数值计算方法复习知识点
(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法复习要点

第一章引论计算方法解决问题的主要思想计算方法的精髓:以直代曲、化繁为简1、采用“构造性”方法构造性方法是指具体地把问题的计算公式构造出来。
这种方法不但证明了问题的存在性,而且有了具体的计算公式,就便于编制程序上机计算。
2、采用“离散化”方法把连续变量问题转为求离散变量问题。
例:把定积分离散成求和,把微分方程离散成差分方程。
3、采用“递推化”方法将复杂的计算过程归结为简单过程的多次重复。
由于递推算法便于编写程序,所以数值计算中常采用“递推化”方法。
4、采用“近似代替”方法计算机运算必须在有限次停止,所以数值方法常表现为一个无穷过程的截断,把一个无限过程的数学问题,转化为满足一定误差要求的有限步来近似替代。
算法的可行性分析时间复杂度、空间复杂度分析算法的复杂性(包含时间复杂性和空间复杂性)。
时间复杂度是算法耗费时间的度量。
算法的空间复杂度是指算法需占用存储空间的量度算法的可靠性分析良态算法、病态算法一个算法若运算过程中舍入误差的积累对最后计算结果影响很大,则称该算法是不稳定的或病态算法,反之称为稳定算法或良态算法。
误差的来源1、模型误差我们所建立的数学模型是对实际问题进行抽象简化而得到的。
因而总是近似的,这就产生了误差。
这种数学模型解与实际问题的解之间出现的误差,称为模型误差。
2、观测误差观测到的数据与实际数据之差。
3、截断误差数学模型的准确解与计算方法的准确解之间的误差。
4、舍入误差由于计算机字长有限,原始数据在计算机上表示会产生误差,每次计算又会产生新的误差,这种误差称为舍入误差。
绝对误差、相对误差定义2 记x*为x的近似数,称E(x)=x-x*为近似数x*的绝对误差,|E(x)|为绝对误差限。
定义3 称Er(x)=(x-x*)/x为近似数x*的相对误差。
实际运算时也将Er*(x)=(x-x*)/x*称为近似数x*的相对误差。
“四舍五入”:即尾数是4或以下则舍去,尾数是6或以上则进1,如果尾数是5,则规定:前面一位数字是偶数则舍去,奇数则进1。
(完整)数值计算方法复习

2016计算方法复习务必通过本提纲例子和书上例子掌握如下书本内容:1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss —Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报-校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。
(二) 复习要求1。
了解数值分析的研究对象与特点。
2。
了解误差来源与分类,会求有效数字; 会简单误差估计. 3.了解误差的定性分析及避免误差危害。
(三)例题例1. 设x =0.231是精确值x *=0。
229的近似值,则x 有2位有效数字。
例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x .例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法. (二) 复习要求1.了解求根问题和二分法.2。
了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。
3。
理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。
4。
掌握牛顿法及其收敛性、下山法, 了解重根情形. 5.了解弦截法. (三)例题1。
为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A )11,1112-=-=+k k x x x x 迭代公式 (B )21211,11kk x x x x +=+=+迭代公式(C ) 3/12123)1(,1k k x x x x +=+=+迭代公式 (D )231x x =-迭代公式11221+++=+k k kk x x x x 解:在(A)中,2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->=1.076故迭代发散。
数值计算方法复习

数值计算方法复习1.数值求解数值求解是通过数值计算方法来寻找一个给定方程的数值解。
常见的数值求解方法包括二分法、牛顿法、割线法和迭代法等。
-二分法是一种用于求解单调函数方程的数值方法。
它将函数方程的解限定在一个区间内,然后通过缩小区间的方式来逼近解。
二分法的思想是通过不断将区间一分为二,并判断解是否在其中一半区间内,从而缩小解的范围。
-牛顿法是一种用于求解非线性方程的数值方法。
它利用函数方程的切线来逼近解。
牛顿法的核心思想是通过不断迭代逼近解的位置,使得迭代序列逐渐收敛到解。
-割线法是一种求解非线性方程的数值方法,类似于牛顿法。
它通过连结两个近似解点,得到一个割线,然后以割线和x轴的交点作为下一次迭代的近似解点。
-迭代法是一种通过迭代计算来逼近解的数值方法。
迭代法的核心思想是通过不断更新迭代序列的值,使得序列逐渐收敛到解。
2.插值与拟合插值与拟合是通过已知数据点来推断出未知数据点的数值计算方法。
-插值是通过已知数据点在这些点之间进行推断。
常见的插值方法包括拉格朗日插值和分段线性插值。
拉格朗日插值通过构造一个n次多项式函数来拟合已知数据点,从而推断出未知数据点的值。
分段线性插值是指将数据点之间的区间划分为若干段,然后在每段区间内使用线性插值来推断未知数据点的值。
-拟合是通过已知数据点在这些点之间进行逼近。
常见的拟合方法包括最小二乘拟合和多项式拟合。
最小二乘拟合通过使得残差的平方和最小来找到最优拟合函数。
多项式拟合是指通过构造一个n次多项式函数来拟合已知数据点,从而得到一个逼近函数。
3.数值积分数值积分是通过数值计算方法来近似计算函数的定积分。
常见的数值积分方法包括矩形法、梯形法、辛普森法和龙贝格法等。
-矩形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过函数的平均值来近似计算定积分的方法。
-梯形法是一种通过将积分区间划分为若干个小区间,然后在每个小区间上通过线性插值来近似计算定积分的方法。
数值计算方法重点复习内容

Newton迭代方法求非线性方程组的迭代格式。
➢第七章
最小二乘问题的定义、思想及其求法;
❖广义逆矩阵 A和 最小二乘解的关系;
Householder变换的定义、性质、求法及应用;
Givens变换的定义、性质、求法及应用;
➢第八章
幂法的迭代格式及其应用; ❖反幂法的迭代格式及其应用; QR方法的思想。
《数值计算方法》重点复习内容 ➢第一章
基本概念:误差的分类、绝对误差和相对误差、
有效字;
❖误差分析的原则:避免相近的数相减等。
➢第二章
二分法及对分次数的计算; ❖不动点迭代:几何意义、迭代函数的构造、迭代
格式的收敛性判定方法。
Newton迭代及其收敛性。
➢第三章
代数插值函数的定义、存在唯一性、误差估计式; ❖Lagrange插值多项式、n次Lagrange插值基函数
➢第九章
单步法的构造方法:Taylor展开法; ❖Euler公式、 Euler预报-校正公式
和经典4阶Runge-Kutta公式及其应用;
单步法的局部截断误差、收敛阶的定义;
梯形公式、Simpson公式及其余项;
复化梯形公式、复化Simpson公式及其余项; Gauss型求积公式的定义及其特点。 数值微分的三点公式计算近似导数定理。
➢第五章
常用的向量范数和矩阵范数的定义及求法;
❖列主元Gauss消去法、Doolittle分解方法;
条件数的定义及其计算。
➢第六章
了解向量序列和矩阵序列的定义、收敛性; ❖一般迭代法的形式、收敛性判定; Jacobi、Gauss-Seidel迭代格式(包括分量形式)
的性质(习题4-4)、Newton插值多项式
《数值计算方法》复习资料

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= π=3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00解因为x1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即m=1,n=5,故x=2.000 4有5位有效数字. a1=2,相对误差限x2=-0.002 00,绝对误差限0.000 005,因为m=-2,n=3,x2=-0.002 00有3位有效数字. a1=2,相对误差限εr==0.002 5x3=9 000,绝对误差限为0.5×100,因为m=4, n=4, x3=9 000有4位有效数字,a=9,相对误差限εr==0.000 056x4=9 000.00,绝对误差限0.005,因为m=4,n=6,x4=9 000.00有6位有效数字,相对误差限为εr==0.000 000 56由x3与x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例3ln2=0.69314718…,精确到10-3的近似值是多少?解精确到10-3=0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
数值计算方法主要知识点

数值计算方法主要知识点数值计算方法是数学中的一门基础课程,主要研究数值计算的理论、方法和算法。
它是现代科学和工程技术领域中不可或缺的重要工具,广泛应用于数值模拟、优化计算、数据处理等诸多领域。
下面是数值计算方法的主要知识点(第一部分)。
1.近似数与误差:数值计算的基本问题是将无法精确计算的数值通过近似计算来求得。
近似数即为真实数的近似值,其与真实值之间的差称为误差。
误差可以分为绝对误差和相对误差。
绝对误差为真实值与近似值之差的绝对值,相对误差为绝对误差与真实值的比值。
通过控制误差可以评估数值计算结果的准确性。
2.插值与多项式:插值是指通过已知离散点构造一个函数,并在给定点处对其进行近似计算。
插值函数通常采用多项式拟合,即通过已知点构造一个多项式函数,并利用此函数进行近似计算。
主要的插值方法有拉格朗日插值、牛顿插值和埃尔米特插值等。
3.数值微分与数值积分:数值微分主要研究如何通过数值方法去近似计算函数的导数。
常用的数值微分方法有差商、中心差商和插值微分等。
数值积分则是研究如何通过数值方法去近似计算函数的定积分。
常用的数值积分方法有矩形法、梯形法和辛普森法等。
4.非线性方程的数值解法:非线性方程的数值解法是指通过数值方法求解形如f(x)=0的方程。
常用的非线性方程数值解法有二分法、牛顿法和二次插值法等。
这些方法基于一些基本原理和定理,通过迭代的方式逐步逼近方程的根即可求得方程的近似解。
5.线性方程组的数值解法:线性方程组的数值解法是指通过数值方法求解形如Ax=b的线性方程组。
其中,A是一个已知的系数矩阵,b是一个已知的常数向量,x是未知的解向量。
常用的线性方程组数值解法有高斯消元法、追赶法和LU分解法等。
这些方法通过一系列的变换和迭代来求解线性方程组的解。
6.插值型和积分型数值方法:数值计算方法可以分为插值型和积分型两类。
插值型数值方法是通过插值的方式进行近似计算,如插值法和数值微分。
而积分型数值方法是通过数值积分的方式进行近似计算,如数值积分和微分方程的数值解法。
数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲第一章数值计算中的误差分析12.了解误差 ( 绝对误差、相对误差 )3.掌握算法及其稳定性,设计算法遵循的原则。
1、误差的来源模型误差观测误差截断误差舍入误差2误差与有效数字绝对误差E(x)=x-x *绝对误差限x*x x*相对误差E r (x) ( x x* ) / x ( x x* ) / x*有效数字x*0.a1 a2 ....a n10 m若x x*110m n ,称x*有n位有效数字。
2有效数字与误差关系( 1)m 一定时,有效数字n 越多,绝对误差限越小;( 2)x*有 n 位有效数字,则相对误差限为E r (x)110 (n 1)。
2a1选择算法应遵循的原则1、选用数值稳定的算法,控制误差传播;例I n 11n xdxex eI 0 11I n1nI n1e△ x n n! △x02、简化计算步骤,减少运算次数;3、避免两个相近数相减,和接近零的数作分母;避免第二章线性方程组的数值解法1.了解 Gauss 消元法、主元消元法基本思想及算法;2.掌握矩阵的三角分解,并利用三角分解求解方程组;(Doolittle 分解; Crout分解; Cholesky分解;追赶法)3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。
本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解?a11x1a12x2...a1nxn b1a21x1a22x2...a2nxn b2...an1x1an 2x2...annxn b n两类方法,第一是直接解法,得到其精确解;第二是迭代解法,得到其近似解。
一、Gauss消去法1、顺序G auss 消去法记方程组为:a11(1) x1a12(1) x2... a1(1n) x n b1(1)a21(1) x1a22(1) x2... a2(1n) x n b2(1)...a n(11) x1a n(12) x2... a nn(1) x nb n(1)消元过程:经n-1步消元,化为上三角方程组a11(1) x1b1(1)a 21(2) x1a22(2 ) x2b2( 2 )...a n(1n) x1a n(n2) x2...a nn(n ) x nb n( n )第k步若a kk(k)0( k 1)( k)a ik(k )(k )( k 1)( k )a ik(k )( k)aij aij a kk(k )akj bi b i a kk(k )b k k 1,...n 1 i, j k 1,....,n回代过程:x n b n(n)/ a nn(n)nx i (b i(i )a ij(i ) x j ) / a ii(i)(i n 1, n 2,...1)j i 12、G auss—Jordan消去法避免回代,消元时上下同时消元3、G auss 列主元消去法例:说明直接消元,出现错误0.00001x12x22x1x23由顺序G auss 消去法,得x21, x10 ;Ga uss 列主元消去法原理:每步消元前,选列主元,交换方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015计算方法复习1. 会高斯消去法;会矩阵三角分解法;会Cholesky 分解的平方根法求解方程组2. 会用插值基函数;会求Lagrange, 会计算差商和Newton 插值多项式和余项3. 会Jacobi 迭代、Gauss-Seidel 迭代的分量形式,迭代矩阵,谱半径,收敛性4. 会写非线性方程根的Newton 迭代格式;斯蒂芬森加速5. 会用欧拉预报—校正法和经典四阶龙格—库塔法求解初值问题6. 会最小二乘法多项式拟合7. 会计算求积公式的代数精度;(复化)梯形公式和(复化)辛普生公式求积分;高斯-勒让德求积公式第1章、数值计算引论(一)考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;误差的传播。
(二) 复习要求1.了解数值分析的研究对象与特点。
2.了解误差来源与分类,会求有效数字; 会简单误差估计。
3.了解误差的定性分析及避免误差危害。
(三)例题例1. 设x =0.231是精确值x *=0.229的近似值,则x 有2位有效数字。
例2. 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x 。
例3. 3*x 的相对误差约是*x 的相对误差的1/3 倍.第2章、非线性方程的数值解法(一)考核知识点对分法;不动点迭代法及其收敛性;收敛速度; 迭代收敛的加速方法;埃特金加速收敛方法;Steffensen 斯特芬森迭代法;牛顿法;弦截法。
(二) 复习要求1.了解求根问题和二分法。
2.了解不动点迭代法和迭代收敛性;了解收敛阶的概念和有关结论。
3.理解掌握加速迭代收敛的埃特金方法和斯蒂芬森方法。
4.掌握牛顿法及其收敛性、下山法, 了解重根情形。
5.了解弦截法。
(三)例题1.为求方程x 3―x 2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是( )(A)(B)11,1112-=-=+k k x x x x 迭代公式21211,11kk x x x x +=+=+迭代公式(C)(D)迭代公式解:在(A)中,=1.076 故迭代发散。
应选择(A)。
可以验证在(B),(C), (D)中,ϕ(x )满足,迭代收敛。
2.用Newton 法求方程2ln =-x x 在区间) ,2(∞内的根, 要求8110--<-kk k x x x 。
解 此方程在区间) ,2(∞内只有一个根s ,而且在区间(2,4)内。
设2ln )(--=x x x f则 x x f 11)('-=, 2''1)(x x f = Newton 法迭代公式为1)ln 1(/112ln 1-+=----=+k k k k k k k k x x x x x x x x , ,2,1,0=k取30=x ,得146193221.34=≈x s 。
3.设)(x f 可微,求方程)(2x f x =根的Newton 迭代格式为)(2)(21k k k k k k x f x x f x x x '---=+ 4. 牛顿切线法是用曲线f (x )上的点的切线与x 轴的交点的横坐标逐步逼近f (x )=0的解;而弦截法是用曲线f (x )上的;两点的连线与x 轴的交点的横坐标逐步逼近f (x )=0的解.5. 试确定常数r q p ,,使迭代公式5221kk k k x a r x a q px x ++=+.产生的序列{k x }收敛到3a ,并使收敛阶尽量高.解 因为迭代函数为522)(x a r x a q px x ++=ϕ,而=*x 3a .根据定理知,要使收敛阶尽量高,应有)(**x x ϕ=,0)(*='x ϕ,0)(*=''x ϕ,由此三式即可得到r q p ,,所满足的三个方程为:3/12123)1(,1k k x x x x +=+=+迭代公式231x x =-11221+++=+k k kk x x x x 2/32)1(21)(,11)(,11--='-=-=x x x x x x ϕϕ2/3)16.1(21->1)<<'r x ϕ1=++r q p ,052=--r q p ,05=+r q .解之得,91,95-===r q p ,且0)(3≠'''a ϕ,故迭代公式是三阶收敛的.P25.例2-4P30.例2-6 P33.例2-8 P35例2-10 P35.例2-11第3章、线性代数方程组的数值解法(一)考核知识点高斯消去法,列主元消去法;矩阵三角分解法;平方根法;追赶法;迭代法的基本概念,雅可比迭代法与高斯-塞德尔迭代法,超松弛迭代法SOR ,迭代解数列收敛的条件。
(二) 复习要求1.了解矩阵基础知识,了解向量和矩阵的几种范数。
2.掌握高斯消去法,掌握高斯列主元素消去法。
4.掌握直接三角分解法,平方根法,了解追赶法,了解有关结论。
5.了解矩阵和方程组的性态,会求其条件数。
6.了解迭代法及其收敛性的概念。
7.掌握雅可比(Jacobi)迭代法、高斯-赛德尔(Gauss-Seidel)迭代法和超松弛(SOR)迭代法。
(三)例题1.分别用顺序Gauss 消去法和直接三角分解法(杜利脱尔分解)求解线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡201814513252321321x x x 解:1) Gauss 消去法⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡7224001041014321224501041014321205131825214321, 回代 x3=3, x2=2, x1=12) 直接三角分解法(杜利脱尔分解):⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2400410321153121513252321=LU 解Ly b =,Ux=y 得x=(1,2,3)T2. 用平方根法(Cholesky 分解)求解方程组:⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛7351203022323321x x x 解:由系数矩阵的对称正定性,可令T LL A =,其中L 为下三角阵。
⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛3636333233633633231203022323 求解⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-735363363323321y y y 可得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==316135321y y y , 求解⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-321321363633323y y y x x x 可得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31211321x x x 3.讨论AX b =的Jacobi 迭代和Gauss-Seidel 迭代的收敛性其中,122111(1,1,0)221T A b -⎡⎤⎢⎥=--=⎢⎥⎢⎥--⎣⎦解:Jacobi 迭代法的迭代矩阵110221()1011220J B I A --⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则30()01J J I B B λλρ-==⇒=<∴Jacobi 迭代收敛Gauss-Seidel 迭代矩阵1102210220221101110102122104210086G SB -----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22(44)0()21G S I B B λλλλρ--=--=⇒=+>∴Gauss-Seidel 迭代发散.4.已知方程组,其中,(1)列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式;(2)讨论上述两种迭代法的收敛性。
解:(1)Jacobi 迭代法:Jacobi 迭代矩阵:收敛性不能确定(2)Gauss-Seidel 迭代法:Gauss-Seidel 迭代矩阵:该迭代法收敛Ax b =211121112A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦111b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦112312131312121212()()()()()()()()()()/()/()/k k k k k k k k k x x x x x x x x x +++⎧=--⎪=--⎨⎪=--⎩1110221102211022()B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1()B ρ=112311213111312121212()()()()()()()()()()/()/()/k k k k k k k k k x x x x x x x x x ++++++⎧=--⎪=--⎨⎪=--⎩1110221104211088()G D L U -⎡⎤⎢⎥⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦1()B ρ==<5. 给定方程组⎩⎨⎧=+-=+23122121x x x x ,用雅可比迭代法和高斯-塞德尔迭代法是否收敛?解:由系数矩阵⎪⎪⎭⎫⎝⎛=1321A 可知,(1)雅可比迭代矩阵为⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛=+=--0320032011)(110U L D B ,由 063220=-==-λλλλB I 可知,16)(0>=B ρ,因而雅可比迭代法发散。
(2)高斯-塞德尔迭代矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-=--3202000201310100201301)(11U L D G ,由 03232022=+=+=-λλλλλG I 可知,32)(=G ρ,因而高斯-塞德尔迭代法收敛。
P68.例3-3 P68.例3-4 P72.例3-5 P76.例3-7 P77.例3-8 P78.例3-9 P79.例3-10 P88.例3-15 P89.例3-16 P91.例3-17 P98.例3-24 P110.例3-30 P111.例3-31 P118.例3-36第4章、插值法(一)考核知识点插值多项式,插值基函数,拉格朗日插值多项式,差商及其性质,牛顿插值多项式,差分与等距插值;分段线性插值;样条函数,三次样条插值函数。
(二) 复习要求1.了解插值的概念。
2.掌握拉格朗日(Lagrange)插值法及其余项公式。
3.了解均差的概念及基本性质,掌握牛顿插值法。
4.了解差分的概念,会牛顿前插公式、后插公式。
5.了解埃尔米特(Hermite)插值及其余项公式。
6.知道高次插值的病态性质,会分段线性插值和分段埃尔米特插值及其误差和收敛性。