵(x+1)2+|y﹣2|=0∴x+1=0,y﹣2=0,得x=﹣1,y=2将x=﹣1,y=2代入原式,则M=﹣2×(﹣1)+2×(﹣1)×2+1=2﹣4+1=﹣1(2)∵M=﹣2x+2xy+1=﹣2x(1﹣y)+1的值与x无关,∴1﹣y=0∴y=1(3)当代数式M=5时,即﹣2x+2xy+1=5整理得﹣2x+2xy﹣4=x﹣xy+2=0 即x(1﹣y)=﹣2∵x,y为整数∴或或或∴或或或【点评】此题考查代数式的值,绝对值和平方的非负性,做此类题型,只要找到代数式的值和非负性突破口即可解答.但在要注意运算是符号的变化24.【分析】(1)由题意可知A、B两处相距1400米.且甲、乙两人的速度之比是4:3,故可设甲的速度为4x米/分钟,则乙的速度为3x米/分钟.根据s=vt即可解得甲乙两人的速度分别为80米/分钟,60米/分钟(2)由题意可知,这是相遇问题.A、B两处相距1400米,甲、乙两人的行进速度分别为80米/分钟,60米/分钟,设经过t分钟,甲乙相距700米.即可列方程(60+80)×t=1400﹣700解得t=5【解答】解:(1)设甲的速度为4x米/分钟,则乙的速度为3x米/分钟依题意列方程:(3x+4x)×10=700解得:x=20所以:3x=604x=80故:甲、乙两人的行进速度分别为80米/分钟,60米/分钟(2)设经过x分钟后,甲、乙两人相距700米依题意列方程:(60+80)×t=1400﹣700解得:t=5故经过5分钟后,甲、乙两人相距700米【点评】本题是典型的相向而行和相背而行的典型例题.清楚速度,时间和路程各自的表示方式,即可根据s=vt列方程.七年级数学上册期末复习考(二)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy 2.(3分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3.(3分)为了解某市参加中考的32000名学生的体重情况,抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.32000名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重是总体的一个样本D.以上调查是普查4.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0 D.﹣25.(3分)如图,直线a,b被直线c所截,且a∥b,下列结论不正确的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠2=∠3 6.(3分)二元一次方程组的解是()A.B.C.D.7.(3分)不等式4﹣2x>0的解集在数轴上表示为()A.B.C.D.8.(3分)坐标平面上,在第二象限内有一点P,且P点到x轴的距离是4,到y轴的距离是5,则P点坐标为何()A.(﹣5,4)B.(﹣4,5)C.(4,5)D.(5,﹣4)9.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1)D.Q′(3,3),R′(3,1)10.(3分)如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是()A.(4,0)B.(0,5)C.(5,0)D.(5,5)二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)4的平方根是.12.(3分)如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC的度数是.13.(3分)64的立方根为.14.(3分)如图,点C在直线AB上,∠ACD的度数比∠BCD的度数的3倍少20°,设∠ACD的度数为x°,∠BCD的度数为y°,那么可列出关于x、y的方程组是.15.(3分)不等式组的解集是.16.(3分)如图,△DEF是由△ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=4,则BE的长度是.17.(3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的条形统计图,则参加绘画兴趣小组的频率是.18.(3分)某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,则甲种票买了张.19.(3分)矩形ABCD中放置了6个形状、大小都相同的小矩形,所标尺寸如图所示,则图中阴影部分的面积是cm2.20.(3分)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.如果[a]=﹣2,则a的取值范围是.三、解答题(满分60分)21.(6分)AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?解:BE∥DF.∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.又∵∠1+∠2=90°,且∠2=∠3,∴=.理由是:.∴BE∥DF.理由是:.22.(8分)计算:(1)2+++|﹣2|(2)+﹣.23.(8分)解方程组:①;②.24.(8分)(1)解不等式≤.(2)解不等式组并将它的解集在数轴上表示出来.25.(6分)如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?26.(8分)某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h,乙机器人工作4h,一共可以分拣700件包裹;若甲机器人工作3h,乙机器人工作2h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?27.(8分)已知:A(0,1),B(2,0),C(4,3)(1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积;(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.28.(8分)我市在一项市政工程招标时,接到甲、乙工程队的投标书:每施工一天,需付甲工程队工程款为1.5万元,付乙工程队1.1万元.工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案1:甲队单独施工完成此项工程刚好如期完工;方案2:乙队单独施工完成此项工程要比规定工期多用5天;方案3:若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工.(1)你认为哪一种施工方案最节省工程款?请说明理由.(2)如果工程领导小组希望能够提前4天完成此项工程,请问该如何设计施工方案,需要工程款多少万元?(要求用二元一次方程组解答,天数必须为整数)参考答案及解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选:B.2.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选:D.3.【解答】解:某市参加中考的32000名学生的体重情况是总体,故A错误;每名学生的体重情况是总体的一个个体,故B错误;1500名学生的体重情况是一个样本,故C正确;该调查属于抽样调查,故D错误;故选:C.4.【解答】解:,0,﹣2是有理数,是无理数,故选:A.5.【解答】解:∵a∥b,∴∠1=∠3,故A正确∵∠3=∠4,∴∠1=∠4,故C正确,∵∠2+∠1=180°,∴∠2+∠4=180°,故B正确,故选:D.6.【解答】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故选:B.7.【解答】解:移项,得:﹣2x>﹣4,系数化为1,得:x<2,故选:D.8.【解答】解:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0;又∵P到x轴的距离是4,到y轴的距离是5,∴点P的纵坐标是4,横坐标是﹣5;故点P的坐标为(﹣5,4),故选:A.9.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.10.【解答】解:由题意可知质点移动的速度是1个单位长度/每秒,到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(5,0)用25+10=35秒.故第35秒时质点到达的位置为(5,0),故选:C.二、填空题(本大题共10小题,每小题3分,共30分)11.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.12.【解答】解:∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又已知∠AOD+∠BOC=100°,∴∠AOD=50°.∵∠AOD与∠AOC互为邻补角,∴∠AOC=180°﹣∠AOD=180°﹣50°=130°.故答案是:130°.13.【解答】解:64的立方根是4.故答案为:4.14.【解答】解:设∠ACD的度数为x°,∠BCD的度数为y°,依题意,得:.故答案为:.15.【解答】解:由(1)得,x>2由(2)得,x>3所以解集是:x>3.16.【解答】解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=(BF﹣EC),∵BF=14,EC=4,∴BE=(14﹣4)=5.故答案为:517.【解答】解:∵根据条形统计图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.3.故答案为0.3.18.【解答】解:设甲种票买了x张,则乙种票买了(36﹣x)张,依题意得:30x+20(36﹣x)=860,解方程得:x=14.即甲种票买了14张.故答案是:14.19.【解答】解:设小长方形的长、宽分别为xcm,ycm,依题意得,解得:,∴小长方形的长、宽分别为7cm,2cm,∴S阴影部分=S四边形ABCD﹣6×S小长方形=13×9﹣6×2×7=33cm2.故答案为:33.20.【解答】解:∵[a]=﹣2,∴a的取值范围是﹣2≤a<﹣1;故答案为:﹣2≤a<﹣1.三、解答题(满分60分)21.【解答】解:BE∥DF,∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠4,理由是:等角的余角相等,∴BE∥DF.理由是:同位角相等,两直线平行.故答案为:90;90;∠1,∠4;等角的余角相等;同位角相等,两直线平行.22.【解答】解:(1)2+++|﹣2|=2+3﹣2+2﹣=+3;(2)+﹣=﹣3+4﹣=1﹣=﹣.23.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.24.【解答】解:(1)去分母,得:3(x﹣2)≤2(7﹣x),去括号,得:3x﹣6≤14﹣2x,移项,得:3x+2x≤14+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣7,则不等式组的解集为﹣7<x≤1,将解集表示在数轴上如下:25.【解答】解:(1)第五小组频率=1﹣0.05﹣0.15﹣0.25﹣0.30=0.25.(2)参加本次测试的学生总数=25÷0.25=100(人).(3)第三小组的频数为25,第四小组的频数为30,第五小组人数为25,估计全校七年级有,400×=320名学生合格.26.【解答】解:(1)设甲、乙两机器人每小时各分拣x件、y件包裹,根据题意得,解得,答:甲、乙两机器人每小时各分拣150件、100件包裹;(2)设它们每天要一起工作t小时,根据题意得(150+100)t≥2250,解得t≥9.答:它们每天至少要一起工作9小时.27.【解答】解:(1)如图所示:(2)过点C向x、y轴作垂线,垂足为D、E.∴四边形DOEC的面积=3×4=12,△BCD的面积==3,△ACE的面积==4,△AOB的面积==1.∴△ABC的面积=四边形DOEC的面积﹣△ACE的面积﹣△BCD的面积﹣△AOB的面积=12﹣3﹣4﹣1=4.当点p在x轴上时,△ABP的面积==4,即:,解得:BP=8,所点P的坐标为(10,0)或(﹣6,0);当点P在y轴上时,△ABP的面积==4,即,解得:AP=4.所以点P的坐标为(0,5)或(0,﹣3).所以点P的坐标为(0,5)或(0,﹣3)或(10,0)或(﹣6,0).28.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+5)天.依题意,得:++=1,解得:x=20.经检验:x=20是原分式方程的解.∴(x+5)=25这三种施工方案需要的工程款为:方案1:1.5×20=30(万元);方案2:1.1×(20+5)=27.5(万元);方案3:1.5×4+1.1×20=28(万元).∵30>28>27.5,∴第二种施工方案最节省工程款;(2)设甲乙合作a天后再由甲队独做b天完成或由乙独b天完成,由题意,得或a=5或,∵不是整数舍去,∴a=5.∴需要的工程款为:1.5×16+1.1×5=29.5万元.答:需要的工程款为:29.5万元.七年级数学上册期末复习考(三)一、选择题(每题2分,共16分,将正确答案的字母填在括号内)1.﹣5的绝对值是()A.﹣5 B.5 C.D.﹣2.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10133.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1 B.﹣2 C.﹣3 D.04.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个5.某书店把一本书按进价提高60%标价,再按七折出售,这样每卖出一本书就可盈利6元,设每本书的进价是x元,根据题意列一元一次方程,正确的是()A.(1+60%)x=6 B.60%x﹣x=6C.(1+60%)x﹣x=6 D.(1+60%)x﹣x=66.已用点A、B、C、D、E的位置如图所示,下列结论中正确的是()A.∠AOB=130°B.∠AOB=∠DOEC.∠DOC与∠BOE互补D.∠AOB与∠COD互余7.已知线段AB=6,在直线AB上画线段BC,使BC=2,则线段AC的长()A.2 B.4 C.8 D.8或48.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空题(每题2分,共16分,把答案写在题中横线上)9.|﹣|的相反数是.10.请写出一个单项式,同时满足下列条件:①含有字母m、n;②系数是负整数;③次数是3,你写的单项式为.11.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为°.12.已知|x+1|+(3﹣y)2=0,则x y的值是.13.已知a+b=2,则多项式2﹣3a﹣3b的值是.14.若一个角比它的补角大36°48′,则这个角为°′.15.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组的3倍,求变化后乙组有人.16.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x n=.三、解答题(17题8分,18题4分,19题5分,20题5分,共22分)17.(8分)计算:(1)﹣22+8÷(﹣2)×﹣(﹣1)2019(2)﹣×[﹣32×(﹣)2﹣2]18.(4分)解方程:x﹣=1﹣19.(5分)先化简,再求值:3x2y﹣[2x2y﹣x(xy+3)],其中x=﹣,y=2.20.(5分)已知多项式A、B,其中A=x2+2x﹣1,某同学在计算A+B时,由于粗心把A+B看成了A﹣B求得结果为﹣3x2+2x﹣1,请你算出A+B的正确结果.四、解答题(每题8分,共16分)21.(8分)如图,N为线段AC中点,点M、点B分别为线段AN、NC上的点,且满足AM:MB:BC=1:4:3.(1)若AN=6,求AM的长.(2)若NB=2,求AC的长.22.(8分)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE (1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.五、解答题(23题10分,24题10分,25题10分,共30分)23.(10分)上海到北京的G102次列车平均每小时行驶200公里,每天6:30发车,从北京到上海的G5次列车平均每小时行驶280公里,每天7:00发车,已知北京到上海高铁线路长约1180公里,问两车几点相遇?24.(10分)某商场购进西装30件,衬衫45件,共用了39000元,其中西装的单价是衬衫的5倍.(1)求西装和衬衫的单价各为多少元?(2)商场仍需要购买上面的两种产品55件(每种产品的单价不变),采购部预算共支出32000元,财会算了一下,说:“如果你用这些钱共买这两种产品,那么账肯定算错了”请你用学过的方程知识解释财会为什么会这样说?25.(10分)如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:3,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.。
初中七年级数学上册期末专项复习4套含答案

A. 2.2 104
B. 22 103
C. 2.2 103
8.对于用四舍五入法得到的近似数4.609万,下列说法正确的是( )
D. 0.22 105
A.它精确到千分位
B.它精确到0.01
C.它精确到万位
D.它精确到十位
9. 1 3 5 2 013 2 015 2 4 6 2 014 2 016 = ( )
么位置时,他们两家相距最远,最远是多少?处在什么位置时,他们两家相距最近,最近是多少?
23.(6分)草履虫可以吞食细菌使污水得到净化.1个草履虫每小时大约能形成60个食物泡,每个食物泡大 约吞食30个细菌,那么1个草履虫每天(以24小时计算)大约能吞食多少个细菌?100个草履虫呢?(用科 学记数法表示)
【解析】1 3 5 2013 2015 2 4 6 2014 2016 1 2 3 4 2015 2016
1 1 1 1008 .故选D.
10.【答案】B
二、
11.【答案】 7 或 9 12.【答案】713.【答案】 2 , 4 2 , 0.83 3.7 , 2
(2)计算:①
1 1 2
2
1
3
1 3
4
2
019
1
2
020
;
② 1 1 1
1
;
13 35 5 7
2 017 2 019
期末专项复习—有理数
答案解析
一、
1.【答案】C 【解析】由题意,得 8℃ 表示下降 8℃ .故选C.
2.【答案】A【解析】 1 的相反数是 1 .故选A.
2020
2020
(3)若巡逻车每一百千米耗油12升,求该晚巡逻车共耗油多少升.
初中七年级数学上册期末考试题及答案【可打印】

初中七年级数学上册期末考试题及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若单项式am﹣1b2与的和仍是单项式, 则nm的值是()A. 3B. 6C. 8D. 92.如图, 点D, E分别在线段AB, AC上, CD与BE相交于O点, 已知AB=AC, 现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, 若AB, CD相交于点O, ∠AOE=90°, 则下列结论不正确的是()A. ∠EOC与∠BOC互为余角B. ∠EOC与∠AOD互为余角C. ∠AOE与∠EOC互为补角D. ∠AOE与∠EOB互为补角5.如图所示, 已知∠AOB=64°, OA1平分∠AOB, OA2平分∠AOA1, OA3平分∠AOA2, OA4平分∠AOA3, 则∠AOA4的大小为()A. 1°B. 2°C. 4°D. 8°6.有理数m, n在数轴上分别对应的点为M, N, 则下列式子结果为负数的个数是()①;②;③;④;⑤.A. 2个B. 3个C. 4个D. 5个7.下列图形既是轴对称图形, 又是中心对称图形的是()A. B.C. D.8.如图, 已知在四边形中, , 平分, , , , 则四边形的面积是()A. 24B. 30C. 36D. 429.已知实数a、b满足a+b=2, ab= , 则a﹣b=()A. 1B. ﹣C. ±1D. ±10.将一副直角三角板按如图所示的位置摆放, 使得它们的直角边互相垂直, 则 的度数是( )A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 若a 、b 为实数, 且b = +4, 则a+b =________.2.如图, AB ∥CD, FE ⊥DB, 垂足为E, ∠1=50°, 则∠2的度数是_____.3. 若 , , , , 则 ________ .4.如果一个数的平方根是a+6和2a ﹣15, 则这个数为________.5. 分解因式: 4ax2-ay2=_____________.6. 已知一组从小到大排列的数据:2, 5, x, y, 2x, 11的平均数与中位数都是7, 则这组数据的众数是________.三、解答题(本大题共6小题, 共72分)1. 解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2. 已知关于x 的不等式组 恰有两个整数解,求实数a 的取值范围.3. 如图, 已知点A(-2, 3), B(4, 3), C(-1, -3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上, 当三角形ABP的面积为6时, 请直接写出点P的坐标.4. 尺规作图: 校园有两条路OA.OB, 在交叉路口附近有两块宣传牌C.D, 学校准备在这里安装一盏路灯, 要求灯柱的位置P离两块宣传牌一样远, 并且到两条路的距离也一样远, 请你帮助画出灯柱的位置P. (不写画图过程, 保留作图痕迹)5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 某网店销售甲、乙两种羽毛球, 已知甲种羽毛球每筒的售价比乙种羽毛球多15元, 王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球, 共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求, 该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒, 且甲种羽毛球的数量大于乙种羽毛球数量的, 已知甲种羽毛球每筒的进价为50元, 乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒, 则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出, 请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式, 并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.D3.C4.C5.C6.B7、D8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.5或32.40°3.<4.815.a(2x+y)(2x-y)6.5三、解答题(本大题共6小题, 共72分)1.(1)x=5;(2)x=-72.-4≤a<-3.3、(1)3;(2)18;(3)(0, 5)或(0, 1).4.略.5.(1)20%;(2)6006、(1)该网店甲种羽毛球每筒的售价为60元, 乙种羽毛球每筒的售价为45元;(2)①进货方案有3种, 具体见解析;②当m=78时, 所获利润最大, 最大利润为1390元.。
2023最新七年级上册数学期末试卷及答案

2023最新七年级上册数学期末测试题及答案一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃2.(2分)下列各式中,是一元一次方程的是()A .2x+5y=6 B.3x﹣2 C.x2=1 D.3x+5=83.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B.C.D.4.(2分)下列不是同类项的是()A .3x2y与﹣6xy2B.﹣ab3与b3a C.12和0 D.5.(2分)如图,以A、B、C、D、O为端点的线段共有()条.A .4 B.6 C.8 D.106.(2分)如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A .50°B.75°C.100°D.120°7.(2分)若与互为相反数,则a=()A .B.10 C.D.﹣108.(2分)关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A .10 B.﹣8 C.﹣10 D.89.(2分)已知线段AB,延长AB到C,使BC=2AB,M、N分别是AB、BC的中点,则()A .MN=BC B.AN=AB C.BM:BN=1:2D.AM=BC10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A .2 B.3 C.4 D.5二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据_________ 就能把线画得很准确.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.13.(3分)已知关于x的一元一次方程a(x﹣3)=2x﹣3a的解是x=3,则a= _________ .14.(3分)不大于3的所有非负整数是_________ .15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是_________ .16.(3分)如图所示,将长方形ABCD的一角沿AE折叠,若∠BAD′=30°,那么∠EAD′= _________ °.17.(3分)若线段AB=8,BC=3,且A,B,C三点在一条直线上,那么AC= _________ .18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为_________ .输入… 1 2 3 4 5 …输出……三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a﹣3a2)+(5a﹣6a2);(4)2(2b﹣3a)+3(2a﹣3b);(5)32°49'+25°51';(6)180°﹣56°23'.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x﹣1);(3);(4).四、作图题(每题3分,共6分)21.(3分)如图所示,直线l是一条平直的公路,A,B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A,B的距离之和最小,请在公路上表示出点P的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).22.(3分)淘气有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30度,在B地的南偏东45度,你能帮淘气确定C地的位置吗?五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.24.(3分)先化简,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=,b=10.25.(3分)如图所示,C、D是线段AB的三等分点,且AD=4,求AB的长.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?七、解答题(6分)31.(6分)如图(1)所示,∠AOB、∠COD都是直角.(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.参考答案与试题解析一、选择题(每题只有一个正确答案,每题2分,共20分)1.(2分)(2006•广州)某市某日的气温是﹣2℃~6℃,则该日的温差是()A .8℃B.6℃C.4℃D.一2℃考点: 有理数的减法. 专题:应用题. 分析: 认真阅读列出正确的算式,温差就是用最高温度减最低温度,列式计算.解答:解:该日的温差=6﹣(﹣2)=8(℃).故选A . 点评: 考查有理数的运算.有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(2分)下列各式中,是一元一次方程的是( ) A . 2x+5y=6 B .3x ﹣2 C .x 2=1 D .3x+5=8考点:一元一次方程的定义. 分析: 只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a ,b 是常数且a ≠0).解答: 解:A 、含有2个未知数,故选项错误; B 、不是等式,故选项错误;C 、是2次方程,故选项错误;D 、正确.故选D .点评: 本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.3.(2分)如图所示的几何体,从上面看得到的平面图形是()A .B .C . D.考点:简单组合体的三视图.分析:根据所看位置,找出此几何体的三视图即可.解答: 解:从上面看得到的平面图形是两个同心圆,故选:B .点评: 此题主要考查了简单几何体的三视图,关键是要把所看到的棱都表示到图中.4.(2分)下列不是同类项的是( )A . 3x 2y 与﹣6xy 2B . ﹣ab 3与b 3aC . 12和0D .考点:同类项.分析: 根据同类项的定义:所含字母相同,相同字母的指数相同即可作出判断.解答: 解:A 、相同字母的指数不同,不是同类项;B 、C 、D 都是同类项.故选A .点评:本题考查同类项的定义,理解定义是关键.5.(2分)如图,以A 、B 、C 、D 、O 为端点的线段共有()条.A . 4B . 6C . 8D .10考点:直线、射线、线段.分析:根据线段的定义结合图形可得出答案.解答: 解:以A 、B 、C 、D 、O 为端点的线段有:AB ,AO ,AD ,BO ,BC ,OC ,OD ,CD 共有8条线段.故选C .点评: 题考查了直线、射线、线段.属于基础题,注意在查找的时候按顺序,避免遗漏.6.(2分)如图,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠COD=25°,则∠AOB 等于( )A .50°B . 75°C . 100°D .120°考点:角的计算;角平分线的定义.专题:计算题.分析: 根据角的平分线定义得出∠AOD=∠COD ,∠AOB=2∠AOC=2∠BOC ,求出∠AOD 、∠AOC 的度数,即可求出答案.解答: 解:∵OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,∠COD=25°,∴∠AOD=∠COD=25°,∠AOB=2∠AOC ,∴∠AOB=2∠AOC=2(∠AOD+∠COD )=2×(25°+25°)=100°,故选C .点评:本题考查了对角平分线定义和角的计算等知识点的应用,主要考查学生运用角平分线定义进行推理的能力和计算能力,题目较好,难度不大.7.(2分)若与互为相反数,则a=( ) A .B . 10C .D .﹣10考点:解一元一次方程.专题:计算题.分析: 先根据互为相反数的定义列出方程,然后根据一元一次方程的解法,去分母,移项,化系数为1,从而得到方程的解.解答: 解:根据题意得,+=0,去分母得,a+3+2a ﹣7=0,移项得,a+2a=7﹣3,合并同类项得,3a=4,系数化为1得,a=.故选A .点本题主要考查了解一元一次方程,注意在去分母时,方评: 程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.8.(2分)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A .10B . ﹣8C . ﹣10D .8考点:同解方程.专题:计算题.分析: 在题中,可分别求出x 的值,当然两个x 都是含有m 的代数式,由于两个x 相等,可列方程,从而进行解答. 解答: 解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2 由题意知=m ﹣2 解之得:m=﹣8.故选B .点评:根据题目给出的条件,列出方程组,便可求出未知数.9.(2分)已知线段AB ,延长AB 到C ,使BC=2AB ,M 、N 分别是AB 、BC 的中点,则( )A . MN=BCB . AN=ABC . BM :BN=1:2D . AM=BC考点:两点间的距离.分析: 根据已知得出AM=BM=AB ,AB=BN=NC ,BN=NC=BC ,即可推出各个答案.解答: 解: A 、∵M 、N 分别是AB 、BC 的中点,∴BM=AB ,BN=BC ,∴MN=BM+BN=AB+BC=AC ,故本选项错误;B 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BN=NC=AB ,∴AN=2AB ,故本选项错误;C 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴BA=BN=NC ,∴BM=AB=BN ,∴BM :BN=1:2,故本选项正确;D 、∵BC=2AB ,M 、N 分别是AB 、BC 的中点,∴AB=BN=NC ,∴AM=AB=BC ,故本选项错误;故选C .点评: 本题考查了线段的中点和求两点间的距离的应用,能熟练地推出各个有关的关系式是解此题的关键.10.(2分)(2008•乌兰察布)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于( )个正方体的重量.A .2B . 3C . 4D .5考点:一元一次方程的应用.专题:数字问题.分析: 由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.解答:解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程2x=5y ;2z=3y ,消去y 可得:x=z ,则3x=5z ,即三个球体的重量等于五个正方体的重量.故选D .点评:此题的关键是找到球,正方体,圆柱体的关系.二、填空题(每空3分,共24分)11.(3分)木匠在木料上画线,先确定两个点的位置,根据 两点确定一条直线 就能把线画得很准确.考点:直线的性质:两点确定一条直线.分析:根据直线的性质,两点确定一条直线解答.解答: 解:先确定两个点的位置,是根据两点确定一条直线. 故答案为:两点确定一条直线.点评: 本题主要考查了直线的性质,熟记两点确定一条直线是解题的关键.12.(3分)右面是“美好家园”购物商场中“飘香”洗发水的价格标签,请你在横线上填出它的现价.考点:一元一次方程的应用.分析: 设出洗发水的现价是x 元,直接得出有关原价的一元一次方程,再进行求解.解答: 解:设洗发水的现价为x 元,由题意得:0.8×36=x ,解得:x=28.8(元).故答案为:28.8元.点评: 此题主要考查了一元一次方程的应用中打折问题,也可以直接计算得出.13.(3分)已知关于x 的一元一次方程a (x ﹣3)=2x ﹣3a 的解是x=3,则a= 2 .考点:一元一次方程的解.分析: 把x=3代入方程即可得到一个关于a 的方程,解方程即可求得a 的值.解答: 解:把x=3代入方程得:6﹣3a=0,解得:a=2.故答案是:2.点评:本题考查了方程的解的定义,理解定义是关键.14.(3分)不大于3的所有非负整数是 0、1、2、3 .考点:有理数大小比较;数轴.分析:非负整数包括0和正整数,根据题意找出即可.解答: 解:不大于3的所有非负整数是0、1、2、3,故答案为:0、1、2、3.点评: 本题考查了有理数的大小比较,注意:非负整数包括0和正整数.15.(3分)如图所示,是一个正方体的平面展开图,当把它折成一个正方体时,与空白面相对的字应该是 欢 .考点: 专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答: 解:这是一个正方体的平面展开图,共有六个面,其中面“京”与“你”相对,面“迎”与面“北”相对,“欢”与面“空白”相对.故答案为:欢.点评: 本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.16.(3分)如图所示,将长方形ABCD 的一角沿AE 折叠,若∠BAD ′=30°,那么∠EAD ′= 30 °.考点:角的计算;翻折变换(折叠问题).分析: 首先根据矩形的性质得出∠DAD ′的度数,再根据翻折变换的性质得出∠DAE=∠EAD ′=∠DAD ′即可得出答案. 解答: 解:∵∠BAD ′=30°,∴∠DAD ′=90°﹣30°=60°,∵将长方形ABCD 的一角沿AE 折叠, ∴∠DAE=∠EAD ′=∠DAD ′=30°.故答案为:30.点评: 此题主要考查了翻折变换的性质以及角的计算,根据已知得出∠DAE=∠EAD ′是解题关键.17.(3分)若线段AB=8,BC=3,且A ,B ,C 三点在一条直线上,那么AC= 5或11 .考点:两点间的距离.分析:根据题意画出符合图形的两种情况,求出即可.解答: 解:分为两种情况:①如图1,AC=AB+BC=8+3=11;②如图2,AC=AB ﹣BC=8﹣3=5;故答案为:5或11.点评: 本题考查了两点之间的距离的应用,注意要进行分类讨论啊.18.(3分)(2006•旅顺口区)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据为8时,输出的数据为. 输入 …1 2 3 4 5 … 输出 ……考点:代数式求值.专压轴题;图表型.题:分析: 根据图表找出输出数字的规律,直接将输入数据代入即可求解.解答: 解:输出数据的规律为,当输入数据为8时,输出的数据为=. 点评: 此题主要考查根据已有输入输出数据找出它们的规律,进而求解.三、计算题(每题3分,共18分)19.(18分)(1)(﹣76)+(+26)+(﹣31)+(+17);(2)﹣14﹣2×(﹣3)2;(3)(2a ﹣3a 2)+(5a ﹣6a 2);(4)2(2b ﹣3a )+3(2a ﹣3b );(5)32°49'+25°51';(6)180°﹣56°23'.考点:有理数的混合运算;度分秒的换算.分析: (1)先化简,再进行计算即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(3)(4)先去括号,再合并同类项;(5)(6)度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.解答: 解:(1)(﹣76)+(+26)+(﹣31)+(+17);=﹣76+26﹣31+17=﹣107+43=﹣64;(2)﹣14﹣2×(﹣3)2;=﹣1﹣2×9=﹣1﹣18=﹣19;(3)(2a ﹣3a 2)+(5a ﹣6a 2)=2a ﹣3a 2+5a ﹣6a 2=﹣9a 2+7a ;(4)2(2b ﹣3a )+3(2a ﹣3b )=4b ﹣6a+6a ﹣9b=﹣5b ;(5)32°49′+25°51′=58°40′;(6)180°﹣56°23′=123°37′.点评: 本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.同时考查了整式的混合运算和度分秒的加减运算.四、解下列一元一次方程(每题3分,共12分)20.(12分)(1);(2)5(x+2)=2(5x ﹣1);(3);(4).考点:解一元一次方程.专题:计算题.分析: 利用去分母,去括号,移项合并,将未知数系数化为1,即可求出解.解答: 解:(1)去分母得:3x+8=12﹣x ,移项合并得:4x=4,解得:x=1;(2)去括号得:5x+10=10x ﹣2,移项合并得:﹣5x=﹣12,解得:x=;(3)去分母得:6(x ﹣2)=2x ﹣1,去括号得:6x ﹣12=2x ﹣1,移项合并得:4x=11,解得:x=;(4)去分母得:3(y+3)=2(y ﹣3)+6y ,去括号得:3y+9=2y ﹣6+6y ,移项合并得:﹣5y=﹣15,解得:y=3.点评: 此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、作图题(每题3分,共6分)21.(3分)如图所示,直线l 是一条平直的公路,A ,B 是两个车站,若要在公路l 上修建一个加油站,如何使它到车站A ,B 的距离之和最小,请在公路上表示出点P 的位置,并说明理由.(保留作图痕迹,并用你所学的数学知识说明理由).考点:作图—应用与设计作图.分析:连接AB ,与l 的交点就是P 点.解答:解:如图所示:点P 即为所求.点评: 此题主要考查了作图与应用作图,关键是掌握两点之间线段最短.22.(3分)淘气有一张地图,有A 、B 、C 三地,但地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30度,在B 地的南偏东45度,你能帮淘气确定C 地的位置吗?考方向角.点:专题:作图题.分析: 根据方位角的概念画出:A 地的北偏东30度,B 地的南偏东45度两条直线,两直线的交点就是C .解答:解:如图C 在A 、B 两点的交点上点评: 解答此题需要熟练掌握方位角的概念,认真作图解答即可.五、解答题(每题3分,共9分)23.(3分)(1999•杭州)已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.考点:余角和补角.专题:计算题.分析: 利用题中“一个角的补角比这个角的余角的3倍大10°”作为相等关系列方程求解即可.解答: 解:设这个角是x ,则(180°﹣x )﹣3(90°﹣x )=10°, 解得x=50°.故答案为50°.点评: 主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.24.(3分)先化简,再求值:﹣(﹣a 2+2ab+b 2)+(﹣a 2﹣ab+b 2),其中a=,b=10.考点:整式的加减—化简求值.专题:计算题.分析: 原式利用去括号法则去括号后,合并同类项得到最简结果,将a 与b 的值代入计算即可求出值.解答: 解:原式=a 2﹣2ab ﹣b 2﹣a 2﹣ab+b 2=﹣3ab ,当a=﹣,b=10时,原式=﹣3×(﹣)×10=2.点评:此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.25.(3分)如图所示,C 、D 是线段AB 的三等分点,且AD=4,求AB 的长.考点:两点间的距离.分析: 根据已知得出AC=CD=BD ,求出BD ,代入AD+BD 求出即可.解答: 解:C 、D 是线段AB 的三等分点,AD=4,∵AC=CD=BD=AD=2,∴AB=AD+BD=4+2=6,即AB 的长是6.点评: 本题考查了线段的中点和求两点间的距离等知识点的应用.六、列方程解下列应用题(每题5分,共25分)26.(5分)一个长方形的周长为28cm ,将此长方形的长减少2cm ,宽增加4cm ,就可成为一个正方形,那么原长方形的长和宽分别是多少?考点:一元一次方程的应用.分析: 设长方形的长是xcm ,根据正方形的边长相等即可列出方程求解.解解:设长方形的长是xcm ,则宽为(14﹣x )cm ,答: 根据题意得:x ﹣2=(14﹣x )+4,解得:x=10,14﹣x=14﹣10=4.答:长方形的长为10cm ,宽为4cm .点评:此题主要考查了一元一次方程的应用,得到长方形的宽是解决本题的突破点,根据正方形的边长相等得到等量关系是解决本题的关键.27.(5分)(2006•吉林)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析: 本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解解:设严重缺水城市有x 座,答: 依题意得:(4x ﹣50)+x+2x=664.解得:x=102.答:严重缺水城市有102座.点评: 本题考查列方程解应用题的能力,解决问题的关键在于找到合适的等量关系,列出方程组求解.28.(5分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.考点:一元一次方程的应用.分析: 设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度素.解答: 解:设列车提速前的速度是x 千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176)x=80∴提速后的速度为:x+176=256答:列车提速后的速度为256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.29.(5分)(2007•徐州)某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条.该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元.问小王该月发送网内、网际短信各多少条?考点:二元一次方程组的应用.分析: 本题的等量关系为:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元;根据这两个等量关系来列出方程组.解答:解:设小王该月发送网内短信x 条,网际短信y 条. 根据题意得 解这个方程组得. 答:小王该月发送网内短信70条,网际短信80条.点评: 解题关键是弄清题意,找到关键语,找出合适的等量关系:发送的网内短信的条数+发送的网际短信的条数=150条;发送网内短信的费用+发送网际短信的费用=19元.然后列出方程组.30.(5分)某城市按以下规定收取每月的煤气费:用气如果不超过60m 3,按每立方米0.8元收费;如果超过60m 3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?考点:一元一次方程的应用.专题:应用题.分析: 先判断出4月份所用煤气一定超过60m 3,等量关系为:60×0.8+超过60米的立方数×1.2=0.88×所用的立方数,设4月份用了煤气x 立方,从而得出方程求解即可.解答: 解:由4月份煤气费平均每立方米0.88元,可得4月份用煤气一定超过60m 3,设4月份用了煤气x 立方,由题意得:60×0.8+(x ﹣60)×1.2=0.88×x ,解得:x=75,则所交电费=75×0.88=66元.答:4月份这位用户应交煤气费66元.点评: 本题考查用一元一次方程解决实际问题,判断出煤气量在60m 3以上是解决本题的突破点,得到煤气费的等量关系是解决本题的关键.七、解答题(6分)31.(6分)如图(1)所示,∠AOB 、∠COD 都是直角.(1)试猜想∠AOD 与∠COB 在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.(2)当∠COD 绕着点O 旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.考点:余角和补角.分析: (1)根据直角的定义可得∠AOB=∠COD=90°,然后用∠AOD 和∠COB 表示出∠BOD ,列出方程整理即可得解;(2)根据周角等于360°列式整理即可得解.解答: 解:(1)∠AOD 与∠COB 互补.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∴∠BOD=∠AOD ﹣∠AOB=∠AOD ﹣90°,∠BOD=∠COD ﹣∠COB=90°﹣∠COB ,∴∠AOD ﹣90°=90°﹣∠COB ,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补;(2)成立.理由如下:∵∠AOB 、∠COD 都是直角,∴∠AOB=∠COD=90°,∵∠AOB+∠BOC+∠COD+∠AOD=360°,∴∠AOD+∠COB=180°,∴∠AOD 与∠COB 互补.点评: 本题考查了余角和补角的定义,比较简单,用两种方法表示出∠BOD 是解题的关键.。
初一数学上册期末复习题库

初一数学上册期末复习题库一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -5B. 0C. 1D. -12. 一个数的相反数是-8,这个数是:A. 8B. -8C. 0D. 163. 若a > 0,b < 0,则a + b的值:A. 一定大于0B. 一定小于0C. 可能大于0也可能小于0D. 为04. 绝对值最小的数是:A. 0B. 1C. -1D. 25. 若|a| = |b|,则a与b的关系是:A. 相等B. 互为相反数C. 相等或互为相反数D. 无法确定6. 一个数的平方大于这个数本身,这个数是:A. 0B. 1C. -1D. 27. 一个数的立方是-8,这个数是:A. -2B. 2C. -8D. 88. 根据乘法分配律,2(a+b)可以表示为:A. 2a+2bB. a+bC. 2a-bD. a+2b9. 一个数的倒数是1/5,这个数是:A. 5B. 1/5C. 5/1D. 1/410. 下列哪个是二次根式?A. √4B. -√4C. √-4D. √16二、填空题(每题2分,共20分)1. 一个数的绝对值是5,这个数可以是________。
2. 一个数的相反数是-3,这个数是________。
3. 若a = -2,b = 3,则a + b = ________。
4. 一个数的平方是9,这个数是________。
5. 一个数的立方是27,这个数是________。
6. 根据乘法分配律,3(a-b) = ________。
7. 一个数的倒数是2/3,这个数是________。
8. 一个数的平方根是4,这个数是________。
9. 一个数的立方根是2,这个数是________。
10. 一个数的绝对值是0,这个数是________。
三、计算题(每题5分,共30分)1. 计算下列各数的和:3, -5, 2, -1。
2. 计算下列各数的积:(-2) × (-3) × 4。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。
(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中七年级上册数学期末复习题
2017年初中七年级上册数学期末复习题
学习的目的是为了掌握新的知识,而考试是验证自己掌握知识程度的一种手段。
下面是店铺准备的2017年初中七年级上册数学期末复习题,希望对你有所帮助!
一、精心选一选(20’)
1. 的相反数是 ( )
A. B. C. 2 D.-2
2.单项式的系数是 ( )
A.-3
B. -2
C.-1
D.0
3.下列各等式中,成立的是 ( )
A. B. C. D.
4.合并整式的结果是 ( )
A. 0
B.
C.
D.
5.下列说法中,正确的是 ( )
A.0是最小的有理数
B.任一个有理数的绝对值都是正数
C. 是负数
D.3和-2是同类项
6.用科学记数法表示1300000000时,正确的写法是 ( )
A. B. C. D.
7. 下列运算正确的是 ( )
A. 4 y-x =3x2y
B.4x+3y=7xy
C.-3a+7a +1=-10a+1
D.-2 + =-
8、下列各式的值与的a-b-c值不相等的是 ( )
A、a-(b+c)
B、a-(b-c)
C、(a-b)+(-c) D(-c)-(b-a)
9. 出租车收费标准为:起步价6元(不超过3千米收费6元)。
3千米后每千米1.4元(不足1千米按1千米算)。
小明坐车x(x>3)千米,应付车费 ( )
A、6元
B、6x元
C、(1.4x+1.8)元
D、1.4x元
10. 当取一切有理数时,则下列几个数中一定是正数的是 ( )
A. B. C. D.
二、耐心填一填(18’)
11.若︳a-1 ︳=2,则 .
12.世界上最大的咸水湖是位于亚洲西部的死海,湖面海拔高度为-392m,我国最大的咸水湖是位于西部的青海湖,湖面海拔高度是3195m,则这两个咸水湖的湖面高度相差 -----m.
13.有理数、在数轴上的位置如图所示,则_________0.(填“>”、“<”或“=”)
14.某种药品的说明书上标明保存温度是,由此可知此药在~范围内保存才合适.
15.正方形的边长为2厘米,当边长增加厘米时,它的周长变为厘米 .
16.若与是同类项,则m= , n= .
17. 已知,。
18. 如果规定符号“※”的意义是:※ =,则3※(-3)的值等于 .
19.根据流程右边图中的程序,当输入数值x为-2时,输出数值y 为
三、细心算一算(16’)
20. 21.
22. 23. 8―23÷(―4)×(―7+5)
四、专心求一求:( 16’ )
24. 25.
26. ,其中
五、静心解一解:(6’ )
27.学校图书馆上周借书记录如下(超过50册的部分记为正,少于50册的.部分记为负):
星期一星期二星期三星期四星期五
0 +8 +6 -2 -7
(1)上星期五借出图书多少册?
(2)上星期二比上星期五多借出图书多少册?
(3)上周平均每天借出图书多少册?
六、用心试试一试(6’)
28.. 若,求多项式4-3(x-2y)-(2x-3y)的值.
七、费心想一想(8’+10’)
29.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元。
厂方在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;② 买一套西装送一条领带。
现某客户要到该服装厂购买x套西装(x≥1),领带条数是西装套数的4倍多5。
(1)若该客户按方案①购买,需付款________________元:(用含x的代数式表示)
若该客户按方案②购买,需付款______________元。
(用含x的代数式表示)
(2)若x=10,通过计算说明此时按哪种方案购买较为合算?
30.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形。
(1)你认为图②中的阴影部分的正方形的边长等于__________________。
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积。
方法①_________________________________________________________。
方法②_________________________________________________________。
(3)观察图②,你能写出这三个代数式之间的等量关系吗?
备选题
.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是千米/时
(1)2小时后两船相距多远?
(2)2小时后甲船比乙船多航行多少千米?
更多七年级上册数学期末考试试卷分享:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.。