奥林匹克数学竞赛知识

合集下载

高中奥林匹克数学竞赛解题方法

高中奥林匹克数学竞赛解题方法

高中奥林匹克数学竞赛解题方法一、代数技巧代数是数学的基础,掌握代数技巧对于解决数学问题至关重要。

以下是一些常用的代数技巧:1、合并同类项:将同类项合并为一个项,可以简化计算过程。

2、提取公因式:将公因式提取出来,可以简化计算过程。

3、完全平方公式和平方差公式:这两个公式在代数中非常常用,可以用来进行化简和展开。

4、分式的约分:将分式约分为最简形式,可以简化计算过程。

5、根式与分数指数幂的互化:将根式转化为分数指数幂,或将分数指数幂转化为根式,可以用来解决一些复杂的问题。

二、几何技巧几何是数学中重要的分支之一,掌握几何技巧对于解决数学问题非常重要。

以下是一些常用的几何技巧:1、三角形的内心、外心和垂心:掌握这些特殊点的性质和作法,可以用来解决一些与三角形相关的问题。

2、圆的标准方程和一般方程:掌握圆的标准方程和一般方程,可以用来解决一些与圆相关的问题。

3、立体几何中的空间向量:通过空间向量的运算,可以用来解决一些立体几何问题。

4、解析几何中的直线、圆和椭圆:掌握直线、圆和椭圆的性质和作法,可以用来解决一些解析几何问题。

三、数据分析数据分析是数学中重要的应用之一,掌握数据分析技巧对于解决实际问题非常重要。

以下是一些常用的数据分析技巧:1、数据的集中趋势和离散程度:掌握数据的集中趋势和离散程度,可以用来评估数据的分布情况。

2、数据的可视化:通过图表等可视化工具,可以更加直观地展示数据和分析结果。

3、回归分析:通过回归分析,可以找出变量之间的关系,从而对数据进行更加深入的分析。

4、方差分析:通过方差分析,可以检验多个样本之间是否存在显著性差异。

5、时间序列分析:通过时间序列分析,可以预测未来一段时间内的数据变化趋势。

四、数学建模数学建模是数学中重要的应用之一,掌握数学建模技巧对于解决实际问题非常重要。

以下是一些常用的数学建模技巧:1、建立数学模型:根据实际问题建立相应的数学模型,可以是方程、不等式、图形等。

奥林匹克数学竞赛试题资料

奥林匹克数学竞赛试题资料

奥林匹克数学竞赛试题资料一.填空题(共10小题,满分43分)1.(4分)求出得数4+4+3+5=6+6+7+6+5=2.(4分)35个小朋友坐船游玩,每条船最多坐8人,至少要条船.3.(4分)同学们做操,排成一个正方形的队伍,从前、后、左、右数,小红都是第5个,问一共有人.4.(4分)13个孩子在一起捉迷藏的游戏,最后有2个孩子躲得最巧,没有捉到,请问被捉到的孩子有个.5.(4分)一个标准油桶,桶连油共重7千克.司机马叔叔已经用去一半油,现在连桶还重4千克.桶里还有油.6.(4分)筐里有42个橘子,最少拿出个就正好平均分给8个同学,最少加上个才可以平均放在9个盘子里.7.(4分)最大的两位数与最小的两位数相差,积是.8.(4分)把一根12米长的绳子对折,再对折,每折长米.9.(6分)找规律填数:(1)2,5,7,12,19,(2)1,4,9,16,25,10.(5分)△+○=88,△﹣○=20,△=○=.二.选择题(共5小题,满分15分,每小题3分)11.(3分)2个人吃2个西红柿,用2分钟吃完,9个人吃9个西红柿,需要()分钟才能吃完.A.27 B.18 C.9 D.212.(3分)二(1)班的小朋友排队到医务室检查视力,每批进去5人,小华排在第39位.他第()批才能进去.A.5 B.6 C.7 D.813.(3分)把一段木头锯成7段,每锯一次要7分钟,锯完这根木头要()分钟.A.49 B.42 C.35 D.2814.(3分)张三比李四重,王五比李四轻,最轻的是()A.张三B.李四C.王五15.(3分)物体绕着一个点或一个轴移动,这样的现象叫()A.旋转B.平移三.解答题(共6小题,满分42分,每小题7分)16.(7分)一张正方形的纸,用剪刀截去一个角,还剩几个角?(画出示意图)17.(7分)小明家养了8只鸡,共生蛋45只,每只母鸡生9个蛋,这些鸡中有几只公鸡?18.(7分)小虹家离学校有45米.有一天上学,她从家走出9米处,发现忘了带作业本,又回家取,她从家到学校共走了多少米?19.(7分)二年级原来女同学比男同学多25人,今年二年级又增加了80个那同学和65个女同学.现在是男同学多还是女同学多?多几人?20.(7分)一块三角板,切去其中的一个角,还有几个角?21.(7分)1只大白兔的重量事2只松鼠的重量,1只松鼠的重量是3只小鸡的重量,1只大白兔的重量等于几只小鸡的重量?。

高中奥林匹克数学竞赛-几个重要定理

高中奥林匹克数学竞赛-几个重要定理

竞赛专题讲座-几个重要定理《定理1》正弦定理△ABC中,设外接圆半径为R,则证明概要如图1-1,图1-2过B作直径BA',则∠A'=∠A,∠BCA'=90°,故即;同理可得当∠A为钝角时,可考虑其补角,π-A.当∠A为直角时,∵sinA=1,故无论哪种情况正弦定理成立。

《定理2》余弦定理△ABC中,有关系a2=b2+c2-2bccosA;(*)b2=c2+a2-2cacosB;c2=a2+b2-2abcosC;有时也用它的等价形式a=ccosB+bcosC;b=acosC+ccosA;(**)c=acosB+bcosA.证明简介余弦定理的证法很多,下面介绍一种复数证法如图建立复平面,则有=(bcosA-c2)+(bsinθ)2即a2=b2+c2-2bccosA,同理可证(*)中另外两式;至于**式,由图3显见。

《定理3》梅涅(Menelaus)劳斯定理(梅氏线)直线截△ABC的边BC,CA,AB或其延长线于D、E、F. 则本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。

在△FBD、△CDE、△AEF中,由正弦定理,分别有《定理4》塞瓦定理(Ceva) (塞瓦点)设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,则证法简介(Ⅰ)本题可利用梅内劳斯定理证明:(Ⅱ)也可以利用面积关系证明同理 ④ ⑤③×④×⑤得《定理5》塞瓦定理逆定理在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,若则AD 、BE 、CE 平行或共点。

证法简介(Ⅰ)若AD∥BE(如图画5-1) 则EACEBD BC =代入已知式:1=⋅⋅FB AF BD BC DC BD 于是 CBDCFB AF =, 故 AD∥CF,从而AD∥BE∥CF(Ⅱ)若AD 、BE 交于O (图5-2),则连CO 交AB 于F’.据塞瓦定理,可得1='⋅⋅B F AF EA CE DC BD 而已知1=⋅⋅FB AFEA CE DC BD 可见FB AF B F F A ='' 则 FBAF AFB F F A F A +='+'' AB FB AF B F F A =+='+' AF F A =' 即F '即F ,可见命题成立《定理6》斯特瓦尔特定理在△ABC 中,若D 是BC 上一点,且BD=p ,DC=q ,AB=c ,AC=b ,则证明简介:在△ABD 和△ABC 中,由余弦定理,得《定理7》托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆BD AC AD BC CD AB •=•+•的充要条件是共圆ABCD《定理7》、西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。

小学奥林匹克数学 竞赛数学 第9讲:还原问题与年龄问题

小学奥林匹克数学  竞赛数学 第9讲:还原问题与年龄问题

知识点回顾还原问题:1,在倒推求解问题时,常常通过逆运算来还原:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原.2,当题目中有两个或两个以上的量在变化时,可以采用列表格的方法依次记录每一个变化过程.知识点回顾年龄问题:1,“两人年龄差不变”是年龄问题中最重要的性质,但年龄差不变不一定适用于多人的年龄差.2,年龄问题可以转化为其他类型的和差倍问题,可以画出线段图辅助思考.有一个数,把它加上37,再乘以18,减去323,得到的结果用23去除,商是16,余数是11.这个数原来是多少?果园里有一棵桃树. 有一天,3只猴子来摘桃吃,第一只猴子吃了1个桃子并摘下了剩下桃子的一半,然后第二只猴子吃了2个桃子并摘下了剩下桃子的一半,最后第三只猴子吃了3个桃子并摘下了剩下桃子的一半,这时树上刚好还有4个桃子.原来树上一共有几个桃子?【3】地上有26块砖,兄弟二人争着去挑. 弟弟抢在前面,刚挑起一些砖,哥哥赶到了,挑了剩下的砖. 哥哥看弟弟挑得太多,就从弟弟那儿抢过一半. 弟弟不肯,又从哥哥那儿抢走一半. 哥哥不服,弟弟只好再给哥哥5块,这时哥哥比弟弟多挑2块,请问:最初弟弟准备挑多少块砖?【4】某人发现了一条魔道,下面有一个存钱的小箱子,当他从魔道走过去的时候,箱子里的一些钱会飞到人的身上使人身上的钱增加一倍,这人很高兴;当他从魔道走回来时,身上的钱会飞到箱子里,使箱子里的钱增加一倍;这人一连走了3个来回后,箱子里的钱和人身上的钱都是64枚一元的硬币,那么原来这人身上有多少元?箱子里有多少元?【5】甲、乙各有糖若干块,每操作一次是由糖多的人给糖少的人一些糖,使得糖少的人的糖数增加一倍,经过三次这样的操作后,甲有5块糖,乙有12块糖,两个人原来的糖数分别是多少?【6】甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了2倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数各增加了2倍,结果丙的钱最多;最后丙又拿出一些钱给甲和乙,使他们的钱数各增加2倍,结果三人的钱数一样多,如果他们三人共有81元,那么三人原来分别有多少钱?【7】今年张明15岁,他父亲45岁,请问:(1)多少年后,父亲年龄是张明年龄的2倍?(2)多少年前,父亲年龄是张明年龄的4倍?【8】12年前,父亲的年龄是女儿年龄的11倍;今年,父亲的年龄是女儿年龄的3倍. 请问:多少年后父亲年龄是女儿年龄的2倍?去年哥哥的年龄是明年兄弟二人年龄和的一半,前年哥哥的年龄是弟弟的2倍. 求哥哥和弟弟现在的年龄。

国际奥林匹克数学竞赛_奥林匹克数学竞赛答题技巧方法

国际奥林匹克数学竞赛_奥林匹克数学竞赛答题技巧方法

国际奥林匹克数学竞赛_奥林匹克数学竞赛答题技巧方法奥林匹克数学竞赛答题技巧方法奥林匹克数学竞赛答题技巧(一)1、对照法如何正确地理解和运用数学概念小学数学常用的方法就是对照法。

根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。

只有这两个概念全理解了,才能做出正确判断。

2、公式法运用定律、公式、规则、法则来解决问题的方法。

它体现的是由一般到特殊的演绎思维。

公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。

但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59某37+12某59+5959某37+12某59+59=59某(37+12+1)…………运用乘法分配律=59某50…………运用加法计算法则=(60-1)某50…………运用数的组成规则=60某50-1某50…………运用乘法分配律=3000-50…………运用乘法计算法则=2950…………运用减法计算法则3、比较法通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

小学奥林匹克数学 竞赛数学 第13讲-多位数与小数

小学奥林匹克数学  竞赛数学 第13讲-多位数与小数

【2】
计算:(1) ຫໍສະໝຸດ 4.251
0.25

9.10.7



0.004
(2)4.5×4.8÷0.25÷15÷0.24.
【3】
在下面算式的两个方框中填入相同的数,使得等式成立. 所填的数应该是多少? 22.5-(□×3.2-2.4×□) ÷3.2=10.
【4】
计算:(1)299.9×19.98-199.8×29.97; (2) 3.51×49+35.1×5.1+99×51.
【13】
计算:(1)99…9×99…9+199…9;
100个9 100个9 100个9
(2)33…3×66…6.
20个3 20个6
【14】
求算式99…9×88…8÷66…6的计算结果的各位数字之和.
2000个9 2000个8 2000个6
下节课见!
【5】
计算:3.14+64.8×0.537×25+5.37×6.48×75-8×64.8×0.125×53.7.
【6】
计算:27.8×28.7-27.7×28.8.
【7】
计算:24.25×7.19+0.23×281+1.25×0.81.
【8】
计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+……+0.99.
知识点回顾 多位数:
二,加法型凑整与乘法型凑整,比如:
9998+20004=(10000-2)+(20000+4),99…9=9×11…1.

小学奥林匹克数学 竞赛数学 五年级 第16讲-余数

小学奥林匹克数学  竞赛数学 五年级 第16讲-余数

知识点回顾一、替换求余:可加性、可减性以及可乘性二、特性求余:例如2、3、4、5、7、8、9、11、13、99等1111除以一个两位数,余数是66,求这个两位数.1111661045-=104551119=⨯⨯1045的约数大于余数66 这个两位数是9521421421421421个(1)除以4和125的余数分别为多少?(2)除以9和11的余数分别是多少? 21808808808808个(1)一个数除以4的余数只需考虑它的末两位除以4的余数. 除以4余121除以4余1 (2)一个数除以9的余数等于它的各位数字之和除以9的余数.(88)21336+⨯=除以9余3一个数除以11的余数等于奇数位数字和减去偶数位数字和的差除以11的余数. (88)11176+⨯=(88)10160+⨯=除以11余5 176-160=16 16÷11=1余5一个数除以125的余数只考虑末三位除以125的余数. 421125346÷=除以125余46一年有365天,轮船制造厂每天都可以生产零件1234个.年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件? 1234196418÷=36519194÷=1234365⨯18472⨯=72除以19余15 最后一包有15个零件.67222221⨯⨯⨯⨯-个自然数的个位数字是多少? 22⨯222⨯⨯2222⨯⨯⨯22222⨯⨯⨯⨯2 ……个位 2 4 8 6 267除以4余36722222⨯⨯⨯⨯个的个位数字是8 个位数字就是729一年有365天,轮船制造厂每天都可以生产零件1234个。

年终将这些零件按19个一包的规格打包,最后一包不够19个。

请问:最后一包有多少个零件?20072007200720071232006+++⋅⋅⋅+算式计算结果的个位数字是多少?1、5、6、10的2007次方的个位数字就是1,5,6,0.1次方2次方3次方4次方5次方6次方…2007次方2 2 4 8 6 2 4 (8)3 3 9 7 1 3 9 74 4 6 4 6 4 6 47 7 9 3 1 7 9 38 8 4 2 6 8 4 29 9 1 9 1 9 1 9 156087432945+++++++++= 2007200720071210+++的个位数字是5 200720072007 200120022006+++的个位数等于的个位数是118745631+++++=的个位数,为152001⨯+108888888+⨯++⨯⨯⨯个除以5的余数是多少?8除以5余310333333+⨯++⨯⨯⨯个3 3,23,33,43,⋅⋅⋅除以5的余数依次为3,4,2,1,3,4,⋅⋅⋅342110+++=347+=余2如果某个自然数除以49余23,除以48也余23.那么这个自然数被14除余数是多少?这个数减去23后是49和48的一个公倍数23,2349481+⨯⨯,2349482+⨯⨯,⋅⋅⋅23÷14=1余9一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?被23除余7的所有数:7,30,53,76,99,122,145,168,191,214,237,…第一个除以19余9的数是237刘叔叔养了400多只兔子,如果3只一个笼,那么最后一笼只有2只;如果5只一笼,那么最后一笼只有4只;如果7只一笼,那么最后一笼只有5只.刘叔叔一共养了多少只兔子?除以3余2 除以5余4 除以7余5 3×5-1=14 14,14+15 , 14+15×2 ,14+15×3,…14+15×5=89 89+105×3=404只100多名小朋友站成一列.从第一人开始一次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按照1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?除以11余9 除以13余11 少2 11132141⨯-=123123123123123个除以99的余数是多少?99的整除特性:两位截断求和 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 …… 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3123÷2=61余1 12+31+23=66 66×61+23+1=405040+50=90把63个苹果,90个桔子,130个梨平均分给一些同学.最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?++=6390130283-=283252582582343=⨯⨯258的约数有1,2,3,6,43,86,129和25810<人数<63 人数只能是43个分完后苹果剩20个,桔子剩4个,梨剩1个。

奥林匹克数学题型素数与合数

奥林匹克数学题型素数与合数

奥林匹克数学题型素数与合数奥林匹克数学题型:素数与合数数学在奥林匹克竞赛中占有重要地位,其中一个重要的题型是关于素数和合数的。

素数与合数是数论中的基本概念,它们在数学中有着重要的作用。

本文将介绍素数与合数的定义和特性,并探讨一些与奥林匹克竞赛相关的数学题目。

1. 素数的定义和特性素数是指除了1和自身外,没有其他正因数的自然数。

比如2、3、5、7等数字都是素数,因为它们只能被1和自身整除。

而能够被除了1和自身外的其他自然数整除的数被称为合数,如4、6、8等。

素数和合数之间有着明显的区别,它们具有一些独特的特性。

首先,素数没有其他的正因数,所以不能被任何其他的数字整除。

其次,每一个合数都可以分解成若干个素数的乘积。

这就是所谓的素因子分解定理。

例如,24可以分解为2 × 2 × 2 × 3,其中2和3都是素数。

2. 奥林匹克数学题目示例在奥林匹克竞赛中,常常会涉及到素数与合数的性质与运用。

下面是几个与素数与合数相关的奥林匹克数学题目示例:题目1:证明:当n为大于等于2的整数时,n²-n+41一定是素数。

题目2:证明:如果一个整数至少有三个不同的素因子,那么这个整数一定大于等于30。

题目3:有四个正整数a、b、c、d满足如下条件:(a+b+c+d)(abc+abd+acd+bcd) = 2019其中a、b、c、d都是素数,求a、b、c、d的值。

以上题目仅供参考,奥林匹克竞赛中的数学题目是多样且复杂的,需要灵活运用各种数学概念和方法来解决。

3. 数论的重要性数论作为数学学科的一个重要分支,研究了整数和整数之间的关系,对于算术和代数等其他数学领域的发展都起到了推动作用。

在奥林匹克竞赛中,数论题型常常需要考察学生对于整数的掌握和运用能力,培养学生的逻辑思维和分析问题的能力。

4. 结语素数与合数是数论中的重要概念,掌握了它们的定义和特性,对于解决与其相关的数学问题至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥林匹克数学竞赛知识
国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

以下是由店铺整理关于奥林匹克数学竞赛知识的内容,希望大家喜欢!
奥林匹克数学竞赛奖项介绍
国际奥林匹克数学竞赛是国际青少年数学大赛,在世界上影响非常之大。

国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。

这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。

以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。

2013年参加这项赛事的代表队有80余支。

美国1974年参加竞赛,中国1985年参加竞赛。

经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。

国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。

参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。

试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。

东道国不提供试题。

试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。

主试委员会由各国的领队及主办国指定的主席组成。

这个主席通常是该国的数学权威。

奥林匹克数学竞赛委会职责
1)、选定试题;
2)、确定评分标准;
3)、用工作语言准确表达试题,并翻译、核准译成各参加国文字
的试题;
4)、比赛期间,确定如何回答学生用书面提出的关于试题的疑问;
5)、解决个别领队与协调员之间在评分上的不同意见;
6)、决定奖牌的个数与分数线。

考试分两天进行,每天连续进行4.5小时,考3道题目。

同一代表队的6名选手被分配到6个不同的考场,独立答题。

答卷由本国领队评判,然后与组织者指定的协调员协商,如有分歧,再请主试委员会仲裁。

每道题7分,满分为42分。

奥林匹克数学竞赛规定
(1)一年一度的IMO的东道国由参赛国(或地区)轮流担任,所需经费由东道国负担,整个活动由东道国出任主席,由各国领队组成的主试委员会主持,试题和解答由参赛国提供,每国3—5题(也可不提供),东道国不提供试题,而由东道国组成选题委员会,对各国提供的试题进行评议与初选,主要考虑试题是否与以往的试题重复,并把试题按代数、数论、几何、组合数学、组合几何等分类,确定试题难度(A、B、C三级),选择30题左右。

如果这些题有新解法的话,还要求提供原解法以外的解答,译成英文供主试委员选用。

(2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超过6人(是中学或同等级学校学生),正、副领队各1人,考试分两天两试,每试3题,每试4.5小时,每题7分,所以每个选手的最高得分是42分。

(3)IMO的官方用语为英、法、德、俄语,而参赛国大约需要26种文字,届时由各领队把试卷译成本国语言,并经协调委员会认可。

度卷先由各国的正、副领队评判,再与协调委员会协商(每个协调员负责一个试题的评分),如有分歧,由主试委员会仲裁,协商工作是在信任与友好的气氛中进行的。

(4)IMO的获奖人数约占参赛人数的一半,评奖根据分数段评出一、
二、三等奖获得者,其比例平均为1:2:3。

此外,主试委员会还可因在某个试题上作出了非常漂亮(指思路简捷巧妙,有独创性)或在数学上有意义的解答的学生给予特别奖。

为避免再次出现1980年那样的中断,IMO设立一个专门的委员会(有的译为场所委员会)负责确定各届的东道主。

按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出邀请。

东欧外的国家中,第一个加入的是芬兰(1965年第7届),接着法国、英国、意大利、瑞典、荷兰等也都在60年代陆续加入。

1974年,美国、越南加入。

此后,参加国逐年增加,并遍布欧、美、亚、非及大洋洲,IMO才成为名副其实的全球性的数学大赛。

1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些虽然未得金、银、铜牌,但至少有一道题得满分的选手。

这一措施,大大调动了各参赛国及其参赛选手的积极性。

IMO的精神就是奥林匹克精神:“重要的不在于取胜,而在于参加。

”据此,自1983年第24届以来,虽然每一个代表队(6个人为组员)都计算自己的总分,且知道按总分的顺序排在多少名,但组织委员会不向团体优胜者颁奖,因为IMO只是个人的竞赛,不是团体的竞赛。

1981年第22届,美国是IMO的东道主。

美国数学奥林匹克委员会主席格雷策发信邀请我国参加,中国数学会复信同意参加,后因故未能成行,只派了当时在美的访问学者作为观察员参加了。

到了1984年,在宁波召开的中国数学会首次普及工作会议上,确定1985年派两名选手参加第26届IMO,以了解情况、取得经验。

由于选拔时间仓促,只指派了北京、上海各1名优秀学生参加。

结果有1人得三等奖,两人平均成绩与以色列第17位,两人总分则排在32位。

1986年起,我国均派6名选手参赛。

我国选手的辉煌成绩,极大地激发了千百万中学生学习科学文化知识的热情,也极大地增强了中国人的民族荣誉感。

相关文档
最新文档