城市轨道交通系统引起的环境振动问题

合集下载

城市轨道交通隔振减振机理及措施研究

城市轨道交通隔振减振机理及措施研究

城市轨道交通隔振减振机理及措施研究城市轨道交通隔振减振机理及措施研究引言城市轨道交通作为一种高效,快速,便捷的城市交通工具,越来越受到人们的青睐。

然而,它的运行中会带来许多噪音和震动问题,给周围居民带来不便和不适。

为了解决这些问题,科学家和工程师们积极研究城市轨道交通的隔振减振机理及措施。

本文将探讨城市轨道交通隔振减振的机理和措施,并对当前研究的进展进行总结和展望。

一、城市轨道交通的振动源及其影响1. 轨道交通的振动源城市轨道交通的振动源主要包括列车运行、轨道结构可变变量以及轨道不平顺等。

列车运行过程中,轮轨接触造成的弹性振动是主要的振动源。

此外,轨道的几何形状和轨道结构的可变变量(如轨道温度变化等)以及轨道不平顺也对振动产生重要影响。

2. 振动对居民的影响城市轨道交通的振动会对周围居民带来噪音和不适感。

较大振动会导致建筑物结构疲劳,甚至造成破坏。

此外,振动对人体的长期影响还需要进一步研究。

二、隔振减振机理研究1. 隔振减振机理的基本原理隔振减振的基本原理是通过振动吸收和振动隔离来减少振动传递。

振动吸收通过增大能量耗散的方式来减小振动幅值。

振动隔离则通过引入垫层或隔离物体来阻止振动传递。

2. 隔振减振材料的研究隔振减振材料的研究是实现城市轨道交通隔振减振的重要途径。

目前,钢弹簧、橡胶垫、聚合材料等材料被广泛地应用于隔振减振领域。

这些材料具有良好的吸振和隔振性能,能够有效减小振动传递。

三、隔振减振措施的研究与应用1. 地铁线路的设计与改善地铁线路的设计应该尽量避免陡峭下坡和急刹车等行驶方式,减小振动源的产生。

另外,加强轨道结构的准确性和稳定性也能够降低振动产生。

2. 隔振降噪设备的安装在轨道、列车和车厢等部位安装吸振隔振装置,如减震器、隔振垫、隔振弹簧等,能够有效吸收和隔离振动,降低噪音。

3. 建筑物的隔振设计对于地铁站等周围建筑物,可以采用隔振设计,即在建筑基础上设置隔振层,减少地铁振动传递到建筑物中的影响。

城市轨道交通引起的振动测试分析及数值模拟的开题报告

城市轨道交通引起的振动测试分析及数值模拟的开题报告

城市轨道交通引起的振动测试分析及数值模拟的开题报告题目:城市轨道交通引起的振动测试分析及数值模拟一、选题背景和意义:城市轨道交通是现代城市交通的重要组成部分,其建设为城市居民的出行提供了便利。

但是,城市轨道交通的运行会引起周围环境的振动,如建筑物、地铁站台等受到的振动影响可能会对周围居民的生活和健康造成影响。

因此,轨道交通引起的振动问题备受关注。

针对城市轨道交通引起的振动问题,国内外学者和工程师们进行了大量的研究。

他们通过实测、数值模拟等方法对城市轨道交通引起的振动进行研究,希望能够掌握城市轨道交通振动的特点和规律,从而制定相应的振动控制措施。

因此,本文将从实测和数值模拟两个方面入手,研究城市轨道交通引起的振动问题,为振动控制措施的制定提供参考。

二、研究内容和思路:1. 实测方法研究利用振动测试仪在城市轨道交通附近的建筑物、地铁站台等位置进行振动测试,获得城市轨道交通振动数据,并进行统计和分析。

同时,利用声学测试仪器测量噪声等物理参数,探讨城市轨道交通振动和噪声的相互作用。

2. 数值模拟研究基于有限元方法,建立城市轨道交通车辆和轨道、地基系统的三维数值模型,考虑地基和轨道的非线性特性、车辆的非线性特性和速度变化等因素,模拟城市轨道交通的运行过程,分析振动特征和影响因素。

3. 综合分析与振动控制方案通过将实测和数值模拟的结果进行对比、分析和综合,得出城市轨道交通引起的振动特点和规律,为制定振动控制方案提供参考。

三、论文结构和进度安排:1. 前面绪论:介绍研究背景、现状与问题,阐述选题的研究意义及研究现代方法,明确研究思路和方法途径。

2. 第二章实测方法研究:2.1 实验方案设计:包括测试地点的选择、测试仪器的选择与放置等内容。

2.2 实验数据处理:包括数据采集、去噪、滤波等过程。

2.3 实验数据分析:包括振动特点统计分析、噪声特点统计分析等内容。

3. 第三章数值模拟研究:3.1 建模过程和模型设计3.2 设备和材料的选择和处理3.3 系统边界和边界条件的定义3.4 运动和结构分析的数值模拟4. 综合分析与振动控制方案:4.1 通过实测和数值模拟结果进行比较分析4.2 城市轨道交通振动控制方案的制定5. 结论和展望:5.1 研究结论总结5.2 研究存在的不足和改进方向在第二章、第三章的实验和模拟研究需要进行分别三个月和四个月的时间,第四章的分析和控制方案设计也需要两个月的时间,最后结论和展望一章也仅需一个月的时间。

轨道交通引起的环境振动问题

轨道交通引起的环境振动问题

轨道交通引起的环境振动问题摘要:轨道交通在快速化发展同时,也对于运作周边环境带来了越来越显著的危害。

立足于此,本文将全面探究轨道交通所引发的环境振动问题,通过全面解析振动问题所产的核心因素,来进一步有针对性提升关于轨道交通所引发环境振动问题的改善举措。

关键词:轨道交通;环境振动;改善举措轨道交通系统运作所引发的的环境振动问题,相关部门需要展开积极应对,特别是要针对于相关问题创建出有针对性的改善举措并且进行深入实施开展,只有如此才可以更好保障轨道交通系统可以更加平稳和规范化运营。

1 轨道交通所引发的环境振动问题解析环境振动问题,通常来说指的便是在人们在日常运动当中进而引发的诸如建筑物以及运输设施等运作对于整体生活环境所造成的负面性影响,而这当中最核心的负面影响包括为对于人们身心健康的影响以及对于相关周边建筑物安全使用的影响。

依据相关的专业统计现实,现阶段除了某些大型工厂因为运作所引发的环境振动问题之后,现阶段诸如交通运输所引发的环境振动问题也逐步的成为了如今人们反映最为突出的事件。

特别是伴随着如今城市化建设整体极速化推动,对于城市交通运输系统筹划当中环境考量需求也有了更为严格的标准。

造成这样的因素,也与现阶段伴随着城市人口的逐年迅速化增长以及日常交通流量的显著提升有着直接的关联,这无疑进一步加重了环境振动问题的产生。

特别是因为城市化基础工程的全面化推进,也让诸如地下隧道、轻轨交通等逐步形成一个全方位的交通体系,也从地下、地上与空中全面的渗入到城市密集人口区域当中。

例如在国外诸多国家,同时也包括我国的上海、重庆等经济发展运作较好且城市人口相对密集的城市,城市当中的立体交通道路如今已经达到了近10层之多。

如下图1所示,为轨道交通系统对环境的振动影响。

图1 轨道交通对于环境的振动影响环境的振动问题同时也对于诸如激光、放大监测等相关运作用以及半导体基础线路的制造等也会产生不小的影响,环境振动会让相关的高集成化的仪器或者是设施整体的精准度严重削减,也让其的运用周期大幅度减少,更严重的情况下甚至会让相关设施以及仪器无法进行运作。

城市轨道交通的噪音与振动控制技术

城市轨道交通的噪音与振动控制技术

城市轨道交通的噪音与振动控制技术城市轨道交通作为现代都市不可或缺的公共交通方式,在为人们提供快捷、便利出行的同时,也带来了噪音和振动问题这些问题对周边环境和居民生活产生了一定影响为此,研究和应用城市轨道交通的噪音与振动控制技术显得尤为重要本文将从噪音和振动两个方面,详细探讨城市轨道交通的控制技术一、噪音来源及控制技术城市轨道交通的噪音主要来源于以下几个方面:1.轮轨摩擦:列车在运行过程中,轮轨之间的摩擦产生的噪音2.空气动力学:列车在高速行驶时,车体与空气之间的相互作用产生的噪音3.设备运行:列车上各种设备的运行噪音,如空调、电机等4.建筑结构传播:噪音通过轨道交通建筑结构的传播针对这些噪音来源,可以采取以下控制技术:1.轮轨摩擦噪音控制:采用低噪音轮轨材料、改善轮轨表面状态、使用轮轨润滑装置等技术2.空气动力学噪音控制:优化列车外形设计、采用流线型车体、加装降噪装置等技术3.设备运行噪音控制:选用低噪音设备、加强设备维护、采用隔音罩等技术4.建筑结构传播噪音控制:采用隔音墙、隔音窗等隔音设施,以及采用减振垫、减振支架等减振措施二、振动来源及控制技术城市轨道交通的振动主要来源于以下几个方面:1.轮轨相互作用:列车在运行过程中,轮轨之间的相互作用产生的振动2.轨道结构:轨道结构自身的振动,如轨道弯曲、轨枕振动等3.建筑物传播:振动通过轨道交通建筑物传播针对这些振动来源,可以采取以下控制技术:1.轮轨相互作用振动控制:采用高精度轨道、改善轮轨表面状态、使用减振装置等技术2.轨道结构振动控制:优化轨道设计、采用高性能轨枕、加装振动吸收装置等技术3.建筑物传播振动控制:采用隔振基础、隔振装置、加强建筑物结构设计等技术通过以上分析,我们可以看到,城市轨道交通的噪音与振动控制技术涉及到多个方面为了实现有效的噪音和振动控制,需要综合运用各种技术手段,从而降低轨道交通对周边环境和居民生活的影响在未来,随着技术的不断发展,相信噪音和振动控制技术将更加完善,为城市轨道交通的可持续发展提供有力支持三、噪音与振动控制的实际应用案例在实际工程应用中,噪音与振动控制技术已经取得了一定的成效以下是一些典型的应用案例:1. 隔音屏的应用隔音屏是城市轨道交通噪音控制中常用的一种措施例如,北京地铁在部分线路中设置了隔音屏,有效地减少了噪音对周边居民的影响隔音屏采用吸音材料和隔音材料相结合的设计,能够在一定程度上反射、吸收和隔绝噪音2. 减振垫的应用减振垫是振动控制中常用的一种措施例如,上海地铁在部分线路的轨道下方设置了减振垫,有效地减少了振动对周边建筑的影响减振垫能够有效地吸收和缓解轨道振动,降低振动传递到建筑物上的程度3. 浮置板轨道的应用浮置板轨道是一种新型的轨道结构,具有良好的减振效果例如,广州地铁采用了浮置板轨道,通过调整轨道的弹性垫层厚度,实现了对振动的有效控制浮置板轨道的应用不仅降低了振动,还有助于提高轨道的使用寿命4. 声学建筑设计声学建筑设计是针对建筑物内部噪音控制的一种措施例如,一些地铁车辆站在设计过程中,采用了特殊的声学材料和结构,以降低室内噪音声学建筑设计可以有效地改善地铁车辆站的内部环境,提高乘客的舒适度四、发展趋势与展望随着城市轨道交通的快速发展,噪音与振动控制技术也将面临更高的要求在未来,我们可以期待以下几个方面的发展:1.噪音与振动控制技术的进一步优化:随着科技的进步,相信会有更多高效、环保的噪音与振动控制技术出现2.智能化监测与控制:利用物联网、大数据等技术,实现对轨道交通噪音与振动的实时监测和智能控制3.绿色轨道交通的建设:在城市轨道交通建设过程中,注重环保和可持续发展,采用更多绿色、低碳的技术4.综合治理:针对城市轨道交通的噪音与振动问题,实施综合治理,协调各种措施,实现最佳控制效果城市轨道交通的噪音与振动控制技术将在未来持续发展,以满足人们对环保、舒适出行的需求通过不断地技术创新和应用实践,相信我们能够更好地解决轨道交通带来的环境影响,为城市的可持续发展做出贡献五、国内外政策与标准在城市轨道交通的噪音与振动控制方面,国内外政府都制定了一系列政策和标准,以指导和促进相关工作1. 国内政策与标准中国政府高度重视城市轨道交通的噪音与振动控制问题,出台了一系列相关政策例如,《城市轨道交通工程技术规范》对轨道交通的噪音与振动控制提出了明确要求此外,各地政府也根据实际情况,制定了相应的的地方标准和管理条例2. 国际政策与标准在国际范围内,各国政府也高度重视城市轨道交通的噪音与振动控制问题例如,欧盟制定了《城市轨道交通噪音与振动控制指令》,对轨道交通的噪音与振动控制提出了严格的限制美国、日本等发达国家也都有相应的政策和标准六、企业社会责任与公众参与在城市轨道交通的噪音与振动控制工作中,企业和社会公众也扮演着重要角色1. 企业社会责任城市轨道交通企业有责任采取有效措施,降低噪音与振动对周边环境的影响企业应严格执行国家和地方的政策与标准,加强技术创新,提高噪音与振动控制水平同时,企业还应积极履行社会责任,参与社会公益活动,加强与公众的沟通与互动2. 公众参与公众是城市轨道交通噪音与振动控制工作的直接受益者和参与者公众应了解和学习噪音与振动控制知识,积极参与相关政策的制定和实施同时,公众还应关注轨道交通建设过程中的环保问题,对轨道交通企业的噪音与振动控制工作进行监督和评价七、结论城市轨道交通的噪音与振动控制是一个复杂而重要的课题通过分析噪音与振动的来源、控制技术、实际应用案例、发展趋势以及政策与标准,我们可以看到,噪音与振动控制工作在轨道交通建设中具有重要意义要解决这一问题,需要政府、企业和社会公众共同努力,实施综合治理,采取有效措施,共同为城市的可持续发展做出贡献在未来,随着科技的进步和人们对环保意识的提高,相信城市轨道交通的噪音与振动控制技术将得到更好的发展和应用通过不断地技术创新和政策引导,我们有望实现更加安静、舒适的轨道交通环境,为城市的可持续发展做出积极贡献。

城市轨道交通引起的地面振动实测与分析

城市轨道交通引起的地面振动实测与分析
境 振 动提 供 参考 。 关 键 词 : 道 交通 ;振 动 实测 ;传 播 规 律 ;评 价 分 析 轨 中图 分 类 号 : 2 9 5 U 3 . 文 献标 识 码 : A
测 试共有 3种 路线 形式 , 分别 为地 面线 , 下线 和 地 高架线 。在 其沿 线选择 典 型振动 观测 场地且 与线路 垂 直 的观测线 , 当列车 通过 时对 观 测线 上 的各 点进 行 竖 向加 速度 的地 面振 动 实 测 。实 测 仪 器 为 美 国仪 器 N I 动态 数据采 集仪 , 感器 为科 动 K 1 0 L 并 在 实测 传 D 0 C, 1 前进 行 了系数标 定 , 以保 证 测试 的准 确 。测 试 时列 车
场 实测 , 根据 结 果 分 析 了其 运 行 所 引起 地 面 振 动 的实 况 、
收 稿 日期 :0 1 0 2 21 2 4
主要 以频率低 于 10H 0 z为主 , 以 3 尤 0~8 z 为 显 0H 最 著 。其 原 因可能 是 因为列 车引起 振动频 率与 某一土 层 的振动 频率 相近 而诱发 共振 造成 的 ; () 3 随着 与 列 车 线 路 水 平 距 离 的 增 大 , 动 信 号 振 的各频 率分 量总 的趋势 是 减弱 , 频率 愈高 衰减愈 快 。 且
大, 在2 但 0~3 的距 离 里振动 强度有 所反 弹 ; 0m () 2 测点竖 向振 动 的主要 频 率 为 0~10H , 大 0 z最
值 一 般 出现 在 3 0~8 z这 说 明 列 车 引 起 的 竖 向振 动 0H ,
主要是 : 振源 、 构 及地 层 响 应 的 整 体 分 析 和 控 制 方 结 法 、 动标 准 。 ( ) 振 2 数值 模 拟 。建 立 研 究 体 系 的动 力 学模 型 , 得到模 型 的动力 学方程 , 采用 数值 方法 求解方 程得 到整个 模型 的响应 。 ( ) 场 实 测 。对此 方 面 的 3现 研究 有重大 的理论 和现 实意义 , 目前此研 究较 少 , 但 其 成果 主要为 相应 的理论 分 析 提供 根据 、 印证 理 论模 型 的正确 性 、 评估 地 铁 诱 发 的环 境 振 动 提供 依 据 。对 为 轨道交通振动影 响的研究 , 还缺乏相关 的测试数据 , 仍有 许多问题需待研 究和解决 。为此 , 笔者分 别对 南京 轨道 交通 1 号线以及南延线上的 3种不 同线路形式进 行 了现

轨道交通工程的环境影响分析

轨道交通工程的环境影响分析

轨道交通工程的环境影响分析随着城市化进程的加速,轨道交通工程作为一种高效、大运量的公共交通方式,在解决城市交通拥堵、改善居民出行条件等方面发挥着重要作用。

然而,轨道交通工程的建设和运营也不可避免地会对周围环境产生一系列影响。

本文将对轨道交通工程的环境影响进行全面分析。

一、轨道交通工程建设阶段的环境影响1、土地利用和生态破坏轨道交通线路的建设通常需要占用大量土地,包括耕地、林地和城市建设用地等。

这可能导致土地资源的减少和生态系统的破坏,影响野生动植物的栖息地和生物多样性。

此外,施工过程中的挖掘、填方等活动还可能引发水土流失、山体滑坡等地质灾害。

2、噪声和振动在施工期间,各类施工机械如钻孔机、打桩机、挖掘机等会产生强烈的噪声和振动。

这些噪声和振动不仅会对周边居民的生活和工作造成干扰,还可能对附近的建筑物产生一定的损害,尤其是对历史建筑和文物保护单位构成威胁。

3、大气污染施工过程中会产生大量的扬尘,包括土方开挖、物料运输和堆放等环节。

此外,施工机械的尾气排放也会增加空气中的污染物浓度,如二氧化硫、氮氧化物和颗粒物等,对周边空气质量造成不利影响,进而影响居民的身体健康。

4、水污染施工过程中产生的废水主要包括施工人员的生活污水、施工机械的清洗废水和隧道施工过程中的涌水等。

这些废水如果未经处理直接排放,将会污染周边的地表水体和地下水,破坏水环境质量。

二、轨道交通工程运营阶段的环境影响1、噪声和振动列车在运行过程中会产生轮轨噪声和车辆动力噪声,同时由于列车的振动还会通过轨道传递到周围地层,引起地面振动。

对于沿线居民来说,长期暴露在噪声和振动环境中可能会导致睡眠障碍、听力下降、心血管疾病等健康问题。

2、电磁辐射轨道交通系统中的供电设备、通信设备等会产生一定的电磁辐射。

虽然这些电磁辐射的强度一般在国家标准范围内,但对于一些特殊人群,如孕妇、儿童和老人等,可能仍会存在潜在的影响。

3、大气污染轨道交通虽然是一种相对清洁的交通方式,但在运营过程中,列车的制动系统、空调系统等仍会产生少量的废气排放。

浅析城市轨道交通的噪声与振动及其控制措施

浅析城市轨道交通的噪声与振动及其控制措施

浅析城市轨道交通的噪声与振动及其控制措施城市轨道交通是城市公共交通系统中的重要组成部分,如地铁、有轨电车等。

其建设和运营对城市环境产生了一定的噪声和振动。

这些噪声和振动不仅影响了周围居民的生活质量,也会对建筑物、道路和地下管线等设施造成损害。

控制城市轨道交通的噪声和振动对于城市环境保护和居民健康至关重要。

1. 城市轨道交通的噪声与振动来源城市轨道交通的噪声主要来源于列车行驶时的轮轨摩擦、列车牵引和制动系统、隧道通风系统以及车站乘客活动等。

在地铁和有轨电车的运行过程中,列车行驶时的轮轨摩擦是主要的噪声来源。

列车牵引和制动系统的运行也会产生一定的噪声。

而振动则主要由列车行驶时的轮轨交会引起,同时也会受到列车的牵引和制动力影响。

2. 城市轨道交通噪声与振动对城市环境和居民健康的影响城市轨道交通的噪声和振动对周围居民的健康和生活质量产生了一定的影响。

噪声对人体的影响主要表现为耳朵疾病、心理健康问题和睡眠障碍等。

长期暴露在噪声环境中会增加人们患上心脏病、高血压等心血管疾病的风险。

而振动能直接作用于人体,造成人体局部振动,导致疲劳和不适感,长期暴露还可能引发骨骼、关节等伤害。

城市轨道交通的噪声和振动也会影响周围的建筑物、地下管线等结构,使其受到破坏。

3. 城市轨道交通噪声与振动的控制措施为了有效控制城市轨道交通的噪声和振动,可以采取以下措施:(1) 优化轨道和车辆设计。

通过改进轨道和车辆的减振和隔声性能,减少列车行驶时的轮轨摩擦和制动噪声,降低振动。

(2) 采取隔音隔振措施。

在轨道、车站和隧道等重要区域设置隔音隔振设施,减少噪声和振动的传播。

如在轨道旁设置隔音墙、在隧道内安装减振装置等。

(3) 控制列车运行速度。

适当控制列车的运行速度,减少车辆行驶时的轮轨摩擦和制动噪声,同时减小列车通过时的振动影响。

(4) 定期检测和维护轨道和车辆。

进行定期的轨道和车辆检测和维护,确保轨道和车辆的良好运行状态,减少不正常噪声和振动的产生。

轨道交通引起的环境振动及其影响规律

轨道交通引起的环境振动及其影响规律

轨道交通引起的环境振动及其影响规律然而,由于振动波在不同土介质中的传播途径不同,很可能由于固有频率相近发生共振现象;或者土层下面存在坚硬的基岩,使得振动波在基岩上反射形成振动放大区,使振动加速度反弹。

例如文献[8]通过简化的方法,建立了列车-轨道和路基-土层-建筑物的二维动力相互作用分析模型,用有限元计算了列车引起的振动在土层中的传播特性及对邻近建筑物的影响,得出图2所示的结论,进一步说明了振动加速度反弹区的存在。

文献[9]在沈阳—山海关铁路线上做了现场监测实验,得出图3所示的结论,进而验证了加速度反弹区的存在。

3.3 列车速度对振动加速度的影响高速列车运行引起的地面振动的振动强度一般随列车车速的增加而增加。

文献[9]对沈阳—哈尔滨铁路线上某处进行了现场测量。

为考察列车速度对地面振动加速度的影响,将不同距离处的振动加速度随车速的变化绘于。

从图4可以看出,地面振动加速度具有随列车速度的提高而增大的趋势。

并且距离越近,差距越大。

说明列车速度对近距离的地面振动影响较大。

对于在地下隧道中列车的车速对振动强度的影响情况,文献[10]对我国某城市地铁车辆段附近进行了现场测试。

当地铁列车以15~20km/h的速度通过时,地铁正上方居民住宅的振动高达85dB,如果列车速度达到正常运行速度70km/h时,其振级还要大得多。

可见,地铁振动影响的范围在很大程度上还取决于列车速度。

铁道科学研究院曾在北京环行线进行200km/h以上试验列车的运行试验,对环境振动讲行了测量。

在离轨道中心线20m或30m处,振动加速度随列车速度增加而增加。

在国外,特别是在一些高速列车比较发达的国家,对于列车车速对振动加速度的影响都进行了相关的研究。

早在1927年,S.Timoshenko从理论上提出,铁轨作为固定支承在道渣及枕木上的弹性梁,列车具有一临界速度值,达到临界状态时将会发生超常的竖向运动动力放大。

然而,按照通常所假定的路基刚度特点,这个临界值估计大约为500km/h,远远超过现实中的列车速度[3]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业知识分享版使命:加速中国职业化进程随着现代工业的迅速发展和城市规模的日益扩大,振动对大都市生活环境和工作环境的影响引起了人们的普遍注意.国际上已把振动列为七大环境公害之一,并开始着手研究振动的污染规律、产生的原因、传播途径、控制方法以及对人体的危害等.据有关国家统计,除工厂、企业和建筑工程外,交通系统引起的环境振动(主要是引起建筑物的振动)是公众反映中最为强烈的[1].随着城市的发展,在交通系统设计规划中,对环境影响的考虑越来越多.这主要因为过去城市建筑群相对稀疏,而现在,随着城市建设的迅猛发展,多层高架道路、地下铁道、轻轨交通正日益形成一个立体空间交通体系,从地下、地面和空中逐步深入到城市中密集的居民点、商业中心和工业区.如日本东京市内的交通道路很多已达到5~7层,离建筑物的最短距离小到只有几米,加上交通密度的不断增加,使得振动的影响日益增大.交通车辆引起的结构振动通过周围地层向外传播,进一步诱发建筑物的二次振动,对建筑物特别是古旧建筑物的结构安全以及其中居民的工作和日常生活产生了很大的影响. 例如国家自然科学基金资助项目在捷克,繁忙的公路和轨道交通线附近,一些砖石结构的古建筑因车辆通过时引起的振动而产生了裂缝,其中布拉格、哈斯特帕斯和霍索夫等地区发生了由于裂缝不断扩大导致古教堂倒塌的恶性事件.在北京西直门附近,距铁路线约150m 处一座五层楼内的居民反映,当列车通过时可感到室内有较强的振动,且受振动影响一段时间后,室内家具也发生了错位.另外,由于人们对生活质量的要求越来越高,对于同样水平的振动,过去可能不被认为是什么问题,而现在却越来越多地引起公众的强烈反应.这些都对交通系统引起的结构振动及其对周围环境影响的研究提出了新的要求,也引起了各国研究人员的高度重视[2~21].日本是振动环境污染最为严重的国家之一,在其“公害对策基本法”中,明确振动为七个典型公害之一的同时,还规定了必须采取有效措施来限制振动.在“限制振动法”中,特别对交通振动规定了措施要求,以保护生活环境和人民的健康.T.Fujikake 、青木一郎和K.Hayakawa 等[9,17,21]分别就交通车辆引起的结构振动发生机理、振动波在地下和地面的传播规律及其对周围居民的影响进行了研究,提出了周围环境振动水平的预测方法.面对公众的强烈反映,英国铁路管理局研究发展部技术中心对车辆引起的地面振动进行了测试,主要就行车速度、激振频率和轨道参数的相关关系以及共振现象进行了实验研究.瑞士联邦铁路和国际铁路联盟(UIC )实验研究所(ORE )共同执行了一项计划,以A.Zach 和G .Rutishauser 为首的研究小组研究了地铁列车和隧道结构的振动频率和加速度特征,从改善线路结构的角度提出了降低地铁列车振动对附近地下及地面结构振动影响的途径.美国G .P.Wilson 等针对铁路车辆引起的噪声和振动,提出了通过改善道床结构形式(采用浮板式道床)和改革车辆转向架构造以减少轮轨接触力的方法,降低地铁车辆引起的噪声和振动的建议.交通车辆引起的结构和地面振动是城市交通规划中的一个重要问题,由其进专业知识分享版使命:加速中国职业化进程一步引发的周边建筑物振动以及相应的振动控制和减振措施,在规划和设计的最初阶段就应加以考虑.为此,德国的J.Melke 等提出了一种基于脉冲激励和测试分析的诊断测试方法,来预测市区铁路线附近建筑物地面振动水平,并通过不同测点数据的传递函数分析研究了振动波的传播规律.F.E.Richart 和R.D.Woods 等则针对隔振沟和板桩墙等隔振措施进行了实验研究.此外,西班牙、捷克等国在这些方面也做了大量的测试、调查和研究工作,通过对几种不同场地土的测试结果统计,分析了列车引起的地面振动波的传播和衰减特性,并从降低行车速度、减轻荷载重量、提高路面平整度等方面提出了减少振害的措施.在国内,虽然城市建设起步得较晚,但随着现代化的进程,交通系统大规模发展的趋势是极为迅速的.由于轨道交通系统具有运量大、速度快、安全可靠、对环境污染小、不占用地面道路等优点,成为缓解城市交通拥挤和减少污染的一种有效手段.目前,我国已经拥有或正在建设地下铁道的城市越来越多,不少城市还在筹建高架轻轨交通系统.近年来在城市交通系统建设中,对于振动可能影响环境和周边建筑物内居民生活和工作的问题也进行了预测,如拟议中的西直门至颐和园轻轨快速交通系统可能对附近的文化和科研机构产生振动影响、地铁南北中轴线可能对故宫等古建筑产生振动影响、拟建的京沪高速铁路沪宁段高速列车对苏州虎丘塔可能产生振动影响等.为此,国内不少单位已开始结合北京、上海、沈阳等一些大城市修建地铁、轻轨交通系统时车辆引起的环境振动问题进行研究,发表了初步的研究成果[22~43].2 振动的产生、传播规律及其对环境的影响对我国几个典型城市的调查结果表明,交通车辆引起的环境振动水平较高.根据铁路部门的实测,距线路中心线30m 附近的振动可达80dB.地铁列车通过时,在地面建筑物上引起振动的持续时间大约为10s.在一条线路上,高峰时,两个方向1h 内可通过30对列车或更多,振动作用的持续时间可达到总工作时间的15%~20%.最近在我国某城市地铁车辆段附近进行了现场测试,结果表明,当地铁列车以15~20km/h 的速度通过时,地铁正上方居民住宅的振动高达85dB ,如果列车速度达到正常运行的70km/h 时,其振级可能还要大得多.可见由列车运行引起的环境振动已不同程度地影响了居民的日常生活.在轨道交通系统中,由运行列车对轨道的冲击作用产生振动,并通过结构(隧道基础和衬砌或桥梁的墩台及其基础)传递到周围的地层,进而通过土壤向四周传播,诱发了附近地下结构以及建筑物(包括其结构和室内家具)的二次振动和噪声.对于地下铁道,其影响因素主要有列车速度、车辆重量、隧道基础和衬砌结构类型、轨道类型、是否采用了隔振措施等,此外列车与轨道的动力相互作用也会加大振动作用.有调查表明,地铁列车在隧道内高速运行时,距轨道水平距离1.5m 处,振级平均值为81dB ;24m 处,振级平均值为71.6dB.这说明随着距轨道水平距离的增加,振级将不断衰减.此外,地铁振动影响的范围在很大程度上还取决于列车专业知识分享版使命:加速中国职业化进程通过的速度及隧道的埋深.速度越高,振动干扰越强,影响范围越大(列车速度每提高一倍,隧道和地面的振动增加4~6dB );埋深越大,影响范围越小.文献[25]采用计算机模拟的方法得到地铁列车引起的地面振动随距离的分布:在距隧道中心线40m 左右的地面为加速度的局部放大区;对于1~3Hz 的低频振动加速度,尽管幅值大小不同,都在0、36、60m 附近出现了放大区;对于5~6Hz 的中频加速度,只有0m 和30m 二个放大区,距离再大时就迅速衰减;对>8Hz 的高频加速度则随距离的增加而逐渐衰减.北京曾就地铁列车对环境的振动影响进行过实测,得到了与上述分布规律相同的结果.对于高架轻轨系统,其影响因素主要有列车速度、车辆重量、桥梁结构类型和基础类型、桥梁跨度、刚度、挠度等,列车与桥梁的动力相互作用也会加大振动作用.目前国内尚无建成的高架轻轨系统,无法进行现场测试.但文献[22,23]通过力学计算、文献[29]通过对铁路高架桥和路基线路的实测分析,求得高架轻轨系统在列车运行时所引起的周围地层的振动特性,得出了以下结论:(1)轻轨列车振动所引起的地面振动,在某一距离范围内,随距线路距离的增加而衰减,在达一定距离后会出现反弹增大(约在40~60m 间),但总趋势是随距离的增大而逐渐衰减.(2)轻轨系统桥梁的基础类型对地面振动的影响非常大.采用桩基时,地面振动的位移、速度、加速度值均比采用平基时的小许多,且桩基时,地面振动随距线路距离的增加而衰减的速度也较平基时大.甚至由于采用了不同的桥梁基础,沿线建筑不同楼层的振动响应也有所不同.采用浅平基础时,上面楼层的响应比下面楼层的强烈,采用桩基时各楼层的差别就小得多.(3)高架桥线路与路基线路相比,环境振动将大幅度降低.距线路中心线30m 处的振动强度可降低5~10dB.(4)高架轻轨的桥梁结构设计应注意避免车桥产生共振,以减小对系统振动的影响.列车运行对大地产生的振动主要以三种波的形式传播,即横波、纵波和表面波.日本ErichiTaniguehi 等的研究表明:位于地下2m 深处振动加速度值为地表的20%~50%;4m 深处为10%~30%.可见在车辆运行产生的环境振动中,表面波占主要地位.由于能量的扩散和土壤对振动能量的吸收,振动波在传播过程中将有所衰减.不同类型的振源,不同的振动方向,不同的传播方向以及不同的土介质,对振动的衰减也是有区别的.据文献[2,29,30,34]的实测结果知,振动强度的分布具有以下特点:从振源的频率分布上看,以人体反应比较敏感的低频为主,其中50~60Hz 的振动强度较大;从列车速度的影响上看,随行车速度的提高,振动有增大的趋势;就地面振动随距离的衰减而言,距轨道中心线越近,同一列车引起的地面振动就越大,反之则越小.很多文献认为列车运行所产生的地面振动随距线路距离增加而有较大的衰减是一般规律,见图1(a).但是也有文献得出了不同的结果:文献[38]和[42]曾分别在桥梁(京沈线滦河桥,跨度32m 上承式钢板梁桥,桥墩高8~10m ,车速50~80km/h )和线路附近(京广线,车速25~110km/h )测试了列车专业知识分享版使命:加速中国职业化进程通过时地面振动加速度随距离的变化规律,结果分别见图1(b)和(c).图1中G 为振级;ε为各测点加速度与路基处加速度的比值.可以发现地面振动分别在距桥墩60m 左右处和距线路40m 左右处出现了加速度反弹增大的现象.这一测试结果是与理论计算的结果相吻合的[43].(a)位置分布(b)桥梁附近(c)线路附近图1 实测地面振动加速度随距离的分布随距离增大而振动强度减弱的规律也适用于沿线建筑.由于列车引起的地面水平方向振动,在传导过程中的衰减要快于垂直方向的振动,因而沿线建筑物内垂直方向的振动将大于水平方向的振动.实测结果表明:建筑物的水平振动一般约小于垂直振动10dB [41],因此在评价建筑物受铁路环境振动的影响时,可以垂直方向的振动为主.就不同楼层而言,一般来说,中低层建筑,特别是4层以下的,随着楼层的增加,振动的强度有增大的趋势.文献[41]对7座3~5层楼房的测试结果和文献[43]的理论分析结果都表明:在距列车不同的距离上,3~5层的振动强度均比1层高出约3~5dB.随列车速度的提高,附近建筑物内的振动有增大的趋势(尤其是楼房)[41,43].而由列车引起的沿线地面建筑物振动,其振级的大小与建筑物的结构形式、基础类型以及距地铁的距离有密切的联系.对于基础良好、质量较大的高层钢筋混凝土建筑,由于其固有频率低,不易被激起较大的振动,因而其振级较之自土壤传来的振级可衰减10~20dB.在距地铁隧道水平距离32m 处,高层建筑地下室内实测振级不大于60dB ,1层以上则测不出地铁行驶时引起的振级;基础一般的砖混结构住宅楼可衰减5~10dB ;而基础较差的建筑,如轻质结构或浅基础建筑,则衰减量很小,其振级与土壤振级接近,甚至还会出现室内振动大于室外地面振动的情况.3 减振隔振控制措施如前所述,城市轨道交通系统产生的振动可以通过结构和周围地层传播到振动影响到的区域或个人.为降低振动或控制振动的不利影响,可从降低振源的激振强度、切断振动的传播途径或在传播途径上削弱振动、合理规划设计使建筑物避开振动影响区等几个方面着手.根据有关资料,减少振源振动可采取以下几种措施[13,34]:(1)采用60kg/m 以上的重轨,并应尽量采用无缝线路.重轨具有寿命长,稳定性能和抗振性能良好的特点,无缝线路则可消除车轮对轨道接头的撞击.(2)减轻车辆的簧下质量,避免车辆与轨道产生共振,这样可降低振动强度10~15dB.专业知识分享版使命:加速中国职业化进程(3)对于地铁而言,适当增加埋深,使振动振幅随距离(深度)增加而加大衰减;采用较重的隧道结构也可降低振动幅度.(4)对于在地面上运行的轻轨系统,应首先考虑采用高架桥梁.与普通路基相比较,高架系统不但产生的振动要小,而且占地面积也小,特别适合市区.(5)高架轻轨系统的桥梁应优先采用混凝土梁以及整体性好、振动较小的结构形式;合理设计跨度和自振特性,以避免高速运行的列车与结构产生共振.另外,墩台采用桩基础,可获得较浅平基础好的减振效果.(6)采用合适的道床和轨道结构型式,增加轨道的弹性.瑞士联邦铁路和比利时布鲁塞尔自由大学等都在研究新型的弹性轨枕和复合轨枕以减小动力冲击力,并将有效地降低车辆、轨道和附近环境的振动.对地铁而言,为减少维修工作量,一般都采用整体道床,其中包套式短枕整体道床、塑料短枕整体道床、浮置板式整体道床等几种道床型式都可起到减振作用.对高架轻轨而言,道床结构形式主要有两种:一是有碴式道床结构型式,二是无碴道床结构型式.从国外情况看,美国、加拿大多采用无碴式整体道床,德国、新加坡多采用有碴道床,香港地铁高架部分均采用无碴道床,日本轻轨采用有碴道床和混凝土板式道床.从减振效果来说碎石道床优于整体道床,但碎石道床具有稳定性较差、养护工作量大、自重较大、轨道建筑高度较大且道床易污染等缺点,所以宜采用整体道床,其弹性不足的问题可以利用减振效果好的弹性扣件或其它减振措施弥补. 整体道床包括无枕式整体道床,短枕式整体道床,长枕式整体道床和纵向浮置板式整体道床.其中纵向浮置板式整体道床减振效果显著,尤其是低频域减振效果更好.无论是有碴道床还是整体道床,都可在道碴或凝土板下面设置橡胶减振垫,减振效果可达10~15dB [2,4,14,34].采用适当的弹性扣件,可以增加整体道床的弹性.例如,在北京地铁使用的DTI 型和DTV 型扣件中,DTV 型扣件经过室内试验比DTI 型扣件可减少振动5~8dB.弹性垫层是增加扣件弹性的重要组成部分.要改善整体道床的缺点,可采用高弹性垫层,以提供轨道所需用的弹性,缓冲列车的动力作用.北京地铁一二期工程采用轨下10mm 橡胶垫板、铁垫板下一层塑料垫板作为弹性垫层,但发现弹性不足.北京新建的地铁和上海地铁采用轨下一层、铁垫板下两层圆柱型橡胶垫板,均能满足一般地段需要.需要指出的是,道床型式、扣件型式及弹性垫层之间都要有合理的匹配关系. 为阻止表面波的传播,可采取切断振动传播途径或在传播途径上削弱振动的措施.在地表层采取挖沟、筑墙等措施有一定效果.有三种隔离模式:弹性基础、明沟和充填式沟渠.弹性基础对较高频率的隔振效果较好,但由于弹性基础的存在,轨道上的最大低频加速度会被放大,所以无论是对运行列车的平稳性还是对于周围环境的隔振来说,弹性基础并不是很理想的方法;对于明沟和充填式沟渠,一般来说,减振沟越深,其有效隔振频率的下限就越低,减振效果越好,它们可以完全切断振动波的传播,只要沟的深度足够,就可以获得理想的隔振效果.专业知识分享版使命:加速中国职业化进程减振墙也常用来作隔振使用,其效能与减振沟类似.有试验表明,减振墙的板质、厚度和深度对减振效果均有影响.向地层下打入柱桩,形成柱列或柱阵可以获得显著的减振效果,国外已成功地采用这种措施防止地铁和其它振动对建筑物的干扰.对于点振源,在其周围设置由具有一定质量的隔振材料形成的阻波区(WaveImpedingBlock ),可以很好地隔绝振动波的扩散.阻波区隔振的基本原理是利用隔振材料的振动来吸收振源传出的振动能量,其减振效果与隔振材料的质量和埋置深度、阻波区的宽度有关.台湾某高架桥系统,在桥墩的周围设置环状的阻波区后,环外地层的振动强度下降了5~15dB [45].4 减轻轨道交通系统对周边建筑物振动影响的规划设计原则根据国内外的研究成果,为减轻轨道交通系统对周边建筑物的振动影响,规划设计中应遵循以下原则:(1)规定地面建筑物到地铁隧道或高架轻轨线路的水平距离,必须在古建筑附近修建地铁时,还应规定地铁隧道的埋深,以利用振动能量的传播衰减来降低振动水平.(2)对新规划的建筑物,应使其位置避开振动波传播的放大区;对既有的古旧建筑物或其它对振动敏感的建筑物,在规划轨道交通线时,应使振动放大区离开它们的位置.(3)在地铁及高架轻轨沿线的建筑物应以基础结构牢固的楼房为主,避免建造轻质结构或基础较浅的房屋.建筑物的振动特性应合理设计,以防止其振动频率与列车产生的振动一致而形成共振.(4)在轨道交通规划布局中,应充分老虑利用振动波的天然屏障,如河流、高大建筑物等,来隔绝振动的影响.。

相关文档
最新文档